Blocking amyloid assembly with chemical denaturants

Dmitri Klimov

Bioinformatics and Computational Biology Program George Mason University

Amyloid fibrils

Protein aggregation is an alternative to monomeric folding

monomers \rightarrow aggregates \rightarrow amyloid fibrils

Amyloid fibrils:

- 1. Long unbranched nanostructures
- 2. Extremely stable, form irreversibly
- 3. Assembly timescale >> folding timescale
- 4. Generic structure available for <u>any</u> polypeptide sequence
- 5. Generally non-functional and cytotoxic, linked to a new class of diseases

Structure of amyloid fibrils

- Universal internal organization based on β-sheet in registry structure
- β-sheet is stabilized by hydrogen bond network
- β-sheets are laminated in layers

Amyloid fibril structures

First "real" conformation of peptides in fibrils (Serpell, *PNAS* 2005)

3D structure of the designed **KFFEAAAKKFFE** peptide

- Antiparallel β-sheets
- Layered brick-like arrangement of βsheets

$\ensuremath{\mathsf{A}\beta}$ peptides and Alzheimer's disease

- $A\beta$ peptides:
 - Natural product of cell proteolysis
 - Exist in a variety of lengths (39-42mers)
 - Form amyloid fibrils
- Aβ amyloid hypothesis for Alzheimer's disease (AD)
- Aβ oligomers are potent neurotoxins
- AD neurotoxic agent: Aβ fibrils or oligomers?
- Oligomers are possibly involved in other neurogenerative diseases

AEF RHDSGYEVHHQKLVFFAEDVGSNKSAIIGLMVGGVVIA

Molecular dynamics simulations of Alzheimer's Aß peptides

Hydrophobic

C-terminal

CHC

Hydrophilic

N-terminal

Assembly of A β amyloids

$A\beta_{16-22}$ peptide is a model amyloid system

MD simulations of $A\beta_{16-22}$ oligomers

- OPLS all-atom representation of three Aβ₁₆₋₂₂ peptides in water(+urea) (~4,000 atoms in 35Å x 35Å x 35Å unit cell)
- Probe the kinetics of oligomer assembly through multiple NVE MD trajectories starting with *random* initial structures (>150 *ns* simulation time)

Aβ16-22 monomers adopt random coil structure in water

Turning on interpeptide interactions...

Disordered oligomer is

stabilized by hydrophobic interactions

<u>Interpeptide interactions</u> drive an accumulation of β -structure No order in peptides' orientations

Assembly of ordered A β_{16-22} oligomers in water

Antiparallel orientation of peptides in *ordered oligomers*

Ordered oligomers are stabilized by *hydrophobic+electrostatic* side chain contacts

Structural ordering in A β 16-22 oligomers resembles fibril organization within ~ 10 ns

Question:

how do chemical denaturants affect oligomer assembly?

Motivation:

- 1. Tool for probing the mechanism of amyloid formation
- 2. Some amyloids (Ig light chain) are formed in the presence of urea
- 3. Implications for protein unfolding

- Urea enhances β -propensity in $A\beta_{16-22}$ peptides
- Distribution of monomer conformational states in urea (water)
 - ➤ 46% random coil (68%)
 - > 53% β-strand (29%)
 - \succ negligible amount of α -helix
- Conformational properties are static on a timescale of 10 ns

Effect of urea on the distribution of end-to-end distance $P(r_{1N})$

A β 16-22 monomers in 8M urea

What are the interactions that might explain enhanced β -propensity?

Enhanced β -propensity is due to urea-backbone hydrogen bonding

Urea solvates backbone better than water

- Relative gain factor in [U] over [W] is 3.3
- Average residence times in FSS indicate rapid exchange of solvent molecules

>
$$<\tau_{U}> = 14.1 \text{ ps}$$

> $<\tau_{w}> = 8.9 \text{ ps}$

Backbone FSS: [W]/[U]≈1.5

Enhanced β -propensity is due to urea-backbone hydrogen bonding

Solvation of backbone amide hydrogens:

- $<N_{U}>+<N_{W}>=2.2+3.1=5.3$
- Urea cross-bridges backbone
 better than water

 β -propensity is <u>**not**</u> caused by the solvation of side-chains

Water solvates *charged* side chains 3.5 better than urea 3.0 H(K) = O(U)H(K) = O(W)2.5 *(1) d(1)* Increase in [W]/[U] H(K) FSS: 50% 1.0 O(E) FSS: 30% 0.5 0.0 2 10 12 6 14 Ο 4 8 r, Å

 β -propensity is **<u>not</u>** caused by the solvation of side chains

$\mbox{A}\beta_{16\mbox{-}22}$ monomers in 8M WS urea

Modifying urea partial charges (Weerasinghe and Smith (WS))

5

2

 \bigcirc

g(r)

- O(U): 0.390 → -0.675
- H(U): +0.333 → +0.285

Effect of WS potentials:

- 1 further enhance β -propensity
- 2.improve backbone solvation with urea
 - •relative gain [U]/[W] = 5.5

8

r, Å

10

12

14

6

Conclusion:

urea-induced structural changes are electrostatic in origin

A β_{16-22} oligomer in aqueous 8M urea solution

8M urea *dissolves* $A\beta_{16-22}$ oligomers

- <ASA>: 2700 → 3200 A² in 11 ns
- <R^{cm}(t)>: a 50% increase

Comparison: in pure water <ASA(t)>≈const

- 8M urea dissolves $A\beta_{16-22}$ oligomers *irrespective* of
- urea model or initial conditions

Oligomer is disrupted within 11ns

Dynamics of solvation of peptides' backbones:

Urea "invades" into A β_{16-22} oligomers

Result: urea covers hydrophobic residues ([U] increases by 50%)

Urea *accelerates* α -helix $\rightarrow \beta$ -strand conformational transition

Summary of urea effect on A β_{16-22} oligomers

The impact of urea on $A\beta_{16-22}$ oligomers is two-fold:

- Destabilizes and disrupts $A\beta_{16-22}$ oligomers
- Accelerates and enhances β-structure formation

Through

- Hydrogen bonding to backbone amides
- Disruption of hydrophobic interactions

Prediction:

- 1. High [U] is likely to block amyloid formation
- 2. Moderate [U] may accelerate amyloid assembly

Outlook

Experiments on β -lactoglobulin

Outlook

MD simulations of $A\beta_{16-22}$ peptides:

- 1. Consistent with experiments (Prot. Sci. 11, 2417(2002))
- 2. Probes the mechanism of amyloid assembly
- 3. Applicable to other amyloidogenic polypeptides
- 4. Probes the mechanism of protein unfolding

Published *Proc. Natl. Acad.Sci. USA* **101**, 14760 (2004) Talk to be presented at 2005 ACS meeting