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where the energy stored in them will be used to drive the protons across the
inner membrane and out of the mitochondria via respiration driven-proton
pumps. Finally, the gradient of protons created by the pumps is harvested FFy -
ATPase to phosphorylate ADP to produce ATP, the basic unit of energy
exchange [45]. Stages 2 and 3 and the modeling efforts to describe them will be
discussed below.

The TCA cycle (Figure 7) is the common mode of oxidative degradation in
cukaryotes and prokaryotes and marks the “hub” of the metabolic system,
accounting for the major portion of carbohydrate, fatty acid, and amino acid
oxidation and generating numerous biosynthetic precursors. The eight enzymes
of the cycle catalyze a series of well-known organic reactions that cumulatively
oxidizes an acetyl group of acetyl-CoA to two CO, molecules with the
concomitant generation of three NADHs, one FADH,, and one GTP.

Remarkably, despite the complexity of the internal processes, the TCA
cycle maintains a steady state. Since there generally exist reactions that
“commit” the intermediate to continue down the pathway, the most efficient
way to exert control is to regulate the enzymes that catalyze these committed
steps. However, these steps often function too slowly to achieve equilibrium of
substrate and product while other reactions function closer to equilibrium.
Therefore, in order to control the flux of metabolites through the pathways, it is
important to exert control here, since further extraneous metabolite synthesis
can be avoided. The establishment of these steps is difficult, however, because
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Figure 7. Schematic diagram of the tricarboxylic acid cycle. The regulatory enzymes
(shown in boxes) were modeled in detail in the Dudycha-Jafii model of the TCA cycle.
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most of the cycle’s metabolites are present in both mitochondria and cytosol. Plus,
the distribution between the two compartments is not known in order to determine
AG of each reaction from the concentrations of the substrates and products.
However, when equilibrium of distribution is assumed, the total cell contents of
the substances can be used to estimate the mitochondrial concentrations. After
evaluation of the AGs, only three enzymes are likely to function at a significant
deviation from the equilibrium under physiological condition; citrate synthase,
isocitrate dehydrogenase, and a-ketoglutarate dehydrogenase [45]. Therefore, they
are considered as our rate-controlling enzymes. The regulatory enzymes here
seem to be-controlled almost entirely by substrate availability, product inhibition,
and competitive feedback inhibition by other intermediates further along the cycle
as well as allosteric regulators such as Ca®" and H' [45].

Modeling cardiac energy metabolism

Currently, our research is aimed towards investigating the mechanisms of
mitochondrial respiration through the completion of a physiologically verifiable
mitochondrial model, which can simulate the regulation of respiration through
the fluctuation of Om?, NADH, ADP, and pH levels to date. To this end, a
detailed model of the TCA cycle has been developed based on experimental
findings. The TCA cycle model has been coupled with a mitochondrial model
that included electron transport and ATP synthesis to create a model of
mitochondrial energy metabolism.

The Dudycha-Jafri model of the TCA cycle [51, 52] uses a reversible
Michaelis-Menten formalism to describe the key regulatory enzymes, namely,
citrate synthase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, and
malate dehydrogenase. These are shown in boxes in Figure 7. Also shown in a box
is aspartate aminotransferase, which can have potent effects on TCA cycle function.
The data from in vitro studies of isolate enzymes has been used determine the
dependence of the enzymes on various regulatory factors. A simultaneous fit for the
equations to all the experimental data has been performed. The results were
remarkably good given the fact that the measurements of enzyme activities came
from different labs using different preparations. Details of those descriptions follow.

The enzyme citrate synthase catalyzes the condensation of acetyl-CoA and
oxaloacetate to mark the initial TCA reaction. This mixed aldol-Claisen ester
condensation reaction proceeds with a sequential kinetic mechanism, with
oxaloacetate binding to the enzyme to conformationally generate a binding site
for acetyl-CoA.
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An interesting result of this model is that in order to fit the experimental data,
substrate inhibition by acetyl-CoA must be present.

Isocitrate dehydrogenase catalyzes the oxidative decarboxylation of
isocitrate to a-ketoglutarate to produce TCA’s 1" CO, and NADH. This NAD -
dependent enzyme requires an Mn®" or Mg”" as a cofactor.
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The o-ketoglutarate dehydrogenase complex (KGDHC), a homologous 3-
enzyme complex, functions to catalyze tiie oxidative decarboxylation of an o~
keto acid, releasing a TCA cycle’s 2" CO, and NADH. Its components
include o-ketoglutarate dehydrogenase (E.), dihydrolipoyl transsuccinnylase
(E,), and dihydrolipoyl dehydrogenase (E;). Each component catalyzes a
separate reaction. However, the overall reaction can be modeled by the
equation
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Malate dehydrogenase catalyzes the final TCA reaction to regencrate
oxaloacetate, oxidizing malate’s hydroxyl group to a ketone in a NAD'-
dependent reaction. The result is the production of another NADH molecule.
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The remaining TCA cycle enzymes are described using the law of mass
action. In order to get an accurate estimate of total cycle flux, the
contributions of the individual enzymes to the TCA cycle flux are optimized
to conform to the TCA cycle flux experiments measuring B¢ enrichment
studies using NMR. The cycle produces fluxes and substrate intermediate
concentrations consistent with experimentally determined values. The model
is then used to study ‘the effects of mitochondrial pH, redox ratio
(INADHJ/[NAD™)), [ADP], and [Ca®"].

Figure 8 shows the dependence of the TCA cycle flux as measured by
NADH production on mitochondrial pH, redox ratio, and [Ca™]. The NADH
production flux shows a dome shaped pH dependence with the peak being
almost flat between pH values of 7.0 and 7.4 which are the physiologically
relevant value for healthy mitochondria. Notice that as pH drops below 7.0 (as
would be the case during ischemia), the efficiency of NADH production
declines (Figure 8A). The NADH production falls rapidly as the redox ratio
increases and then plateaus. This suggests a homeostatic mechanism such that
as NADH levels rises, it produces a negative feedback on the TCA cycle,
reducing the production of NADH (Figure 8B). When ADP increases, the
NADH production increases and then plateaus such that in the physiological
ranges of [ADP], the curve is almost flat (Figure 8C). This suggests that [ADP]
is not a potent regulator of TCA cycle flux. As [Ca®"] rises, the NADH
production flux rises and then plateaus (Figure 8D). However, for physiological
mitochondrial [Ca®], the curve is relatively steep, indicating that Ca™ is a
potent regulator of the TCA cycle.

The TCA cycle model is then coupled with the Magnus-Keizer
mitochondrial model [53] that describes Ca®* handling and ion transport,
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Figure 8. Simulations of the regulation of the TCA cycle using the Dudycha-Jafri model
with respect to changes in A. mitochondrial pH. B. redox potential (INADH],/[NAD1,.).

C. [ADP],, D. [Ca* Ty,

verified by simulating isolated mitochondrial responses to brief pulses of Ca™".
In this model, there exist six methods of ion transport. These include the proton
pump via respiration (which produces the gradient for ATP synthesis), proton
uptake by FFy - ATPase, proton leak, adenine nucleotide translocase, Na/Ca
exchanger, and the Ca”" uniporter. Two significant findings for the model are as
follows: 1) parallel activation by Ca®" is necessary to see any effective
activating effect by Ca®" and 2) the NADH levels are very well regulated. These
are described in detail below.

Generally, cytosolic Ca®" is regarded as a significant regulatory signal for
oxidative metabolism in the mitochondria, the main pathway where energy is
converted to ATP. Through the literature, it has been suggested that both ATP
consumption by ATPases involved in ionic homeostasis and myofilament
contraction as well as ATP production by the mitochondria is regulated by Ca™
in a parallel activation scheme [54]. It also has been suggested that there is
parallel activation of mitochondrial energy production, i.e. Ca’" serves to
activate the F Fp-ATPase and the TCA cycle simultaneously [46]. In fact,
Balaban and his research group investigated the role of cytosolic Ca®™" as a signal
for activation of mitochondrial ATP production. Their measurements show that
Ca*" induces as much as a 5-fold increase in ATP production, while statistically
insignificant changes in mitochondrial NADH levels are observed [46].
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Furthermore, it is suggested by Territo and co-workers that >60% of Ca’*
activation occurs downstream of the TCA cycle [49].

The model demonstrates the parallel activation of mitochondrial energy
production nicely. When activation of the FFe-ATPase is not included,
increases in Ca™* do not effectively increase ATP production (Figure 9A; gray
trace). However, when the Ca®" dependence as measured by Balaban and co-
workers [46] is included, increases in Ca’* effectively increase ATP production
(Figure 9A; black trace). Another interesting prediction of the model that is
supported by the experimental data [46] is that with parallel activation, even
while the ATP production rate rises in response to increasing Ca™", the [NADH]
remains relatively constant (Figure 9B; black trace). However, when Ca®"
activation of the F,Fy-ATPase is not included, the NADH levels rise in response
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Figure 9. Simulations with the Nguyen-Jafri model for mitochondrial energy
metabolism. A. [Ca®*] fails to activate mitochondrial energy metabolism if only the the
TCA cycle is activated by Ca®" (gray). [Ca®*] activates mitochondrial energy metabolism
when both the TCA cycle and the F,Fy-ATPase (black) are activated by Ca*". B. [NADH]
increases with increasing Ca®" if only the the TCA cycle is activated by Ca** (gray).
When both the TCA cycle and the F;Fo-ATPase are activated by Ca** (black), [NADH]
remains relatively constant.
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to increasing Ca*" (Figure 9B; gray trace). This results because with Ca®
activation of the TCA cycle, [NADH] production is increased while its
consumption does not. The rising [NADH] inhibits the TCA cycle, reducing the
steady-state rise in flux through the cycle.

Conclusions

Computational modeling has provei: to be a valuable area of study to gain
insight in the complex mechanisms goveining the function of the heart. This
manuscript has described a number of modeling efforts by and the predictions
that have been made through these efforts in the areas of excitation-contraction
coupling and energy metabolism. However, it is important to note that there are
many other contributions computaticnal modeling has provided that are not
described here due to space limitations.

To summarize some of the contributions described in this manuscript, the
can be classified into two broad categories. The first is the modeling give
insights in to mechanisms that are responsible for experimentally observation in
complex systems. These insights can be the basis of predictions and new
hypothesis that can be tested experimentally. In this light, it is important to
make these predictions in an experimentally verifiable manner. Examples of
this include, the predictions of the importance of the L-type Ca®* current on
determining action potential shape and duration or the importance of the
SERCA pumps in determining force-frequency relations. Second, the modeling
can be used to make predictions and for hypotheses about mechanisms that are
beyond our ability to measure. Often, there exists a set of experimental data, and
the modeling can be used to see if the collection and integration of this data can
explain what is experimentally observable. This is exemplified by the work done
in the dyadic space to study graded release or the mechanism of Ca’* sparks.

It is likely, that computational modeling will continue to increase in
importance as a tool to gain insight into the cellular and subcellular systems that
govern cellular function in the cardiac myocyte and other systems. As modeling
tools make modeling more accessible to a wider audience, the use of models
will increase. Also as the amount of detailed experimental data increases, it will
become increasingly necessary to use the computational model to integrate the
data to understand living systems.
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