
HP Fortran Programmer's Guide

 Second Edition

Product Number: B3909DB

Fortran Compiler for HP-UX

Document Number: B3909-90005

June 2001

Edition: Second

Document Number: B3909-90005
Remarks: Released June 2001. Added new PA-RISC and Itanium
options.

Edition: First

Document Number: B3909-90002
Remarks: Released October 1998. Initial release.

Notice

 Copyright Hewlett-Packard Company 2001. All Rights Reserved.
Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance
or use of this material.

Itanium is a trademark of the Intel Corporation.

Parts of the Itanium compiler were generated by the iburg code-
generator generator, described at http://www.cs.princeton.edu/software/
iburg.

Table of Contents iii

Contents

Preface . xi
New in HP Fortran V2.5 . xii

Scope. xiii
Notational conventions . xiv

Command syntax .xv

Associated documents . xvi

1 An overview of HP Fortran . 1

The HP Fortran compiler environment .2
Driver .3

C preprocessor .5
Front-end .6

Back-end. .9
Linker .13

Tools .16
HP-UX operating system. .17

2 Compiling and linking . 19

Compiling with the f90 command .20
f90 command syntax. .21
Command-line options .21
Using optimization options .52
Reviewing general optimization options .52
Fine-tuning optimization options .54
Filenames .63

Linking HP Fortran programs .65
Linking with f90 vs. ld .65
Linking to libraries. .67

Special-purpose compilations .72
Compiling programs with modules .72
Compiling for different PA-RISC machines .77
Creating shared libraries .78
Using the C preprocessor .81
Creating demand-loadable executables. .84
Creating shared executables .84
Compiling in 64-bit mode .85

Using environment variables .86

iv Table of Contents

HP_F90OPTS environment variable . 87
LPATH environment variable . 87
MP_NUMBER_OF_THREADS environment variable 88

3 Controlling data storage. 89

Disabling implicit typing . 90
Automatic and static variables . 91

Increasing the precision of constants . 94
Increasing default data sizes . 96

Sharing data among programs . 100
Modules vs. common blocks . 105

4 Debugging . 107

Using the HP WDB debugger . 108

Stripping debugging information . 110
Handling runtime exceptions . 111

Bus error exception . 112
Floating-point exceptions . 113
Illegal instruction exception . 114
Segmentation violation exception . 114
Bad argument exception . 116

Using debugging lines . 117

5 Using the ON statement . 119

Exceptions handled by the ON statement . 120
Actions specified by ON . 122

Terminating program execution. 122
Ignoring errors . 123
Calling a trap procedure. 125

Trapping +Ctrl-C trap interrupts . 128
Allowing core dumps . 129

6 Performance and optimization . 131

Using profilers . 132
CXperf . 132
gprof . 133
prof . 134

Using options to control optimization . 135
Using +O to set optimization levels . 135
Using the optimization options . 137

Conservative vs. aggressive optimization . 142

Table of Contents v

Parallelizing HP Fortran programs .144
Compiling for parallel execution .144
Performance and parallelization .144
Profiling parallelized programs .145
Conditions inhibiting loop parallelization .145

Vectorization .149
Using the +Ovectorize option. .149
Controlling vectorization locally .150
Calling BLAS library routines. .152

Controlling code generation for performance. .154

7 Writing HP-UX applications . 155

Accessing command-line arguments. .156
Calling HP-UX system and library routines .158

Using HP-UX file I/O. .159
Stream I/O using FSTREAM .159
Performing I/O using HP-UX system calls .160
Establishing a connection to a file. .160
Obtaining an HP-UX file descriptor .160

8 Calling C routines from HP Fortran . 161

Data types .162
Unsigned integers. .164
Logicals .164
Complex numbers. .165
Derived types .167
Pointers .167

Argument-passing conventions. .168

Case sensitivity .170
Arrays. .173

C strings .177
C null-terminated string .177
Fortran hidden length argument. .178
Passing a string .178

File handling .181

Sharing data .183

9 Using Fortran directives . 187

Directive syntax .188
Using HP Fortran directives .189

HP ALIAS .190
HP CHECK_OVERFLOW .194

vi Table of Contents

HP LIST. 194
HP OPTIMIZE . 195

Compatibility directives. 196
Controlling vectorization . 197
Controlling parallelization . 197
Controlling dependence checks . 198
Controlling checks for side effects . 199

10 Migrating to HP Fortran. 201

Incompatibilities with HP FORTRAN 77 . 202
Command-line options not supported . 202
Floating-point constants . 203
Intrinsic functions. 204
Procedure calls and definitions . 204
Data types and constants . 205
Input/output . 206
Directives. 207
Miscellaneous . 207

Migration issues . 209
Source code issues . 209
Command-line option issues. 212
Object code issues . 213
Data file issues . 214

Approaches to migration . 215
HP-supplied migration tools. 215

11 Porting to HP Fortran . 219

Compatibility extensions . 220
Statements . 220
Compiler directives . 221
Intrinsic procedures . 224

Using porting options. 226
Uninitialized variables . 226
Large word size . 227
One-trip DO loops . 228
Name conflicts . 228
Names with appended underscores . 231
Source formats . 231
Escape sequences . 232

Glossary . 233

List of Figures vii

Figures

 Figure 1 HP Fortran compiler environment .2
 Figure 2 Increasing default data sizes .97
 Figure 3 Memory layout of a two-dimensional array in Fortran and C 173

viii List of Figures

List of Tables ix

Tables

Table 1 Options for controlling the f90 driver .3
Table 2 Options for controlling the C preprocessor .5
Table 3 Options for controlling the front end .6
Table 4 Options for controlling optimization .10
Table 5 Options for controlling code generation .11
Table 6 Options for controlling the Linker .13
Table 7 Commonly-used options .22
Table 8 Options listed by category .23
Table 9 Data type sizes and +autodbl[4] .26
Table 10 Values for the +FP option .33
Table 11 Signals recognized by the +fp_exception option .35
Table 12 Levels of optimization .42
Table 13 Values for the -t option x subprocesses .48
Table 14 Values for the -W option .51
Table 15 Optimizations performed by +O[no]fltacc .57
Table 16 Values for the +Oinline_budget option .59
Table 17 Millicode versions of intrinsic functions .60
Table 18 Filenames recognized by f90 .63
Table 19 Libraries linked by default .67
Table 20 HP Fortran environment variables .86
Table 21 Signals recognized by +fp_exception .111
Table 22 Exceptions handled by the ON statement .121
Table 23 Optimization levels .136
Table 24 Packaged optimization options .138
Table 25 Fine-tuning optimization options .139
Table 26 Conservative, aggressive, and default optimizations 143
Table 27 Vector routines called by +Ovectorize .149
Table 28 Data type correspondence for HP Fortran and C .162
Table 29 Size differences between HP Fortran and C data types 163
Table 30 Size differences after compiling with +autodbl .163
Table 31 HP Fortran directives .189
Table 32 Compatibility directives recognized by HP Fortran 196
Table 33 f77 options not supported by f90 .202
Table 34 f77 options replaced by f90 options .202
Table 35 HP FORTRAN 77 directives supported by f90 options210
Table 36 Conflicting intrinsics and libU77 routine names .212
Table 37 f77 options supported by f90 .213
Table 38 Compatibility statements .220
Table 39 Compatibility directives .222
Table 40 Directive prefixes recognized by HP Fortran .223

x List of Tables

Table 41 Nonstandard intrinsic procedures in HP Fortran . 224

Preface xi

Preface

HP Fortran Programmer’s Guide describes how to use different features
of HP Fortran to develop, compile, debug, and optimize programs in the
HP-UX PA-RISC and Itanium-based operating systems. It also
describes how to migrate HP FORTRAN 77 programs to the current
HP Fortran compiler and how to use the different compiler features for
porting programs written for other vendors’ Fortran to HP Fortran.

If you have any problems with the software, please contact your local
Hewlett-Packard Sales Office or Customer Service Center.

You need not be familiar with the HP parallel architecture, programming
models, or optimization concepts to understand the concepts introduced
in this book.

xii Preface

Preface

New in HP Fortran V2.5
HP Fortran v2.5 introduces a port of the HP-UX PA-RISC Fortran
product to the Itanium-based systems. It is source compatible between
PA-RISC and Itanium. However, Itanium Fortran will not run on PA-
RISC based systems.

The HP Fortran v2.5 features described in this reference are upgrades
from the previous version of HP Fortran v2.0, including:

• Full Fortran 95 compiler (based on International ANSI/ISO
standards) for Itanium-based and PA-RISC systems

• Native subset OpenMP implementation

• Object-oriented Fortran feature optimizations

• Support for math intrinsic inlining

Preface xiii

Preface

Scope
This guide covers programming methods for the HP Fortran compiler on
machines running:

• HP-UX 11.0 and higher (PA-RISC)

• HP-UX 11i Version 1.5 (Itanium)

HP Fortran supports an extensive shared-memory programming model.
HP-UX 11.0 and higher includes the required assembler, linker, and
libraries.

HP Fortran fully supports the international Fortran standards
informally called Fortran 90 and Fortran 95 as defined by these two
standards: ISO/IEC 1539:1991(E) and ISO/IEC 1539:1997(E).

xiv Preface

Preface

Notational conventions
This section discusses notational conventions used in this book.

bold monospace In command examples, bold monospace
identifies input that must be typed exactly as
shown.

monospace In paragraph text, monospace identifies
command names, system calls, and data
structures and types.
In command examples, monospace identifies
command output, including error messages.

italic In paragraph text, italic identifies titles of
documents.
In command syntax diagrams, italic identifies
variables that you must provide.
The following command example uses
brackets to indicate that the variable
output_file is optional:
command input_file [output_file]

Brackets ([]) In command examples, square brackets
designate optional entries.

Curly brackets ({}),
Pipe (|)

In command syntax diagrams, text
surrounded by curly brackets indicates a
choice. The choices available are shown inside
the curly brackets and separated by the pipe
sign (|).
The following command example indicates
that you can enter either a or b:
command {a | b}

Preface xv

Preface

The directives and pragmas described in this book can be used with the
HP Fortran and C compilers, unless otherwise noted. The aC++ compiler
does not support the pragmas, but does support the memory classes.
In general discussion, these directives and pragmas are presented in
lowercase type, but each compiler recognizes them regardless of their
case.

References to man pages appear in the form mnpgname(1), where
“mnpgname” is the name of the man page and is followed by its section
number enclosed in parentheses. To view this man page, type:

% man 1 mnpgname

NOTE A Note highlights important supplemental information.

Command syntax
Consider this example:

COMMAND input_file [...] {a | b} [output_file]

• COMMAND must be typed as it appears.

• input_file indicates a file name that must be supplied by the user.

• The horizontal ellipsis in brackets indicates that additional, optional
input file names may be supplied.

• Either a or b must be supplied.

• [output_file] indicates an optional file name.

Horizontal ellipses
(...)

In command examples, horizontal ellipses
show repetition of the preceding items.

Vertical ellipses Vertical ellipses show that lines of code have
been left out of an example.

Keycap Keycap indicates the keyboard keys you must
press to execute the command example.

xvi Preface

Preface

Associated documents
The following documents are listed as additional resources to help you
use the compilers and associated tools:

• HP aC++ Online Programmer’s Guide—Presents reference and
tutorial information on aC++. This manual is only available in html
format.

• HP Fortran Programmer’s Reference — Provides language reference
for HP Fortran and describes the language features and
requirements.

• HP C/HP-UX Reference Manual—Presents reference information on
the C programming language, as implemented by HP.

• CXperf for the Itanium Processor Family User’s Guide—Provides
conceptual, reference information and metric set selections for
profiling Itanium-based products using the CXperf performance
analyzer.

• CXperf Command Reference for PA-RISC—Provides introductory and
reference information for using the CXperf performance analyzer for
PA-RISC based products.

• CXperf User’s Guide for PA-RISC—Provides conceptual, reference
information and metric set selections for profiling PA-RISC based
products using the CXperf performance analyzer.

• HP-UX Floating Point Guide—Describes how floating-point
arithmetic is implemented on HP 9000 Series 700/800 systems. It
discusses how floating-point behavior affects the programmer.
Additional useful includes that which assists the programmer in
writing or porting floating-point intensive programs.

• HP MLIB User’s Guide VECLIB and LAPACK—Provides usage
information about mathematical software and computational kernels
for engineering and scientific applications.

• HP MPI User’s Guide—Discusses message-passing programming
using HP’s Message-Passing Interface library.

Preface xvii

Preface

• HP-UX Linker and Libraries User's Guide—Describes how to develop
software on HP-UX, using the HP compilers, assemblers, linker,
libraries, and object files.

• Parallel Programming Guide for HP-UX Systems—Describes efficient
methods for shared-memory programming using the HP-UX suite of
compilers: HP Fortran, HP aC++ (ANSI C++), and HP C. This guide is
intended for use by experienced Fortran, C, and C++ programmers
and is intended for use on HP-UX 11.0 and higher.

• Programming with Threads on HP-UX—Discusses programming
with POSIX threads.

• Threadtime by Scott J. Norton and Mark D. DiPasquale—Provides
detailed guidelines on the basics of thread management, including
POSIX thread structure; thread management functions; and the
creation, termination and synchronization of threads.

xviii Preface

Preface

1

1 An overview of HP Fortran

When you use the f90 command to compile a Fortran program, the
command invokes a number of components—and not just the compiler—
to create the executable. By default, f90 invokes different components
to parse the source files for syntax errors, produce an intermediate code,
optimize the intermediate code, produce object code, search a set of
library files for any additional object code that may be required, and link
all of the object code into an executable file that you run without further
processing.

For example, consider a program that consists of three source files:
x.f90, y.f90, and z.f90. The following command line will process the
source files and, if they are syntactically correct, produce an executable
file with the default name a.out:

$ f90 x.f90 y.f90 z.f90

After compilation is complete, you can execute the program by invoking
the name of the executable, as follows:

$ a.out

However, it is likely that you’ll want to control what components act on
your program and what they do to it. For example, you may want to give
the executable a name other than a.out or to link in other libraries than
the default ones. The HP Fortran compiler supports a variety of
command-line options that enable you to control the compilation process.
This chapter provides an overview of the process and of the options that
enable you to control the different components invoked by the f90
command.

NOTE To get a summary listing of all f90 options, refer to the f90(1) man page or
use the command, as shown here:

$ f90 +usage

For a full description of the options, refer to the Parallel Programming Guide
for HP-UX Systems..

2 Chapter 1

An overview of HP Fortran
The HP Fortran compiler environment

The HP Fortran compiler environment
Figure 1 illustrates the compilation process, showing the different
components of the HP Fortran compiler environment; active processes
are unshaded and data elements are shaded. With the exception of the
performance analysis tools and the debugger (WDB), all components are
invoked by the f90 command. The C preprocessor and linker can also
be separately invoked by the cpp and ld commands; see the cpp(1) and
ld(1) man pages, respectively, for more information. The remaining
sections in this chapter briefly describe the different components and the
command-line options that control them. Included in each section are
references to other parts of this manual for more detailed information.

 Figure 1 HP Fortran compiler environment

Front-end Linker

Libraries

Source
files

High-Level
Optimizer

CodeGen
and
Low-Level
Optimizer(HLO)

Module
information

Performance
Analysis
Tools and WDB

Back End

Executable
file

C Preprocessor
(cpp)

HP Fortran compiler

f90 Driver

Chapter 1 3

An overview of HP Fortran
Driver

Driver
The driver parses the f90 command line by which you invoke the
compiler, calls each subprocess as needed to complete the compilation,
and retains control throughout the compilation process.

Command-line options that control driver functions enable you to do the
following:

• Call subprocesses that you want to substitute for those that f90 calls
by default

• Pass arguments to a subprocess

• Get a summary listing of all options supported by the compiler

• Display information about the version of f90 you are using

• Control the level of information that the driver displays about the
compilation process

Table 1 lists and briefly describes the options that control the driver.

Table 1 Options for controlling the f90 driver

Option Function

-c Suppress the link phase and produce an object file (.o)
from each source file on the command line.

-o outfile Name the output file outfile instead of the default file
name (a.out or filename.o). If linking has been
suppressed, the front end uses this option to name the
object file.

+pre_include=file Process contents of file before all source files specified on
the command line. The command line can have multiple
occurrences of this option, each specifying a different file;
they are processed in the specified order.

4 Chapter 1

An overview of HP Fortran
Driver

-tx,name Substitute a private version (name) of one or more
subprocesses (x) of the compilation. The values for x are:

• a Assembler

• c Compiler

• l Linker

• p C preprocessor

• s Startup file (crt0.o library)

• e Debug file (end.o library)

If you compile and link separately and specify +tl on the
compile line, you must also specify it on the link line.

+usage List and briefly describe all f90 options.

-v Print verbose information to standard output as program
is compiled.

+version Write compiler version information to standard output,
without compiling.

-Wx,arg1[,arg2,...,argN] Pass arg1 through argN to a subprocess of the
compilation, identified by x. The values for x are:

• a Assembler

• c Compiler

• l Linker

• p C preprocessor

If you compile and link separately and specify +Wl on the
compile line, you must also specify it on the link line.

Option Function

Chapter 1 5

An overview of HP Fortran
C preprocessor

C preprocessor
HP Fortran source files can include directives that the C preprocessor
(cpp) reads and expands before the program is passed to the compiler.
Among other things, cpp directives enable you to code parts of your
program for conditional compilation. By default, the f90 command
passes source files ending in the.F extension to the C preprocessor.

Table 2 lists and briefly describes the options for controlling the
preprocessor, including the +cpp option, which overrides the default
behavior and passes all source files on the command line to the
preprocessor. For additional information, see “Using the C preprocessor”
on page 81 and the cpp(1) man page.

Table 2 Options for controlling the C preprocessor

Option Function

+cpp={yes|no|default} Invoke the C preprocessor. +cpp=yes passes all
source files to the preprocessor. +cpp=default
passes only files ending in the .F extension.
+cpp=no suppresses passing any files. The default
is +cpp=default.

+[no]cpp_keep Retain [discard] output from the C preprocessor. If
the source filename is file.f or file.F, output is
stored in file.i; if the source filename is file.f90,
the output filename is file.i90. The default,
+nocpp_keep, is to discard the output.

-Dname[=def] Define the symbol name to the preprocessor. If def
is specified, name is defined to that value.

-Idirectory Add directory to the list of directories searched for
files specified in include directives. The command
line can have multiple occurrences of this option,
each specifying a different directory.

-Uname Remove any initial definition of name, a reserved
symbol that is predefined by the preprocessor.

6 Chapter 1

An overview of HP Fortran
Front-end

Front-end
The front-end is responsible for parsing the source code and issuing
warning and error messages when the parse fails. Command-line options
enable you to control the front end’s assumptions about the source code,
including whether the source is in fixed or free format, uses implicit or
explicit typing, and contains extensions. Other front-end options control
the level of error messages and their language (Native Language
Support), default data sizes, and search rules for .mod files. For a list of
the options that control the front end, see Table 3.

Table 3 Options for controlling the front end

Option Function

+[no]autodbl Promote [do not promote] all integer, logical, and real items
to 8 bytes, and all double-precision and complex items to 16
bytes. The default is +noautodbl.
For information about using this option, see “Increasing
default data sizes” on page 96.

+[no]autodbl4 Promote [do not promote] all integer, logical, and real items
to 8 bytes, and complex items to 16 bytes. The +autodbl4
option does not promote the size of double-precision and
double-complex items. The default is +noautodbl4.
For information about using this option, see “Increasing
default data sizes” on page 96.

+check={all|none} Enable (+check=all) or disable (+check=none) compile-
time range checking of array subscripts. The default is
+check=none.
For information about using this option, see “Segmentation
violation exception” on page 114.

+[no]dlines Compile debug lines as source statements [comments].
Source lines must be in fixed format. The default,
+nodlines, is to treat source lines with a D or d in column
1 as comments.
For information on using this option, see “Using debugging
lines” on page 117.

Chapter 1 7

An overview of HP Fortran
Front-end

+[no]escape Treat the backslash character (\) as a C-like escape [literal]
character. The default is +noescape.
For information on using this option when porting, see
“Escape sequences” on page 232.

+[no]extend_source Allow [do not allow] up to 254 characters on a single source
line. The default, +noextend_source, is 72 characters for
fixed format and 132 for free format.
For information on using this option when porting, see
“Source formats” on page 231.

-Idirectory Add directory to the list of directories searched for files
specified in INCLUDE lines and include directives, and for
.mod files. The command line can have multiple instances
of this option, each specifying a different directory.
For information about using this option, see “Managing
.mod files” on page 76.

+[no]implicit_none Cause the types of identifiers to be implicitly undefined
[defined]. The default is implicit typing
(+noimplicit_none).
For information about using this option, see “Disabling
implicit typing” on page 90.

+langlvl={90|default} Issue warnings for all extensions to the Fortran standard
(+langlvl=90). The default, +langlvl=default, allows
extensions.
For information about using this option, see Chapter 11,
“Porting to HP Fortran,” on page 219.

+[no]list Write [suppress] a program listing to standard output
during compilation. The default is +nolist.

+moddir=directory Write .mod files to directory. The default is to write .mod
files to the current directory.
For information about using this option, see “Managing
.mod files” on page 76.

+nls=lang Enable 16-bit Native Language Support (NLS) in strings
and comments in the language specified by lang.

Option Function

8 Chapter 1

An overview of HP Fortran
Front-end

+[no]onetrip Execute any counter-controlled DO loop at least once
(+onetrip). The default is +noonetrip.
For information about using this option when porting, see
“One-trip DO loops” on page 228.

+[no]ppu Postpend [do not postpend] underscores at the end of
definitions of and references to externally visible symbols.
The default is +noppu.
For information about using this option when porting, see
“Names with appended underscores” on page 231.

+real_constant={single
|double}

Treat all single-precision real and complex constants as
either single-precision (+real_constant=single) or
double-precision (+real_constant=double). The default is
+real_constant=single. This option has no effect on
constants that are explicitly sized or when the +autodbl or
+autodbl4 option is specified.
For information about using this option, see “Increasing the
precision of constants” on page 94.

+source={fixed|free|
default}

Accept source files in fixed format (+source=fixed) or
free format (+source=free). The default,
+source=default, is free for .f90 files and fixed for .f
and .F source files.
For information about using this option, see “Source
formats” on page 231.

+[no]uppercase Use uppercase [lowercase] for all external names. The
default is +nouppercase.
For information about using this option, see “Case
sensitivity” on page 170.

-w Suppress warning messages.

Option Function

Chapter 1 9

An overview of HP Fortran
Back-end

Back-end
The two main functions of the back-end are:

• To optimize your program for faster performance

• To generate the code that goes into the object file

Optimization is performed by two subcomponents of the compiler’s
back end:

• The High-Level Optimizer (HLO), which performs large-scale,
high-semantic-level analyses and transformations to increase
performance.

• The low-level optimizer, which performs traditional optimizations
(such as common subexpression elimination and dead-code removal)
as well as machine-specific optimizations.

Options for controlling optimization form the largest group of the
command-line options. These options enable you to do the following:

• To set the level of optimization that is applied to your program

• To apply a package of optimizations that meet certain requirements
of your application—for example, optimizations that favor compile-
time speed over performance

• To apply specific optimization technologies to your program, or to
specific parts of your program, for fine-tuning performance

Table 4 lists (in summary form) the options that control optimization. For
information about how to use these options, see “Using options to control
optimization” on page 135.

NOTE If you use the f90 command to compile and link on separate command
lines, many of the optimization options must appear on both the command
line and the link line; see “Performance and optimization” on page 131. For
information about using f90 to compile and link, see “Linking with f90 vs. ld”
on page 65.

10 Chapter 1

An overview of HP Fortran
Back-end

Table 4 Options for controlling optimization

The other component of the back end is the code generator (CodeGen),
which you can control by using the command-line options in Table 5.
These options allow you to specify (among other things) that the output
file include debugging or profiling information or that local variables be
saved in static memory.

Option Function

+DC7200 Perform memory hierarchy optimizations for the PA7200
processor.

-O[optlevel] Optimize program, where optlevel is 0 (no optimization), 1,
2, or 3 (the highest level). If optlevel is not specified, the
program is optimized at level 2 (-O2).

+Ooptlevel This option has the same meaning as the -O[optlevel]
option, except that optlevel must be specified. It is provided
for compatibility with makefiles.

 +O[no]info Provide [do not provide] feedback information about the
optimization process. This option is most useful at
optimization level 3 and higher. The default is +Onoinfo.

+O[no]optimization Enable [disable] optimization, a predefined string that
indicates a category of optimizations (for example, those
that do not increase code size) or a specific optimization
technology (for example, inlining). See the
HP Fortran Programmer’s Reference, for the different values
for optimization.

Chapter 1 11

An overview of HP Fortran
Back-end

Table 5 Options for controlling code generation

Option Function

+[no]asm Compile the named source files and leave [do not leave] the
assembly language output in corresponding files whose names are
suffixed with .s. The default is +noasm.

+DAmodel Generate code for a specific version of the PA-RISC architecture.
model can be one of the following:

• PA-RISC version number (1.1 or 2.0)

• A model number (for example, 750 or 870).

• One of the PA-RISC processor names (for example, PA7000,
PA7100, or PA8000).

• The word portable to generate code compatible across all
PA-RISC 1.1 and 2.0 workstations and servers.

For information about using this option, see “Compiling for
different PA-RISC machines” on page 77.

+DSmodel Perform instruction scheduling appropriate for a specific
implementation of the PA-RISC architecture. model can be one of
the following:

• PA-RISC version number (1.1 or 2.0)

• A model number (for example, 750 or 870).

• One of the PA-RISC processor names (for example, PA7000,
PA7100, or PA8000).

For information about using this option, see “Compiling for
different PA-RISC machines” on page 77.

-g Generate debugging information needed by the debugger. This
option is compatible with optimization levels 0, 1, and 2. If you
compile and link separately and specify -g on the command line,
you must also specify it on the link line.
For information about using this option to prepare programs for the
debugger, see “Using the HP WDB debugger” on page 108.

12 Chapter 1

An overview of HP Fortran
Back-end

+[no]gprof Prepare [do not prepare] object files for profiling with gprof; see
the gprof(1) man page. The default is +nogprof. If you compile
and link separately and specify +gprof on the command line, you
must also specify it on the link line.
For information about using this option to profile programs with
gprof, see “gprof” on page 133.

+k Generate code for programs that reference a very large number of
shared data items. The linker will issue a diagnostic message in
the rare cases when this option is needed.

+pic={short|long|
no}

Generate Position Independent Code (PIC) with short
displacements (+pic=short) or long displacements (+pic=long)
for use in shared libraries. The default is +pic=no.
For information about using this option when creating shared
libraries, see “Compiling with +pic” on page 79.

+[no]prof Prepare [do not prepare] object files for profiling with prof; see the
prof(1) man page. The default is +noprof. If you compile and link
separately and specify +prof on the command line, you must also
specify it on the link line.
For information about using this option to profile programs with
prof, see “prof” on page 134.

+[no]save Save [do not save] all local variables in all subprograms.
For information about using this option when porting, see
“Uninitialized variables” on page 226.

Option Function

Chapter 1 13

An overview of HP Fortran
Linker

Linker
The linker (ld) builds an executable program from the object files
produced by the back end and the libraries. An important group of
options for controlling the linker specify what libraries the linker should
search and where it should search for them. Other options control the
type of information that the linker should or should not include in its
output file, such as symbol table information used by the debugger or
marks identifying the output file as shareable or demand-loadable. Table
6 lists and briefly describes options that control the linker.

NOTE If you use the f90 command to compile and link on separate command lines
and compile with any of the options (except -c) listed in Table 6, you must
specify the same options on the link line as well.

Table 6 Options for controlling the Linker

Option Function

-c Suppress linking; produce object files only.

+[no]demand_load Mark [do not mark] the output file from the linker demand load.
If you compile and link separately and specify +demand_load on
the command line, you must also specify it on the link line. The
default is +nodemand_load.
For information about using this option, see “Creating demand-
loadable executables” on page 84.

+FPflags Specify how the runtime environment for trapping floating-point
exceptions should be initialized at program startup. If you
compile and link separately and specify +FP on the command
line, you must also specify it on the link line with the identical
set of flags. The default is that all traps are disabled. See the
ld(1) man page for specific values for flags.
For information using this option, see “Floating-point exceptions”
on page 113.

14 Chapter 1

An overview of HP Fortran
Linker

+[no]fp_exceptions Enable [disable] floating-point exceptions. Enabling floating-
point exceptions also causes the running program to issue a
procedure traceback for runtime errors. The default is
+nofp_exceptions.
For information using this option, see “Floating-point exceptions”
on page 113.

-Ldirectory Add directory to the front of the library search path. This option
applies only to libraries specified by the -l option (see below). If
you compile and link separately and specify -L on the command
line, you must also specify it on the link line.
For information about using this option, see “Library search
rules” on page 70.

-lx Link the library libx.a or libx.sl to the executable program.
If you compile and link separately and specify -l on the
command line, you must also specify it on the link line.
For information about using this option, see “Linking to
nondefault libraries” on page 68 and the ld(1) man page.

-o outfile Name the output file outfile instead of the default a.out. If
linking is suppressed (-c), this option is used instead to name
the object files.

+[no]shared Cause the output file from the linker to be marked shared
[unshared]. If you compile and link separately and specify
+shared on the command line, you must also specify it on the
link line. The default is +shared.
For information about using this option, see “Creating shared
executables” on page 84.

+[no]strip Strip [do not strip] symbol table information from the linker
output. For more information, see the ld(1) and strip(1) man
pages. This option is not compatible with -g. If you compile and
link separately and specify +strip on the command line, you
must also specify it on the link line. The default is +nostrip.
For information using this option, see “Stripping debugging
information” on page 110.

Option Function

Chapter 1 15

An overview of HP Fortran
Linker

+[no]ttybuf Use buffered [unbuffered] output to the terminal. The default is
+ttybuf.

+[no]U77 Invoke [do not invoke] support for the libU77 library (BSD 3f). If
you compile and link separately and specify +U77 on the compile
line, you must also specify it on the link line. The default is
+noU77.
For information about the libU77 library, see “Additional
HP Fortran libraries” on page 69 and the HP Fortran
Programmer’s Reference.

-Wl,options Pass a comma-separated list of options to the linker. For
information about options supported by the linker, see the ld(1)
man page.

Option Function

16 Chapter 1

An overview of HP Fortran
Tools

Tools
The HP Fortran compiler environment includes a high-level language
debugger and performance analysis tools. The debugger is HP WDB,
which includes a graphical user interface. To prepare a program for
debugging, you must compile it with the -g option. For information about
this option, see “Using the HP WDB debugger” on page 108.

The performance analysis tools include the standard UNIX utilities,
prof and gprof. To use prof and gprof, you must compile with the
+prof and +gprof options, respectively. For more information about all
of the performance analysis tools, see “Using profilers” on page 132 and
the CXperf(1), prof(1), gprof(1), and ttv(1) man pages.

Chapter 1 17

An overview of HP Fortran
HP-UX operating system

HP-UX operating system
Although the HP-UX operating system does not appear in Figure 1 on
page 2, it provides a variety of resources for programs executing within
HP-UX. For example, HP-UX captures the command line you use to
invoke an executable program, breaks it up into arguments, and makes
them available to your program.

HP-UX also has many callable system routines that provide low-level
access to kernel-level resources. For example, your program can call HP-
UX file-processing routines as alternatives to Fortran I/O.

“Writing HP-UX applications” on page 155 discusses how HP Fortran
programs can take advantage of HP-UX resources. For a full description
of HP-UX system routines, see the HP-UX Reference.

18 Chapter 1

An overview of HP Fortran
HP-UX operating system

19

2 Compiling and linking

This chapter discusses how to compile and link HP Fortran programs
and covers the following topics:

• Compiling with the f90 command

• Linking HP Fortran programs

• Special-purpose compilations

• Using environment variables

20 Chapter 2

Compiling and linking
Compiling with the f90 command

Compiling with the f90 command
The default behavior of the f90 command is to compile source files listed
on the command line and, if the compilation is successful, to pass the
resulting object files to the linker. If the link stage is successful, the
linker produces an executable program with the default name a.out.

Consider, for example, the program hello.f90:

hello.f90

PROGRAM main
 CALL hello()
END PROGRAM main

SUBROUTINE hello()
 PRINT *, 'Hello, I must be going.'
END SUBROUTINE hello

When compiled with the command line:

$ f90 hello.f90

f90 produces two files, hello.o (object code) and a.out (the executable
program).

If the command line contains only an object file, as in the following:

$ f90 hello.o

f90 passes the object file to the linker, which (if successful produces the
executable program a.out.

Here is a sample run of the executable program:

$ a.out
 Hello, I must be going.

This section provides more detailed information about using the f90
command, including:

• Command-line syntax

• Command-line options

• Filenames recognized by f90

Chapter 2 21

Compiling and linking
Compiling with the f90 command

f90 command syntax
 The syntax for using the f90 command is:

f90 [options] [files]

where options is a list of one or more command-line options and files is a
list of one or more files containing HP Fortran source code to be compiled
or object code to be linked. Items in options and files can be interspersed
on the command line, separated by spaces. However, some options are
order-sensitive. For example, the -l option, which is used to specify a
library for linking, must follow the program file to which it will be linked.

For information about using the -l option, see “Linking to nondefault
libraries” on page 68. For more information about the f90 command line,
see HP Fortran Programmer’s Reference.

Command-line options
Command-line options enable you to override the default behavior of the
f90 command. Some options affect how files are compiled or linked; for
example, the -O option requests optimization. Other options may cause
the f90 command to skip a process entirely; for example, the -c option
compiles without linking. And still others invoke processes other than
the default ones; for example, the +cpp=yes option causes the f90
command to send source files to the C preprocessor (cpp) before
compiling. (For information about using cpp, see “Using the C
preprocessor” on page 81.)

Many options are of the form +[no]option, where +option enables the
option’s functionality and +nooption disables it. Other options have
more than just an on or off state; these are of the form +option=arg. You
can cause f90 to list the values for arg on stderr by specifying just the
option name without an argument. For example, given the command
line:

$ f90 +langlvl= prog.f90

f90 will issue the following message:

f90: The '+langlvl=' option requires
 one of the following sub-options:

 90 generate messages about non-FORTRAN 90 features
 default no messages about nonstandard FORTRAN features

22 Chapter 2

Compiling and linking
Compiling with the f90 command

Still other options take a name as an argument. For example, the -
oname option specifies the name you want to give to the output file. If
you misspell an option on the f90 command line, the driver looks for
options that are similar to the one you entered and lists them as possible
alternatives on stderr. It meanwhile compiles the program without the
option in question.

For detailed information about the syntax of all the options, see the
HP Fortran Programmer’s Reference. For a brief descriptive list of the
options, use the command line:

$ f90 +usage

Commonly-used options
Table 7 identifies commonly-used command-line options for when you
want to change the compiler’s default behavior. For a complete and full
description of all HP Fortran command-line options, see “Option
descriptions” on page 24.

Table 7 Commonly-used options

Option Function

-c Compile without linking. Use this option to compile
and link in separate steps.

-g Prepare program for debugging. Use this option to
prepare your program for debugging.

-Ldirectory Specify where to look for libraries; applies only to
succeeding -l options. Be careful about using this
option if the LPATH environment variable is set.

-lx Specify a library. Use this option to link in library
routines.

-O Optimize. Use this option to optimize your program at
the default level of optimization.

+save Give the SAVE attribute to local variables. Use this
option when porting older Fortran programs that may
contain uninitialized variables.

Chapter 2 23

Compiling and linking
Compiling with the f90 command

Command-line options by category
Table 8 categorizes the f90 command-line options. For detailed
information about each of the options, see “Option descriptions” on
page 24.

Table 8 Options listed by category

-o outfile Name the output file outfile. Use this option to name
the executable or object file.

+usage List all compile-line options currently supported by
f90.

-v Enable verbose mode. Use this option to get a report on
the compilation process.

Option Function

Category Options

Compatibility and porting +autodbl, +autodbl4, +charlit77
+[no]es, +extend_source,
gformat77, +i8, +io77,
+langlvl, +multi_open,
+nocheckuf, +nopadsharedcommon,
+onetrip, +ppu, +r8, +save,
+[no]signedzero, and +U77

Compiler configuration -t and -W

Data storage +autodbl, +autodbl4, +hugecommon,
+hugesize, +i8,
+indirectcommonlist=file,
+nopadsharedcommon, +r8,
+real_constant, and +save

Directory, module, and
library search path

+U77, -I, -L, -l, and +moddir

Debugging +check, +dlines, -g, and
+fp_exception

Error control +FP and +fp_exception

24 Chapter 2

Compiling and linking
Compiling with the f90 command

Option descriptions
The following alphabetical list describes each of the command-line
options recognized by HP Fortran. The +usage option also lists and
briefly describes all of the currently supported options.

+[no]asm

+asm compiles the named programs and leaves the
assembler-language output in corresponding files
whose names have the .s extension. The assembler-
language output produced by this option is not
supported as input to the assembler.
The default is +noasm.

Industry standardized
extensions

+O[no]openmp

Language features +escape, +extend_source,
+implicit_none, +langlvl,
+[no]signedzero, and +source

Linking +demand_load, -dynamic, +FP, +k, -
L, -l, +shared, +sharedlibF90,
+strip, and +uppercase

Listing and messages +asm, +langlvl=90, +list, -v,
+version, +what, and -w

Native language support +nls

Performance and
optimization

+cat,+DA, +DC, +DO, +DS,
+fastallocatable, +O, and-O
+Oparallel_intrinsics

Preprocessor +cpp, +cpp_keep, -D, and -U

Profiling +gprof, +prof, +pa, +pal

Miscellaneous +asm, -c, +getarg0, +getarg1,
+noalign64bitpointers, -o, +pic,
+pre_include, +ttybuf, and +usage,
+Z, +z

Category Options

Chapter 2 25

Compiling and linking
Compiling with the f90 command

The -S option can be used to perform the same function
as +asm.

+[no]autodbl

+autodbl increases the default size of integer, logical,
and real items to 8 bytes; see Table 9. It also increases
the default size of double precision and complex items
to 16 bytes. This option does not increase the size of
the following:

• Items of character type

• Items declared with the BYTE statement

• Items declared with the DOUBLE COMPLEX
statement

• Explicitly sized items

For example, the following are unaffected by
+autodbl:
INTEGER(KIND=4)

INTEGER(4) J

REAL*8 D

3.1416_4, 113_4

Note, however, that constants specified with an
exponent—for example, 4.0E0 and 2.3D0—are
doubled.
Items promoted include constants, scalar variables,
arrays, components of derived types, and record fields.
This option also promotes intrinsics as well as the
results and arguments of user-defined functions to the
proper precision. Types specified in ON statements are
also promoted.
The entire program should be compiled with this
option, not just selected files.
This option is useful when porting programs that
depend on the increased precision of 8 and 16 bytes. If
you want to promote only single-precision items, use
the +autodbl4 option. (REAL(KIND=16) arithmetic is
slow.)
The default is +noautodbl.

26 Chapter 2

Compiling and linking
Compiling with the f90 command

Table 9 Data type sizes and +autodbl[4]

+[no]autodbl4

Like +autodbl, +auotdbl4 increases the default size
of integer, logical, and real items to 8 bytes, and the
default size of complex items to 16 bytes; see Table 9.
Unlike +autodbl, it does not increase the default size
of double precision.
This option does not increase the size of the following:
INTEGER(KIND=4)

INTEGER(4) J

REAL*8 D

3.1416_4, 113_4

Note, however, that constants specified with an
exponent—for example, 4.0E0 and 2.3D0—are
doubled.
Items promoted include constants, scalar variables,
arrays, components of derived types, and record fields.
This option also promotes intrinsics as well as the
results and arguments of user-defined functions to the
proper precision. Types specified in ON statements are
also promoted.
The entire program should be compiled with this
option, not just selected files. Use this option when you
want to promote only the single-precision items.
The default is +noautodbl4.

NOTE The +autodbl4 option causes items declared as REAL, INTEGER, and
DOUBLE PRECISION all to have the same size. This violates the Fortran
Standard.

Sizes in bytes of intrinsic types

Integer,
logical,

and real

Double
precision Complex

Default sizes 4 8 8

+autodbl 8 16 16

+autodbl4 8 8 16

Chapter 2 27

Compiling and linking
Compiling with the f90 command

-c

-c compiles the specified source files but does not link
them. The compiler produces a relocatable file (.o) for
each file in the files list (these may include .f90, .f,
.F, .i, .i90, and .s files). When using -c and -o
together, you may specify only one source file on the
command line; the resulting object file is renamed.

+charlit77

+charlit77 causes character literals to be placed in
writable static storage. This allows character strings
passed as actual arguments to be modified by the called
routine.

+check={all|none}

+check=all enables compile-time range checking for
array subscripts. The +check=all option will also
cause an executing program to halt with a runtime
error if any of the following is detected:

• Integer overflow

• Out-of-bounds subscripts

• Out-of-bounds substrings

The default is +check=none. The -C option can be
used to perform the same function as +check=all.

+cpp={yes|no|default}

+cpp=yes tells the compiler to pass the source files
specified on the command line to the C preprocessor
before passing them on to the compiler. This option
does not apply to .i and .i90 files.
The default, +cpp=default, is to apply the C
preprocessor to files that end in the .F extension but
not to files that end in .f or .f90.
Specifying +cpp=no tells the compiler not to invoke the
C preprocessor for all files on the command line,
including those ending in .F.
If you want to keep the output from the C preprocessor,
use the +cpp_keep option.

+[no]cpp_keep

28 Chapter 2

Compiling and linking
Compiling with the f90 command

+cpp_keep causes the compiler to retain the output
from the C preprocessor. If the source filename is
file.f or file.F, the output filename is file.i; if the
source filename is file.f90, the output filename is
file.i90. The compiler will accept source files with the
.i and .i90 extensions.
The default, +nocpp_keep, is to discard the output
file.
Note that this option does not pass source files to the C
preprocessor. To do that, you must also specify the
+cpp=yes option.

-D name[=def]
-D defines a symbol name (name) to the C
preprocessor. If you do not provide a definition (def) for
the symbol name, name is defined as 1. This option
applies only to files that are passed to the C
preprocessor.

Chapter 2 29

Compiling and linking
Compiling with the f90 command

+DAmodel
+DA generates object code for a particular version of the
PA-RISC architecture. By default, the compiler
generates code for the machine model you are
compiling on. With this option, you can override the
default, causing the compiler to generate code for the
machine on which the program will execute rather
than for the machine on which it is compiled.
model can be one of the following:

• A PA-RISC version number (1.1 or 2.0)

• A model number (for example, 750 or 870)

• One of the PA-RISC processor names (for example,
PA7000, PA7100, or PA8000)

• The word portable, which causes the compiler to
generate code that is compatible across all PA-RISC
1.1 and 2.0 systems

See the file /usr/lib/sched.models for model
numbers and their architectures. Use the uname
command to determine the model number of your
system. (For information about the uname command,
see uname(2).)
For best performance, use +DA with the model number
or architecture of the machine on which you plan to
execute the program.
The +DA option also specifies the appropriate search
path for HP-UX math libraries. If your program calls
mathematical functions, +DA2.0 links in the PA2.0
version of the math library, while +DA1.1 links in the
PA1.1 library version. (For more information about
using math libraries, see the HP-UX Floating-Point
Guide.)
With +DA2.0W, memory addresses are 64-bit values.
This allows common blocks and dynamically allocated
memory to exceed 32-bit address limits. This feature is
restricted by the available virtual memory on the
system where the application is run.

30 Chapter 2

Compiling and linking
Compiling with the f90 command

NOTE You must specify +DA2.OW to generate 64-bit code. At PA64, all data types
remain the same size as at PA32 except for pointers. Fortran pointers are
hidden from the user and cannot be directly manipulated.

+DC7200

+DC7200 performs memory hierarchy optimizations for
the PA7200 processor.

+[no]demand_load

+demand_load causes the output file from the linker
to be marked demand load. When a process is
marked demand load, its pages are brought into
physical memory only when they are accessed. The
default, +nodemand_load, causes the output file from
the linker not to be marked demand load.
The -q option performs the same function as
+demand_load, and the -Q option performs the same
function as +nodemand_load.

+[no]dlines

+dlines treats source lines with a “D” or “d” in column
1 as statements to be compiled. The default,
+nodlines, treats lines beginning with “D” or “d” in
column 1 as comments.
The +dlines option must be used only with source
files in fixed-format.

+DOosname
+DOosname sets the target operating system for the
compiler. The osname variable can be 11.0EP9806
(indicating the HP-UX 11.0 EXTPAK 9806 release) or
11.0 (the default). When +DO11.0EP9806 and
+Olibcalls are both specified on an HP-UX
11.0EP9806 system, the compiler enables the fusing of
library calls where applicable. This promotes
instruction-level parallelism in library routines which
can improve performance by concurrently computing
the same function of two values.
By default, when you compile your application, it is
binary compatible across the 11.x release. You only
need to specify +DO when you want the latest
performance features supported in the OS.

+DSmodel

Chapter 2 31

Compiling and linking
Compiling with the f90 command

+DS specifies an instruction scheduling algorithm for a
particular implementation of the PA-RISC
architecture, as specified by model.
model can be one of the following:

• A PA-RISC version number (1.1 or 2.0)

• A model number (for example, 750 or 870)

• One of the PA-RISC processor names (for example,
PA7000, PA7100, or PA8000)

For example, specifying +DS750 performs instruction
scheduling tuned for one implementation of PA-RISC
1.1. Specifying +DS2.0 or +DS1.1 performs scheduling
for a representative PA-RISC 2.0 or 1.1 system,
respectively. To improve performance on a particular
model, use +DS with that model number.
See the file /usr/lib/sched.models for model
names and numbers, as well as their architectures.
Use the uname -a command to determine the model
number of your system. (For more information about
uname, see uname(2).)
Object code with scheduling tuned for a particular
model will execute on other systems, although possibly
less efficiently.
If you do not use this option, the compiler uses the
argument specified with the +DA option. If you use
neither +DS or +DA, the default instruction scheduling
is for the system on which you are compiling.

-dynamic

-dynamic is used to generate dynamically-bound
executables.

+[no]escape

+escape treats the backslash character (\) as a C-like
escape character. The default, +noescape, treats the
backslash character as a literal character.

+[no]es

32 Chapter 2

Compiling and linking
Compiling with the f90 command

+[no]es is similar to +[no]extend_source except
that character literals and hollerith constants
continued across a line boundary are not padded. This
option provides compatibility with FORTRAN 77’s +es
option.

+[no]extend_source

+extend_source allows extended source lines, which
may contain up to 254 characters. The default,
+noextend_source, restricts fixed-format source
lines to 72 characters and free-format source lines to
132 characters.
Programs that depend on the compiler’s ignoring
characters past column 72 will not compile correctly
with the +extend_source option.

+fastallocatable

+fastallocatable enables a different representation
for allocatable arrays in the object code produced by the
compiler. This alternate representation avoids
problems in optimizing code containing allocatable
array references. Additionally, this alternate
representation for allocatable arrays is binary
compatible with the old representation.

+FPflags
+FP initializes the flags that specify how runtime
floating-point exceptions should be trapped; uppercase
flags enable traps, lowercase flags disable traps. flags
can be concatenated to specify a desired behavior and
may not contain spaces or tabs. Valid values for flags
are identified in Table 10.
By default, all traps are disabled. However, you can
specifically disable a behavior either by excluding the
upper-case letter from flags or by including the
equivalent lower-case letter (v,z,o,u,i,d) in flags. For
example, the following command lines are equivalent:
$ f90 +FPvZI test.f90

$ f90 +FPZI test.f90

If you are using PA1.1 libraries, you can dynamically
change these settings at run time by using the
fpsetdefaults or fpsetmask routines. For more

Chapter 2 33

Compiling and linking
Compiling with the f90 command

information about these routines, see the
fpgetround(3M) man page and the
HP-UX Floating-Point Guide.
Enabling sudden underflow may cause the same
program to compute different results on different
implementations of the PA-RISC 1.1 and 2.0
architectures. This is because some hardware
implementations have sudden underflow available,
while others do not. The +FPD option enables the
hardware to flush denormalized values to zero, but it
does not require that it do so.

Table 10 Values for the +FP option

Value Meaning

V Trap on invalid floating-point operations. Examples of
invalid floating-point operations include the following:

• Arithmetic operation on NaNs

• Operations such as (+inf) + (-inf) and (+inf) -
(+inf)

• Multiplication of 0 and infinity

• Division operations 0/0 and inf/inf

• Certain floating-point remainder operations

• Square root of a negative value

• Certain kinds of comparisons of unordered values

Z Trap on floating-point divide by zero.

O Trap on floating-point overflow.

U Trap on floating-point underflow.

I Trap on floating-point operations that produce inexact
results. Inexact result traps may occur whenever roundoff
is necessary to produce the result. For example, the fraction
1.0/3.0 produces an inexact trap because there is no exact
floating-point representation for this fraction.

34 Chapter 2

Compiling and linking
Compiling with the f90 command

+[no]fp_exception

+fp_exception causes a descriptive message and a
procedure traceback to be issued to standard error
when the HP-UX signals listed in Table 11 are
generated.
By default, floating-point exceptions are disabled on
Series 700/800 systems, in accordance with the IEEE
standard.
For a description of these signals, see signal(2) and
signal(5) in the HP-UX Reference. For information
about floating-point exceptions and error handling, see
the HP-UX Floating-Point Guide.
You can also use the ON statement to write your own
trap procedures. For information about the syntax of
the ON statement, see “Using the ON statement” on
page 119.
The default, +nofp_exception, disables traceback
information.

D Enable sudden underflow (flush to zero) of denormalized
values on those PA-RISC systems greater than version 1.0
that have implemented sudden underflow. (That is, +FPD
enables sudden underflow only if it is available on the
processor that is used at run time.) Denormalized values
are those values whose absolute value is very close to zero.
For IEEE single precision data types, the largest
denormalized value is approximately equal to 2-126. For
IEEE double precision data types, such values are
approximately equal to 2 -1022. Sudden underflow will cause
some floating-point applications to run faster, with a
possible loss of numerical accuracy on numbers very close to
zero.

Value Meaning

Chapter 2 35

Compiling and linking
Compiling with the f90 command

Table 11 Signals recognized by the +fp_exception option

-g

-g causes the compiler to generate information for use
by the HP WDB debugger. The -g option can be used
to prepare code for debugging that has been compiled
with optimization options -O, -O1/+O1, and -O2/+O2,
but not -O3/+O3 or higher.

+getarg

+getarg0 and +getarg1 control the behavior of the
getarg intrinsic subroutine. +getarg0 requests the
industry standard behavior for getarg, where an index
value of zero causes the program name to be returned.
HP’s FORTRAN 77 getarg intrinsic also implements
this industry standard convention. +getarg1 is used
to request non-standard behavior, where an index
value of one causes the program name to be returned
(older releases of HP Fortran behaved in this manner).
The default is +getarg0.

gformat77

gformat77 requests the FORTRAN 77 style of
formatting a value of zero with the G edit descriptor.
Fortran 90 uses an F edit descriptor when the value
being written is zero, while FORTRAN 77 uses an E
edit descriptor.

+[no]gprof

+gprof prepares object code files for profiling with
gprof. The default is +nogprof.
gprof is provided as part of the “HP-UX General
Programming Tools” product; see gprof(1).

Signal Meaning

SIGILL Illegal instruction

SIGFPE Floating-point exception

SIGBUS Bus error instruction

SIGSEGV Segmentation violation

SIGSYS Bad argument to system call

36 Chapter 2

Compiling and linking
Compiling with the f90 command

The -G option can be used to perform the same function
as +gprof.

+hugecommon

+hugecommon instructs the compiler to place the
specified COMMON block into a huge data segment.
The format for this option is:

+hugecommon=name

where name is the name of a COMMON block. By
default, only COMMON blocks larger than 2 gigabytes
are placed into huge data segments.
For example:

% f90 +hugecommon=results pcvals.f90

places the COMMON block named results into a huge
data segment.
+hugecommon is especially useful when a program
contains several different COMMON blocks that
together occupy more than two gigabytes but
individually occupy less than two gigabytes. In this
situation, the largest COMMON blocks could be placed
in a huge data segment when the program is compiled
by specifying their names in multiple +hugecommon
options.
If a common block is specified as huge in one object file,
it must be specified huge in all object files. If it is not,
the program will fail to link.

NOTE PA2.0W objects cannot be combined with 32-bit object files. 64-bit
applications will only execute on PA8000-based systems.

+hugesize

+hugesize instructs the compiler to place COMMON
blocks that are larger than the specified size into a
huge data segment. The format for this option is:

+hugesize=n

where n is the size in kilobytes (1024 bytes).
The default is to place COMMON blocks larger than
two gigabytes (2147483648 bytes) into huge data
segments; that is, +hugesize=2097152 is the default.
For example:
% f90 +hugesize=1024 hello.f90

Chapter 2 37

Compiling and linking
Compiling with the f90 command

specifies that COMMON blocks larger than 1048576
bytes (1 megabyte) should be placed into a huge data
segment.
If a common block is specified as huge in one object file,
it must be specified huge in all object files. If it is not,
the program will fail to link.
PA2.0W objects cannot be combined with 32-bit object
files. 64-bit applications will only execute on PA8000-
based systems.

-I directory
-I specifies a directory where .mod files and files
named in the INCLUDE line or in #include directives
may be found if their name is a relative pathname—
that is, does not begin with a slash (/). Directories are
searched in the following order:

• The current source directory—that is, the directory
containing the file with the INCLUDE line or
#include directive.

• Directories specified by the -I option, in the order
specified

• The current working directory

• The /usr/include directory

38 Chapter 2

Compiling and linking
Compiling with the f90 command

+i8

+i8 changes 4-byte integer and logical constants,
intrinsics, and user variables to 8-byte integers (rather
than the 4-byte default).

+[no]implicit_none

+implicit_none forces the types of identifiers to be
implicitly undefined. This is equivalent to specifying
IMPLICIT NONE for each program unit in each file in
the files list. The source code that is to be compiled
with this option may contain other IMPLICIT
statements; the statements will be honored. The
default, +noimplicit_none, allows identifiers to be
implicitly defined.

+indirectcommonlist=file

The common blocks listed in file (one per line, no
enclosing ‘ / ‘s) are treated as shared common
blocks, but are not attached. The user must attach or
otherwise allocate storage for such common blocks
before they are referenced.
A C language program would typically be used to either
attach a shared memory segment, or malloc a block of
memory, and store that address into the external
symbol for the common block. All Fortran code that
references such a common block will indirect through
the address in the external symbol for that indirect
common block.
All source files that reference variables in such a
common block must be compiled with the
+indirectcommonlist flag, and that common block
name must appear in the named file.

+k

+k generates code for programs that reference a very
large number of shared data items. The linker will
issue a diagnostic message in the rare case when this
option is needed. By default, the compiler generates
short-displacement code sequences for programs that
reference global data in shared libraries. For nearly all
programs, this is sufficient.

-L directory

Chapter 2 39

Compiling and linking
Compiling with the f90 command

For libraries named in -l operands, look in directory
before looking in the standard places. You can specify
multiple directories; each directory must be preceded
by its own -L option. Directories named in -L options
are searched in the specified order. This option must
precede the -l option on the command line.

-lx
-l causes the linker to search the library named by
either /lib/libx.a (or .sl) or /usr/lib/libx.a (or
.sl); the linker searches /lib first. The current state
of the -a linker option determines whether the archive
(.a) or shared (.sl) version of the library is searched.
See the ld(1) man page for information about -a option.

+langlvl={90|default}

+langlvl=90 checks for strict compliance to the
Fortran 90 Standard and issues warnings for any HP
Fortran extensions to the Standard. The default,
+langlvl=default, allows extensions.

40 Chapter 2

Compiling and linking
Compiling with the f90 command

+[no]list

+list produces a source listing on standard output.
The default, +nolist, is not to produce a source
listing.

+moddir=directory
+moddir directs the compiler to write .mod files to
directory. If this option is not specified, the compiler
writes modules in the current directory.

+noalign64bitpointers

+noalign64bitpointers disables correct alignment
of pointers in derived types when compiling for wide
mode (+DA2.0W). Earlier releases of Fortran 90
improperly aligned such pointers, occasionally leading
to runtime aborts. Since this change introduces a
potential binary incompatibility, the
+noalign64bitpointers flag is provided to
maintain the old behavior. Users who compile in wide
mode (+DA2.0W)—and have derived types that contain
components with the POINTER attribute—should
recompile all source files that reference variables of
that derived type. Users who have successfully used
such derived type variables with older releases, and do
not wish to recompile all affected source files, should
always specify +noalign64bitpointers when
compiling affected source files.

+nocheckuf

+nocheckuf disables the OPEN statement error check
for opening text files with ACCESS=”sequential”,
FORM=”unformatted”. This option is useful only
when BUFFERIN/BUFFEROUT statements will be
used to access the opened unit. The main program
must be compiled with this option for it to have any
effect, and all OPEN statements will then skip this
error check.

+nls=lang
+nls enables 16-bit Native Language Support
processing in character strings and comments for the
specified language lang. For details on Native
Language Support, refer to Native Language Support
User’s Guide.

Chapter 2 41

Compiling and linking
Compiling with the f90 command

The -Y option can be used to perform the same function
as +nls.

+nopadsharedcommon

Do not pad shared common blocks to a multiple of 8
bytes. This option is useful when sharing shared
common blocks between f77-generated programs and
f90-generated programs. All source files referencing
the same shared common block must be compiled with
the same setting of this flag.

-O[n]
-O invokes the optimizer, where n is the level of
optimization, 0 - 4. (+O4 is recognized but not
supported.) The default is optimization level 2.
This option is provided for compatibility and is
functionally the same as the +On option. The only
difference between the two is that the level number is
optional for the -O option. For more information about
the levels of optimization, see the +On option.

+On
+O invokes the optimizer, where n is the level of
optimization, 0 - 4. +O4 is recognized but not supported
and is provided for compatibility with the f77 option,
+O4. The -g option is compatible with the +O0, +O1,
and +O2 options.
Table 12 lists and describes the different levels of
optimization.

NOTE See the Parallel Programming Guide for HP-UX Systems for a detailed
description of optimization levels and methods.

+O[no]optimization
+O[no] options enable or disable specific optimizations
or classes of optimizations (for example, optimizations
that affect compilation time). For detailed information
about +O[no]optimization, see “Using optimization
options” on page 52.

42 Chapter 2

Compiling and linking
Compiling with the f90 command

Table 12 Levels of optimization

Level Optimizations

0 Local optimizations, including constant folding and partial
evaluation of test conditions.

1 Peephole optimizations, including:

• Basic block optimizations

• Branch optimizations

• Instruction scheduling

2 Optimizations performed at level 1, plus the following:

• Coloring register allocation

• Induction variables and strength reduction

• Common subexpression elimination

• Loop invariant code motion

• Store/copy optimization

• Unused definition elimination

• Dataflow analysis

• Software pipelining

• Scalar replacement

• Sum reduction optimization

3 Optimizations performed at levels 1 and 2, plus the
following:

• Interprocedural optimizations, including cloning and
inlining

• Loop transformations to improve memory performance,
including fusion and interchange

Chapter 2 43

Compiling and linking
Compiling with the f90 command

-o outfile
-o names the executable file outfile rather than the
default name of a.out. If not specified, a.out will be
overwritten if it exists, or created if it does not. The
outfile name must not end with .f, .f90, .F, i, or
.i90. Also, it must not begin with + or -. When using -
c and -o together, you may specify only one source file
on the command line; the resulting object file is
renamed.

+[no]onetrip

+onetrip generates code that executes any DO loop at
least once. In accordance with the language standard,
HP Fortran will not execute a DO loop if either of the
following conditions is true:

• The increment value is greater than zero, and the
initial value is greater than the limit.

• The increment value is less than zero, and the
initial value is less than the limit.

However, older implementations of Fortran (for
example, some FORTRAN 66 processors) always
execute a DO loop at least once. The +onetrip option
provides compatibility with those nonstandard
implementations.
The default is +noonetrip.

+O[no]openmp

+Oopenmp allows users to enable the OpenMP
Directives. +Onoopenmp will disable the OpenMP
directives. +O[no]openmp is accepted at all opt levels.
The default is +Onoopenmp.

+pa

+pa compiles an application for routine-level profiling
(for CXperf support).

4 Level 4 optimizations are not currently supported by the
compiler. If +O4 is specified, the compiler will issue a
warning message and compile at optimization level 3.

Level Optimizations

44 Chapter 2

Compiling and linking
Compiling with the f90 command

NOTE +pa is ignored when the HP Fortran compiler generates position-
independent code (PIC). The following options cause +pa to be ignored:
+pic=short, +pic=long, +z and +Z.

+pal

+pal compiles the application for routine- and loop-
level profiling (for CXperf support).

NOTE +pal is ignored when the HP Fortran compiler generates position-
independent code (PIC). The following options cause +pa to be ignored:
+pic=short, +pic=long, +z and +Z.

+pic={short|long|no}

+pic generates object code that can be added to a
shared library. Object code generated with this option
is position-independent code (PIC). All addresses are
either pc-relative or indirect references.
The argument—short or long—specifies the allocated
size of the data linkage table. Normally you would
specify +pic=short to generate PIC. Use +pic=long
when the linker issues an error message indicating
data linkage table overflow. Specifying +pic=long
causes the compiler to allocate additional space for
more imported symbols.
The default, +pic=no, causes the compiler to generate
absolute code.
The +z option performs the same function as
+pic=short, and the +Z option performs the same
function as +pic=long.

+[no]ppu

+ppu appends underscores to external names,
including subroutines, functions, and common blocks
(for example, int_sum_ rather than the default
int_sum).
The default is +noppu.

NOTE Mixed languages programs are affected by the +ppu option. C languages
references to Fortran routines and COMMON blocks require a trailing
underscore when the Fortran code is compiled with +ppu. +noppu may be
used in wide mode to avoid trailing underscores.

Chapter 2 45

Compiling and linking
Compiling with the f90 command

+pre_include=file
+pre_include causes the compiler to prepend the
code in file before any compilation occurs. This option
can appear more than once—each specifying different
files—on the same command line.

+[no]prof

+prof prepares object files for profiling with prof. The
default is +noprof.
The -p option can be used to perform the same function
as +prof.
prof is provided as part of the “HP-UX General
Programming Tools” product (see prof(1)).

+r8

+r8 changes 4-byte real constants, intrinsics, and user
variables to 8-byte reals (rather than the 4-byte
default).

+real_constant={single|double}

+real_constant=single treats all single-precision
numerical constants as single-precision, and the
+real_constant=double option treats all single-
precision numerical constants as double-precision. The
default is +real_constant=single.
The -R4 and -R8 options can be used to perform the
same function.

+[no]save

+save forces static storage for all local variables. This
option provides a convenient path for porting older
Fortran programs that may depend on static allocation
of memory. (Variables in static storage retain their
values between invocations of the program units in
which they are declared). The +save option causes all
uninitialized variables to be initialized to zero. The
default is +nosave.
If you explicitly declare a variable with the AUTOMATIC
attribute, the attribute overrides the +save option.
The +save command-line option inhibits many of the
optimizations performed by the compiler. Generally,
you will get better performance with the +Oinitcheck

46 Chapter 2

Compiling and linking
Compiling with the f90 command

option, which also sets uninitialized variables to zero
but is more selective than +save; see “Using
optimization options” on page 52.
The -K option can be used to perform the same function
as +save.

Chapter 2 47

Compiling and linking
Compiling with the f90 command

+[no]shared

+noshared causes the output file from the linker to be
marked unshared. The default, +shared, is to mark
the output file as shared.
The -n option performs the same function as +shared,
and the -N option performs the same function as
+noshared.

+sharedlibF90

+sharedlibF90 allows users to link the shared
version of libF90 or libF90_parallel from /usr/
lib. This resolves potential issues with the Fortran 90
driver trying to link with the shared versions of
libF90.

+[no]signedzero

+[no]signedzero enables signed-zero support. This
option forces a floating point value of negative zero that
appears as a formatted output list item to be
represented in the output record with a leading “-”.
This option also changes the behavior of the SIGN
intrinsic. The default is +signedzero.

+source={fixed|free|default}

+source tells the compiler that source files are in
either fixed or free form. The default
(+source=default) is free form for .f90 source files
and fixed form for .f and .F source files.

+[no]strip

+strip causes the linker to strip symbol table
information from the executable program. This option
is incompatible with the -g option. The default is
+nostrip.
The -s option can be used to perform the same function
as +strip.

-tx,path
-t looks in path for the subprocess identified by x and
substitutes it for the default subprocess. x can be one
or more identifiers indicating the subprocesses.
This option works in two modes:

48 Chapter 2

Compiling and linking
Compiling with the f90 command

• If x is a single identifier and path ends in with a
slash (/), path represents the directory with the
new subprocess, and the name of the subprocess is
the standard name. If path ends in a filename, it is
the name of the subprocess.

• If x is a set of identifiers, path is a directory that
holds the subprocesses identified in x. The
subprocesses in path have their standard names.

Table 13 lists the identifiers for x, the subprocesses each indicates,
and the standard subprocess name.

The following example of the -t option tells the compiler to pass the
source files to the K&R version of the C preprocessor for
preprocessing:

-tp,/usr/ccs/lbin/cpp

Table 13 Values for the -t option x subprocesses

+[no]ttybuf

+ttybuf controls tty buffering, using buffered output.
+nottybuf uses unbuffered output. The default is
buffered output (+ttybuf). The +ttybuf option forces
buffered output even on systems whose default is
unbuffered output.
The +[no]ttybuf option is recognized only when the
main program is a Fortran program. If the main
program is written in another language, use the
TTYUNBUF environment variable (see f90(1)).

Value Subprocess Standard name

a Assembler as

c Compiler f90com

e Debug file end.o

l Linker ld

p C preprocessor cpp

s Start-up file crt0.o, gcrt0.o, mcrt0.o

Chapter 2 49

Compiling and linking
Compiling with the f90 command

The +nottybuf option is incompatible with certain
BSD 3F library routines. When it is used on the same
command line with the +U77 option, the compiler will
warn of a potential tty buffering conflict.

-U name
-U undefines or removes any initial definition of name
in the C preprocessor (cpp). See the cpp(1) in the
HP-UX Reference for details.

+[no]U77

+U77 option invokes support for the BSD 3F library,
libU77, which provides an HP Fortran interface to
some of the libc system routines. To call routines in
this library, you must compile and link with +U77. For
information about these routines, see the HP Fortran
Programmer’s Reference.
If +noU77 (the default) is specified or if +U77 is not
specified, the compiler treats libU77 routine names as
ordinary external names with no name mapping. If the
name is not present in one of the libraries linked to, the
linker emits an error message because of an unsatisfied
symbol. If the libU77 name is the same as a libc
name, the name might resolve to a libc name. This
situation does not cause an error at compile time, but
can produce unpredictable results.

+[no]uppercase

+uppercase uses uppercase for external names. The
default, +nouppercase, is to convert external names
to lowercase.
If you need to control the case of specific names, use the
HP ALIAS directive, as described in “HP ALIAS”
on page 190.

+usage

+usage lists and briefly describes all of the command-
line options currently supported by the
HP Fortran compiler. No compile occurs.

-v

-v enables the verbose mode, producing a step-by-step
description of the compilation process on the standard
error output.

+version

50 Chapter 2

Compiling and linking
Compiling with the f90 command

+version displays compiler version information only;
no compilation occurs.

-w

-w suppresses warning messages. If this option is
omitted, warnings are sent to standard error.

+what

+what prints what string for the Fortran 90 driver,
providing version and patch numbers.

-Wx,arg1,arg2,...,argN
-W causes arg1 through argN to be handed off to
subprocess x. Each arg takes the form:
-option[,value]
where option is the name of an option recognized by the
subprocess and value is a separate argument to option,
where necessary. The values that x can assume are
listed in Table 14.
For example, the following option tells the linker to
print a trace of each input file as ld processes it:
-Wl,-t

The next example passes the -a shared option to the
linker, causing it to select shared libraries for linking.
-Wl,-a,shared

Chapter 2 51

Compiling and linking
Compiling with the f90 command

Table 14 Values for the -W option

+Z see +pic=long in this chapter for a description. Note
that when creating 64-bit shared executables (such as
when +DA2.0W is specified), the +Z option is on by
default. This is the only PIC option supported for
64-bit executables.

NOTE To not generate position-independent code for 64-bit executables, specify
the -W1, -noshared option:

+z see +pic=short in this chapter. If +z is specified
when creating 64-bit code, it instead maps to +Z.

Value Meaning

a Assembler

c Compiler

l Linker

p C preprocessor

52 Chapter 2

Compiling and linking
Compiling with the f90 command

Using optimization options
The options described in this section allow you to control the different
optimizations that the compiler can apply to your program. These
options fall into two categories:

• Options that control classes of optimization (for example,
optimizations that affect code size)

• Options that control specific optimizations (for example, inlining)

The following subsections describe the options in both categories. For
information about the options that control levels of optimization, see the
description of the +On option in the “Option descriptions” on page 24.
The +O[no]info option, which provides compile-time information about
the optimization process, is described in the same section.

NOTE You can insert (or remove) underscore characters in the names of any of the
optimization options to improve their readability. The compiler will recognize
the option name with or without underscores.

Reviewing general optimization options
The following options allow you to control how optimization affects code
size, compilation time, runtime performance, and other user-visible
effects. The syntax for using these options is:

+O[no]optimization
where optimization is a parameter that specifies the
class of optimization to apply to your program. The
different parameters are described below. The prefix
no negates the effect of optimization.

Except for +Oall, the options do not override a specified level of
optimization, nor do they imply a particular level. (The +Oall option
automatically invokes the highest level of optimization.) To use any of
these options you must also include the +On option on the same
command line, where n specifies the level at which the type of
optimization is effective. Thus, if you wish to apply all optimizations
available at level 3 except those that might significantly increase code
size, you would use the command line:

f90 +O3 +Osize my_prog.f90

Chapter 2 53

Compiling and linking
Compiling with the f90 command

If an option is mistakenly used at a level at which the corresponding
optimization is not performed, the compiler will issue a warning
message.

The defaults specified in the following descriptions are in effect only at
the specified optimization levels, unless stated otherwise.

+O[no]aggressive

+Oaggressive enables optimizations that can result
in significant performance improvement but can also
change a program’s behavior. This option is only
effective at optimization level 2 or higher.
The +Oaggressive option performs optimizations
invoked by the following options:

• +Oentrysched

• +Onofltacc

• +Onoinitcheck

• +Ovectorize

The +Oaggressive option is incompatible with
+Oconservative.
The default is +Onoaggressive.

+O[no]all

+Oall performs maximum optimization, including
aggressive optimizations and optimizations that can
significantly increase compile time and memory usage.
The +Oall option automatically invokes the highest
level of optimization.
The default is +Onoall.

+O[no]conservative

+Oconservative causes the optimizer to make
conservative assumptions about the code when
optimizing it. This option is only effective at
optimization level 2 or higher.
The +Oconservative option sets the following
options:

• +Onofltacc

• +Onomoveflops

54 Chapter 2

Compiling and linking
Compiling with the f90 command

• +Oparmsoverlap

Use +Oconservative when conservative assumptions
are necessary due to the coding style, as with
nonstandard-conforming programs. Note that it is
incompatible with +Oaggressive.
The +Onoconservative option relaxes the optimizer’s
assumptions about the target program.
The default is +Onoconservative.

+O[no]limit

+Olimit suppresses optimizations that significantly
increase compilation time or that can consume large
amounts of memory at compile time. This option is
only effective at optimization level 2 or higher.
The +Onolimit option allows optimizations to be
performed regardless of their effect on compilation time
or memory usage.
The default is +Olimit.

+O[no]size

+Osize suppresses optimizations that significantly
increase code size. This option is only effective at
optimization level 2 or higher.
The +Onosize option permits optimizations that can
increase code size.
The default is +Onosize.

Fine-tuning optimization options
The following options allow you to fine-tune the optimization process by
providing control over the specific techniques that the optimizer applies
to your program. The syntax for using these options is

+O[no]optimization
where optimization is a parameter that specifies an
optimization technique to apply to your program. The
different parameters are described below. The prefix
no negates the effect of optimization.

The options do not override a specified level of optimization, nor do they
imply a particular level. To use any of these options you must also
include the +On option on the same command line, where n specifies the
level at which the type of optimization can be performed.

Chapter 2 55

Compiling and linking
Compiling with the f90 command

For example, if you find that the optimizer is causing your program to
produce different floating-point results from those produced by the
unoptimized program, you could use the following command line to
suppress optimizations that affect floating-point calculations:

f90 +O3 +Onomoveflops +Ofltacc my_prog.f90

If an option is mistakenly used at a level for which the corresponding
optimization is not performed, the compiler will issue a warning
message.

The defaults given in the following descriptions are in effect only at the
specified optimization levels, unless stated otherwise.

+O[no]cache_pad_common

+Ocache_pad_common can improve program
performance by padding common blocks to avoid cache
collisions. Cache-line collisions occur when the
difference between the addresses of two data points is a
multiple of the cache size. By inserting empty space
between large variables (for example, arrays), the
optimizer ensures that they do not start at nearby
addresses, where the possibility of a cache collision is
greater. This option is only effective at optimization
level 3 or higher.
Note the following precautions when using this option:

• All program modules that reference the common
block must be compiled with the
+Ocache_pad_common option.

• Each common block in the program should have the
same layout in all program units within which it is
declared. If the layouts are different, they must be
fully independent—that is, they must not pass
values between them.

The default, +Onocache_pad_common, disables
padding.

+O[no]dataprefetch

+Odataprefetch causes the optimizer to insert
instructions within innermost loops to explicitly
prefetch data from memory into the data cache. Data
prefetch instructions will be inserted only for data
structures referenced within innermost loops using

56 Chapter 2

Compiling and linking
Compiling with the f90 command

simple loop varying addresses—that is, in a simple
arithmetic progression. This option is only effective at
optimization level 2 or higher. It is only available for
PA-RISC 2.0 targets.
Use this option for applications that have high data
cache miss overhead.
The default is +Onodataprefetch.

+O[no]entrysched

+Oentrysched allows the optimizer to perform
instruction scheduling on a subprogram’s entry and
exit code sequences. This option is only effective at
optimization level 1 or higher.
The option can change the behavior of programs that
perform exception-handling or that handle
asynchronous interrupts.
The default is +Onoentrysched.

+O[no]fastaccess

+Ofastaccess improves execution time by speeding
up access to global data items. You can use this option
at any level of optimization.
Note that the +Ofastaccess option may increase link
time.
The default is +Onofastaccess at optimization levels
1, 2, and 3; and +Ofastaccess at optimization level 4.

+O[no]fltacc

+Onofltacc enables optimizations that follow the
rules of algebra but may change the order of expression
evaluation. For example, if a, b, and c are floating-
point variables, the expressions (a + b) + c and a +
(b + c) may give slightly different results due to
roundoff.
The +Onofltacc option also enables the fusion of
adjacent multiply and add operations—resulting in
Fused Multiply-Add (FMA). FMA is implemented by
the FMPYFADD and FMPYNFADD instructions and is only
available on PA-RISC 2.0 systems. (At optimization
level 2 or higher, FMA occurs by default.) FMA
improves performance but occasionally produces

Chapter 2 57

Compiling and linking
Compiling with the f90 command

results that may differ in accuracy from results
produced by code where fusion has not occurred. In
general, the differences are slight.
+Ofltacc disables optimizations that change the
order of expression evaluation and therefore may affect
the accuracy of the result. The +Ofltacc option also
disables fusing.
Table 15 identifies the different actions taken by the
optimizer, according to whether you specify +Ofltacc,
+Onofltacc, or neither option. In all cases, the table
assumes that you are compiling at optimization level 2
(+O2) or higher.

Table 15 Optimizations performed by +O[no]fltacc

+O[no]info

+Oinfo causes the compiler to display informational
messages about the optimization process. The +Oinfo
option provides feedback that can help you to
determine whether the compiler optimized time-critical
sections of your program. It can be used at any level of
optimization but is most useful at level 3.
Currently, this option provides feedback for the
following optimizations:

• Cloning, the replacement of a call to a routine by a
call to a clone, which is a copy of the routine with
changes specific to that call site.

• Inlining.

• Loop transformations to improve cache
performance.

• Vectorization.

+O[no]fltacc Expression
reordering? FMA?

No Yes

+Ofltacc No No

+Onofltacc Yes Yes

58 Chapter 2

Compiling and linking
Compiling with the f90 command

The default, +Onoinfo, disables the display of
informational messages about optimization.

+O[no]initcheck

The initialization checking feature of the optimizer has
three possible states: on, off, or unspecified. When this
option is specified in the on state (+Oinitcheck), the
optimizer initializes to zero any local, nonarray,
nonstatic variables that are uninitialized with respect
to at least one path leading to a use of the variable.

When +Onoinitcheck is specified, the optimizer
issues warning messages when it discovers definitely
uninitialized variables, but does not initialize them.

When this option is unspecified, the optimizer
initializes to zero any local, scalar, nonstatic variables
that are definitely uninitialized with respect to all
paths leading to a use of the variable.

This option is only effective at optimization level 2 or
higher.

+O[no]inline

+Oinline makes all subprograms eligible for inlining.
This option is only effective at optimization level 3 or
higher.

The +Onoinline option disables inlining for all
subprograms in your program.

The default is +Oinline at optimization level 3 and
+Onoinline at the lower levels.

+Oinline_budget=n
+Oinline_budget enables the optimizer to perform
more aggressive inlining.

This option has the following syntax:

+Oinline_budget=n

where n is an integer in the range 1 - 1000000 that
specifies the level of aggressiveness, as listed in
Table 16 on page 59.

Chapter 2 59

Compiling and linking
Compiling with the f90 command

The +Onolimit and +Osize options also affect
inlining. Specifying the +Onolimit option has the
same effect as specifying +Oinline_budget=200. The
+Osize option has the same effect as
+Oinline_budget=1.

Note, however, that the +Oinline_budget option
takes precedence over both of these options. This
means that you can override the effect of +Onolimit or
+Osize option on inlining by specifying the
+Oinline_budget option on the same command line.

This option is only effective at optimization level 3 or
higher.

Table 16 Values for the +Oinline_budget option

+O[no]libcalls

invokes millicode versions of a number of frequently
called intrinsic functions; see Table 17 on page 60.
Millicode routines have very low call overhead and
provide no error-handling. Use this option to improve
the performance of selected library routines only when
your program does not depend upon exception-
handling.
The default is +Onolibcalls at optimization levels 0
and 1; at optimization level 2 or higher, the default is
+Olibcalls.

Values for n Meaning

= 100 Default level of inlining.

> 100 More aggressive inlining. The optimizer is less
restricted by compilation time and code size when
searching for eligible routines to inline.

2 - 99 Less aggressive inlining. The optimizer gives more
weight to compilation time and code size when
determining whether to inline.

= 1 Only inline if it reduces code size.

60 Chapter 2

Compiling and linking
Compiling with the f90 command

Table 17 Millicode versions of intrinsic functions

+O[no]loop_block

+O[no]loop_block enables or disables blocking of
eligible loops for improved cache performance. The
+Onoloop_block option disables both automatic and
directive-specified loop blocking.

+O[no]loop_transform

+Oloop_transform enables transformation of
eligible loops for improved cache performance. The
most important transformation is the interchange of
nested loops to make the inner loop unit stride,
resulting in fewer cache misses.
+Onoloop_transform disables transformation of
eligible loops. The default is +Oloop_transform.

+O[no]loop_unroll[=factor]
+Oloop_unroll turns on loop unrolling. factor is the
unroll factor that controls the code expansion. The
default unroll factor is 4; that is, four copies of the loop
body. By experimenting with different factors, you may
improve the performance of your program. This option
is only effective at optimization level 2 or higher.
The default is +Oloop_unroll=4.

+O[no}loop_unroll_jam

+loop_unroll_jam enables loop unrolling and
jamming. +Onoloop_unroll_jam (the default)
disables both automatic and directive-specified unroll
and jam. Loop unrolling and jamming increases
register exploitation.

+O[no]multiprocessor

+Omultiprocessor tells the compiler to appropriately
optimize several different processes on multiprocessor
machines. The optimizations are those appropriate for

acos cos pow

asin exp sin

atan log tan

atan2 log10

Chapter 2 61

Compiling and linking
Compiling with the f90 command

executables and or shared libraries.
+Onomultiprocessor, the default, disables the
optimization of more than one process running on a
multiprocessor machine.

+O[no]moveflo
ps +Omoveflops allows the optimizer to move conditional

floating-point instructions, enabling other
optimizations to occur. This option is only effective at
optimization level 2 or higher.

The behavior of floating-point exception handling may
be altered by this option.

Using +Onomoveflops is recommended if floating-
point traps are enabled and you do not want the
behavior of floating-point exceptions to be altered by
the relocation of floating-point instructions, as when
your program uses the ON statement. The default is
+Omoveflops.

+O[no]paralle
l +Oparallel causes the compiler to transform eligible

loops for parallel execution on multiprocessor
machines. This option is effective only at optimization
level 3 or higher.

If you link separately from the command line and
compile the program with the +Oparallel option, you
must link with the f90 command and specify the
+Oparallel option to link in the correct runtime
support.

The +Onoparallel option disables parallelization for
the target program. It is the default at all levels of
optimization.

NOTE The +Oparallel option should not be used for programs that make explicit
calls to the kernel threads library.

+Oparallel_in
trinsics +Oparallel_intrinsics links in the parallel

version of many of the Fortran intrinsics located in
libF90_parallel.

62 Chapter 2

Compiling and linking
Compiling with the f90 command

+O[no]parmsov
erlap +Oparmsoverlap causes the optimizer to assume that

the actual arguments of function calls overlap in
memory, thus preventing any optimizations that
violate this assumption. This option is only effective at
optimization level 2 or higher.

Use the +Onoparmsoverlap option with programs
that conform to the standard requirement that
parameters must not overlap.

The default is +Onoparmsoverlap.

+O[no]pipeline

+Opipeline enables software pipelining. This option
is only effective at optimization level 2 or higher.

Use +Onopipeline (disable software pipelining) to
conserve code space.

The default is +Opipeline.

+O[no]procelim

When +Oprocelim is specified, procedures that are
not referenced by the application are eliminated from
the output executable file. When +Onoprocelim is
specified, procedures that are not referenced by the
application are not eliminated from the output
executable file. You can use this option at any level of
optimization.

Use +Oprocelim to reduce the size of the executable
file, especially when optimizing at levels 3 and 4, when
inlining can remove all calls to some routines.

The default is +Onoprocelim at levels 0-3, and
+Oprocelim at level 4.

+O[no]regreassoc

+Onoregreassoc disables register reassociation. This
option is only effective at optimization level 2 or higher.

Use +Onoregreassoc to disable register reassociation
in the rare case that this optimization degrades
performance.

Chapter 2 63

Compiling and linking
Compiling with the f90 command

+Oregreassoc is the default

+O[no]report +Oreport specifies the contents of the Optimization
Report.

+O[no]vectorize

+Ovectorize causes the compiler to replace certain
loops with calls to the math library. This option is only
effective at optimization level 3 or higher.

If you link separately from the command line and you
compiled with the +Ovectorize option, you must
ensure that the link line causes the math library to be
searched.

+Onovectorize is the default.

Filenames
The f90 command accepts files with any of the filename extensions
listed in Table 18. The table also describes the meaning each name has
for the f90 command. Files with names other than those listed in the
table are passed to the linker.

Table 18 Filenames recognized by f90

Filenames Meaning

file.f90 Free-form Fortran source code; processed by the
compiler.

file.f Fixed-form Fortran source code; processed by the
compiler.

file.F Fixed-form Fortran source code; first processed by the C
preprocessor (cpp), then by the compiler.

file.i90 Free-form output from the C preprocessor (if the source
file ends in .f90); processed by the compiler.

file.i Fixed-form output from the C preprocessor (if the
source file ends in .F or .f); processed by the compiler.

file.o Object code; passed to the linker (ld).

file.s Assembly language code; passed to the assembler (as).

64 Chapter 2

Compiling and linking
Compiling with the f90 command

NOTE The compiler generates a .mod file for each file that defines a Fortran
module. It also reads the .mod files when compiling source files that use
modules. Do not specify .mod files on the command line. If you do, the
compiler will pass them to the linker, which will try (and fail) to link them into
the executable. For more information about .mod files, see “Compiling
programs with modules” on page 72.

Chapter 2 65

Compiling and linking
Linking HP Fortran programs

Linking HP Fortran programs
This section discusses how to link object files and covers the following
topics:

• The advantages of using the f90 command for linking as well as for
compiling

• How to link libraries, including shared libraries

• How to establish the search rules used by the linker when it looks for
libraries

For more information about the linker, refer to Programming on HP-UX
and to the ld(1) man page.

Linking with f90 vs. ld
By default, the f90 command both compiles and links, producing an
executable program. You can modify this behavior with the -c option,
which causes f90 to compile only, writing the object files (if the
compilation is successful) in the current working directory. If the
command line contains object files only, f90 passes them to the linker
(ld) for linking into the executable program. In other words, you can use
the f90 command to compile and link in one command line or in separate
command lines. You do not need to invoke the ld command separately.

In fact, we recommend that you use the f90 command whenever you link
HP Fortran object files and that you use the same command line for
linking as for compiling.

When you use the f90 command to compile and link in the same
command line, the driver passes certain information—search paths,
library names, and options—to the linker. If you use the ld command to
link separately, you must specify this same information on the ld
command line. Not doing so can cause the link to fail. Using the same
f90 command line to link as you use to compile avoids the problem of
passing insufficient or incorrect information to the linker.

To see what information f90 passes to the linker, compile with the -v
option (verbose mode). Here is the hello.f90 program (listed in
“Compiling with the f90 command” on page 20) compiled in verbose
mode. The lines are numbered for the convenience of referencing:

66 Chapter 2

Compiling and linking
Linking HP Fortran programs

1 $ f90 -v hello.f90
2 /opt/fortran90/lbin/f90com -cm -w90 -nbs -auto
 -WB -hp\”-Oq00,al,ag,cn,Lm,sz,Ic,vo,lc,mf,po,es,rs,sp,
 in,vc,pi,fa,pe,Rr,Fl,pv,pa,nf,cp,lx,st,ap,Pg,
 ug,lu,dp,fs,bp,wp\!\” hello.f90
3 hello.f90
4 program MAIN
5 external subroutine HELLO

6 7 Lines Compiled
7 LPATH is: /opt/fortran90/lib/pa1.1:/usr/lib/pa1.1:
 /opt/fortran90/lib:/usr/lib:/opt/langtools/lib
8 /usr/ccs/bin/ld -x /opt/langtools/lib/crt0.o hello.o
 /opt/fortran90/lib/libF90.a -lcl -lc -lisamstub

• Line 1 is the f90 command line.

• Line 2 is the information f90 passes to the compiler, including the
full pathname of the compiler, the name of the source file
(hello.f90), and the internal names of the option settings as
determined by the defaults and the f90 command line.

• Lines 3 - 6 show the progress of the compilation; line 6 indicates that
the compilation was successful.

• Line 7 displays the value to which f90 has defined the LPATH
environment variable. If you use the ld command to link hello.f90,
you must define LPATH on the command line before invoking the
linker. See “LPATH environment variable” on page 87.

• Line 8 is the command line that f90 passes to the linker (ld). If you
use the ld command to link hello.f90, the command line should be
similar to the one shown here.

As noted in the comments on lines 7 and 8, compiling and linking
hello.f90 successfully using both the f90 and ld commands requires
three command lines:

$ f90 -c hello.f90 # compile

$ export LPATH=/opt/fortran90/lib/pa1.1:/usr/lib/pa1.1:\
/opt/fortran90/lib:/usr/lib:/opt/langtools/lib # set LPATH

$ ld -x /opt/langtools/lib/crt0.o hello.o \
/opt/fortran90/lib/libF90.a -lcl -lc -lisamstub # link

Chapter 2 67

Compiling and linking
Linking HP Fortran programs

The command line to set LPATH in the csh is:

$ setenv LPATH /opt/fortran90/lib/pa1.1:/usr/lib/
pa1.1:\
/opt/fortran90/lib:/usr/lib:/opt/langtools/lib
set LPATH

For more information about the linker, see the ld(1) man page. For a list
of f90 options that you can use to control the linker, see Table 6 on
page 13. To pass linker options from the f90 command line to the linker,
use the -Wl option (for an example, see “Linking to shared libraries” on
page 69). The HP Fortran Programmer’s Reference, fully describes the -
Wl option.

Linking to libraries
When you use the f90 command to create an executable program, the
linker looks in the libraries listed in Table 19 to resolve references. By
default, the linker uses the shared libraries, if available. For information
about shared libraries, see “Linking to shared libraries” on page 69.

The libisamstub library is provided as a tool for migrating
HP FORTRAN 77 programs that call ISAM routines. The ISAM library
is not available with HP Fortran, but the stub library allows the linker to
resolve references to ISAM routines in HP FORTRAN 77 programs.

Table 19 Libraries linked by default

Library Contents

/usr/lib/libcl.a Archive version of HP Fortran runtime library

/usr/lib/libcl.sl Shared version of HP Fortran runtime library

/opt/fortran90/lib/libF90.a Archive library of array intrinsic procedures

/usr/lib/libc.a Archive library of intrinsic procedures and
system routines

/usr/lib/libc.sl Shared library of intrinsic procedures and
system routines,

/opt/fortran90/lib/libisamstub.a
/opt/fortran90/lib/libisamstubs.a

Archive libraries of stubs to satisfy ISAM
references

/usr/lib/libisamstub.sl Shared library of stubs to satisfy ISAM
references

68 Chapter 2

Compiling and linking
Linking HP Fortran programs

When the linker finds a reference in your program to a name that is not
defined in the program (for example, the DOT_PRODUCT intrinsic), it
looks to resolve it in the default libraries. If it cannot find the name in
the default libraries, the link will fail unless the command line specifies
additional, nondefault libraries. This section discusses how to link to
nondefault libraries (including shared libraries) and library search rules.

Linking to nondefault libraries
The -l option enables you to specify other libraries for linking, in
addition to the default libraries listed in Table 19. The syntax for this
option is:

-lx

where x is a sequence of characters that completes a library name of the
form /lib/libx.a or /usr/lib/libx.a. For example, -lm specifies
the math library, /usr/lib/libm.a. (The .a extension indicates an
archive library. You can also link to shared libraries, which have the
.sl extension; see “Linking to shared libraries” on page 69.)

The -l option is order-sensitive: when the linker finds a reference in an
object file that it cannot resolve in the default libraries, it searches the
libraries (if any) specified after the file on the command line. For
example, the following command line tells the linker to look for
unresolved references in the math library as well as the default libraries:

$ f90 prog.f90 -lm

You can also link a library to your program by specifying its name after
the name of the source file that references it, as follows:

$ f90 prog.f90 /usr/lib/libm.a

This form of the command line is useful for linking libraries that do not
conform to the naming convention required by the -l option or that
reside in a directory other than /lib or /usr/lib. As with the -l
option, the library name must follow the name of the source file that
references it. For example, the following command line links prog.f90
with the library my_routines, both of which reside in the current
working directory:

$ f90 prog.f90 my_routines

If your program calls routines in a library but the linker is unable to
resolve the references, compile with the -Wl,-v option. The f90
command passes -v to the linker, causing it to process in verbose mode.
The verbose information includes:

Chapter 2 69

Compiling and linking
Linking HP Fortran programs

• The names of the libraries that the linker is searching. This
information can confirm that the linker is searching the correct
libraries.

• The names of the object files selected by the linker to resolve the
references. The linker may have found the same name in another
library and resolved the reference there.

Many library-related problems are owing to a misplaced -l on the
command line. The -L option (discussed in “Library search rules” on
page 70) is also order-sensitive and can cause similar problems.

Additional HP Fortran libraries
HP Fortran provides the following two libraries you can link with
Fortran programs:

• /opt/fortran90/lib/libU77.a: The BSD 3f (libU77) library,
which provides a Fortran interface to some of the libc system
routines. Programs that reference routines in this library must be
compiled with the +U77 option. For information about porting Fortran
programs that reference libU77 routines, see “Migrating to
HP Fortran” on page 201.

• /opt/fortran/lib/libblas.a: The Basic Linear Algebra
Subroutine (BLAS) library, which provides routines that perform
common vector and matrix operations. Programs that reference
routines in this library must be compiled with the +lblas option. For
more information, see “Calling BLAS library routines” on page 152.

Both the libU77 and BLAS libraries are described in the HP Fortran
Programmer’s Reference.

Linking to shared libraries
Many HP Fortran libraries as well as HP-UX libraries exist in both
shared and archive versions, as indicated by the library extension name
(.sl or .a). For example, there are both shared and archive versions of
the HP Fortran runtime library, /usr/lib/libcl.sl and /usr/lib/
libcl.a.

The difference between a shared library and an archive library is that
the linker does not actually link the code in a shared library with your
program. Instead, any references that your program makes to entities in

70 Chapter 2

Compiling and linking
Linking HP Fortran programs

the shared library are resolved at load-time, when the library is loaded
into the executable program’s address space. By contrast, code in the
archive library is copied to the executable program file.

The advantages of linking shared libraries are:

• The executable is smaller than it would be if linked with an archive
file because the executable file is incomplete—it doesn’t include code
from the library.

• Using shared libraries ensures that you always get the most recent
version of the library. If you link with an archive version, you get the
version that was available at link-time. If, later on, you want a more
recent version of the library, you must re-link your program with that
library.

The disadvantage of linking with a shared library is that it creates a
dependency between the library and the program; both the shared
library and the program must always be installed together on the same
system. By contrast, linking with an archive library makes the
executable program independent of the library to which it was linked.
Also, programs that make frequent calls to library routines may run
more slowly when linked to shared libraries.

By default, the linker selects the shared version of a library, if one is
available; otherwise, it selects the archive version. To force the linker to
select archive libraries, specify the -Wl,-a,archive option on the f90
command line. f90 passes the arguments to the -Wl option (-a and
archive) to the linker. This option must appear before the names of any
libraries also specified on the command line. The following command line
compiles prog.f90 and links it with the archive versions of the default
libraries as well as with the math library (as specified by the -lm option):

$ f90 -Wl,-a,archive prog.f90 -lm

For information about the linker’s -a option, see the ld(1) man page. For
more information about shared libraries, see “Creating shared libraries”
on page 78.

Library search rules
When you use the -l option to specify the name of a library, the linker
searches for the library in the directories specified by the LPATH
environment variable. The f90 command sets this variable so that the

Chapter 2 71

Compiling and linking
Linking HP Fortran programs

linker looks first in /opt/fortran90/lib, then in /usr/lib. You can
specify another directory to search by setting LPATH yourself; see
“LPATH environment variable” on page 87.

Alternatively, you can use the -Ldirectory option to direct the linker to
search directory before it looks anywhere else to resolve references. For
example, the following command line:

$ f90 -L/my_libs prog.f90 -lstuff

causes the linker to search for libraries (including libstuff.sl and
libstuff.a), starting with the directory /my_libs and then looking in
/opt/fortran90/lib and /usr/lib.

72 Chapter 2

Compiling and linking
Special-purpose compilations

Special-purpose compilations
The default behavior of the HP Fortran compiler has been designed to
handle typical compilations. Most applications should require no more
than a few of the f90 options to compile successfully (see Table 7 on
page 22 for a list of commonly used options).

However, the compiler can also meet the needs of more specialized
compilations. This section explains how to use the f90 command for the
following purposes:

• To compile programs that contain Fortran modules.

• To compile programs that will execute on different PA-RISC
machines.

• To create object files for shared libraries.

• To process source files that contain C preprocessor directives.

• To create demand-loadable programs.

• To create shareable executable programs.

• To compile 32-bit programs in 64-bit mode.

Compiling programs with modules
One of the features of standard Fortran is the module, a program unit
that facilitates shared access to data and procedures. Modules are fully
described in the HP Fortran Programmer’s Reference.

A benefit to using modules is that they provide interface information to
the compiler, allowing it to catch mismatch errors between (for example)
dummy arguments and actual arguments. When the
HP Fortran compiler processes a file that defines a module, it generates
a .mod file with the interface information. Later, when the compiler
processes a file that uses the module, it reads the .mod file and checks
that module entities that are referenced in the using file correctly match
the information in the .mod file.

Chapter 2 73

Compiling and linking
Special-purpose compilations

To make the .mod files available to the compiler, you must therefore
compile the files that define modules before the files that use modules.
Likewise, if you make changes to a file that defines a module, you must
recompile that file as well as any files that use the module, in that order.

Also, if a module is defined and used in the same file, the definition must
lexically precede any USE statements that reference the module. This
requirement allows the compiler to generate the .mod file first, so that it
can resolve the references in any USE statements.

This section discusses the following topics:

• How to compile a program that uses modules

• How to design makefiles to work with modules

• How to use the -I and +moddir options to manage .mod files

Examples
Consider, for example, a program that consists of three files: main.f90,
code.f90, and data.f90. The main program unit is in main.f90, as
follows.

main.f90

PROGRAM keep_stats
 ! stats_code contains module procedures for operating
 ! on statistical database
 USE stats_code
 INTEGER :: n

 ! print prompt, using nonadvancing I/O
 WRITE (*, FMT='(A)', ADVANCE='NO') 'Enter an integer '// &
 '(hint: 77 is current average): '
 READ *, n
 IF (n == 0) THEN
 PRINT *, 'But not that one.'
 ELSE
 CALL update_db(n)
 IF (n >= get_avg()) THEN ! get_avg is in stats_code
 PRINT *, 'Average or better.'
 ELSE
 PRINT *, 'Below average.'
 END IF
 END IF
END PROGRAM keep_stats

74 Chapter 2

Compiling and linking
Special-purpose compilations

The first specification statement (USE) in the main program indicates
that it uses the module stats_code. This module is defined in
code.f90, as follows:

code.f90

! stats_code: a (partial!) package of module procedures for
! performing statistical operations
MODULE stats_code

 ! shared data to be used by procedures declared below
 USE stats_db

 CONTAINS ! module procedures

 ! update_db: updates shared variables in module stats_db
 SUBROUTINE update_db (new_item)
 INTEGER :: new_item

 n_items = n_items +1
 item(n_items) = new_item
 sum = sum + new_item
 END SUBROUTINE update_db

 ! get_avg: returns arithmetic mean
 INTEGER FUNCTION get_avg ()
 get_avg = sum / n_items
 END FUNCTION get_avg
END MODULE stats_code

This program unit also begins with a USE statement, which identifies the
module it uses as stats_db. This module is defined in data.f90, as
follows:

data.f90

! stats_db: shared data declared here
MODULE stats_db
 INTEGER, PARAMETER :: size = 100 ! max number of items in
array

 ! n_items, sum, and item hold the data for statistical analysis
 INTEGER :: n_items, sum
 INTEGER, DIMENSION(size) :: item

 ! the initializations are just to start the program going
 DATA n_items, sum, item/3, 233, 97, 22, 114, 97*0/
END MODULE stats_db

Chapter 2 75

Compiling and linking
Special-purpose compilations

The use of modules in this program creates dependencies between the
files because a file that uses a module that is defined in another file is
dependent on that other file. These dependencies affect the order in
which the program files must be compiled. The dependencies in the
example program are:

• main.f90 is dependent upon code.f90.

• code.f90 is dependent upon data.f90.

These dependencies require that data.f90 be compiled before
code.f90, and that code.f90 be compiled before main.f90. This order
ensures that the compiler will have created each of the .mod files before
it needs to read them.

The order of the source files listed in the following command line ensures
that they will compile and link successfully:

$ f90 -o do_stats data.f90 code.f90 main.f90

During compilation, f90 will create two .mod files, STATS_CODE.mod
and STATS_DB.mod. These will be written to the current working
directory, along with the object files and the executable program,
do_stats. Following is a sample run of the executable program:

$ do_stats
Enter an integer (hint: 77 is current average): 77
 Average or better.

If instead of the preceding command line, the program had been
compiled as follows:

$ f90 -o do_stats main.f90 data.f90 code.f90

the compilation would fail and f90 would print the error message:

Error FCE37 : Module STATS_CODE not found

The compilation would fail because the compiler cannot process
main.f90 without STATS_CODE.mod. But the order in which the
program files appear on the command line prevents the compiler from
processing code.f90 (and thereby creating STATS_CODE.mod) until
after it has processed main.f90.

Compiling with make
If you use the make utility to compile Fortran programs, the description
file should take into account the dependencies created by modules. For
example, to compile the do_stats program using the make utility, the
description file should express the dependencies as follows:

76 Chapter 2

Compiling and linking
Special-purpose compilations

makefile

description for building do_stats
do_stats : main.o code.o data.o
 f90 -o do_stats main.o code.o data.o

main.o is dependent on main.f90 and code.f90
main.o : main.f90 code.o
 f90 -c main.f90
code.o is dependent on code.f90 and data.f90
code.o : code.f90 data.o
 f90 -c code.f90
data.o is dependent only its source, data.f90
data.o : data.f90
 f90 -c data.f90

Note that the dependencies correspond to the order in which the source
files are specified in the following f90 command line:

$ f90 -o do_stats data.f90 code.f90 main.f90

Assuming that you name the description file makefile, the command
line to compile the program with make is:

$ make

Managing .mod files
By default, the compiler writes .mod files to the current working
directory and looks there when it has to read them. The
+moddir=directory and -I directory options enable you to specify
different directories. The +moddir option causes the compiler to write
.mod files in directory, and the -I option causes the compiler to search
directory for .mod files to read. (The space character between -I and
directory is optional.)

Using the example of the do_stats program, the following command
line compiles (without linking) data.f90 and writes a .mod file to the
subdirectory mod_files:

$ f90 -c +moddir=mod_files data.f90

Chapter 2 77

Compiling and linking
Special-purpose compilations

The command line:

$ f90 -c +moddir=mod_files -I mod_files code.f90

uses both the +moddir and -I options, as follows:

• The +moddir option causes f90 to write the .mod file for code.f90
in the subdirectory mod_files.

• The -I option causes f90 to look in the same subdirectory for the
.mod file to read when compiling code.f90.

The command line:

$ f90 -odo_stats -I mod_files main.f90 code.o
data.o

causes f90 to compile main.f90, look for the .mod file in the
subdirectory mod_files, and link all of the object files into an
executable program named do_stats.

Compiling for different PA-RISC machines
When you compile an HP Fortran 90 program, the object code that the
compiler generates by default is based on the PA-RISC model of the
machine that is running the compiler. If your program will execute on a
different PA-RISC model machine, the code may run less efficiently or (in
the case of PA2.0 code that attempts to run on a PA1.1 machine) may not
run at all.

Also, some libraries (for example, the math library) are available in
different PA-RISC versions. By default, the compiler selects the version
that is based on the PA-RISC model of the compiling machine. If your
program will execute on a different model machine, it may not be linked
with the appropriate libraries.

Compiling with the +DAmodel option ensures that the compiler generates
code that is based on the architecture specified by model and that the
linker selects libraries that are compatible with model. model must be
one of the following:

• A PA-RISC version number—1.1, 2.0, or 2.0W. Use +DA2.0W to
compile in 64-bit mode; see “Compiling in 64-bit mode” on page 85.

• A model number—for example, 750 or 870.

• A PA-RISC processor name—for example, PA7100 or PA8000.

78 Chapter 2

Compiling and linking
Special-purpose compilations

• portable—code that is compatible across all models. Use
+DAportable only if you want to ensure that your program will run
on different models.

Use the uname -m command to learn the model of your machine, as
follows:

$ uname -m
9000/879

Alternatively, you can use the grep command to look up the model
number in the file /opt/langtools/lib/sched.models and find its
architecture type, as follows:

$ grep 879 /opt/langtools/lib/sched.models
879 2.0 PA8000

You can also use the +DSmodel option to specify an architecture-specific
instruction scheduler, where model has the same meaning as it does for
the +DA option. Like the +DA option, the +DS option is unnecessary if the
program will run on the same machine as you use to compile it. Also, if
you compile with +DAmodel, the compiler will select the scheduling
algorithm based on the same architecture—unless you use the +DS
option to specify a different architecture.

NOTE Code generated for PA1.1 systems will execute PA2.0 systems, but the
reverse is not true: the loader will not allow PA2.0 code to run on a PA1.1
system.

Creating shared libraries
As mentioned in “Linking to shared libraries” on page 69, many of the
HP-UX as well as HP Fortran libraries are available in shared as well as
archive versions. Linking with shared libraries can make the executable
program smaller and can ensure that it always has the most current
version of the library.

You can make shared versions of your own libraries, using the +pic
command-line option and the -b linker option. The following sections
describe how to use these options and show an example of how to create a
shared library.

Chapter 2 79

Compiling and linking
Special-purpose compilations

Compiling with +pic
The +pic option causes the compiler to generate Position-
Independent Code (PIC) for use in a shared library. PIC contains no
absolute addresses and can therefore be placed anywhere in a process’s
address space without addresses having to be relocated. This
characteristic of PIC makes it shareable by multiple processes.

The syntax of the +pic option is:

+pic={short|long|no}

Although compiling with either +pic=short or +pic=long will
generate PIC, in general you should use the +pic=short option. If the
linker issues an error message saying that the number of referenced
symbols in the shared library exceeds its limit, recompile with
+pic=long, which will cause the compiler to allocate space for a longer
symbol table.

The +pic=no is the default, which causes the compiler to generate
absolute code, such as you would want for executable programs.

The following command line creates three object files—x.o, y.o, and
z.o; the code in each file will be PIC:

$ f90 -c +pic=short x.f90 y.f90 z.f90

For more information about the +pic option, see the
HP Fortran Programmer’s Reference.

Linking with -b
The -b option is a linker option. It causes the linker to bind PIC object
files into a shared library, instead of creating a normal executable file.
The -b option must be used with the ld command; you cannot use the
f90 command to create a shared library. Also, the object files specified
on the ld command line must consist of PIC; that is, they must have
been created with either +pic=short or +pic=long.

The following command line links the object files x.o, y.o, and z.o into
a shared library, named my_lib.sl:

$ ld -b -o my_lib.sl x.o y.o z.o

Note that this ld command line is much simpler than the ld command
line required to link an executable file (for example, see “Linking with
f90 vs. ld” on page 65).

80 Chapter 2

Compiling and linking
Special-purpose compilations

Examples
This section shows an example of how to create and link to a shared
library. The shared library will consist of PIC object files compiled from
the source files, hi.f90 and bye.f90. The library, my_lib.sl, will be
linked to the executable program compiled from greet.f90. The code
for three HP Fortran source files follows:

hi.f90

SUBROUTINE say_hi()
 PRINT *, 'Hi!'
END SUBROUTINE say_hi

bye.f90

SUBROUTINE say_bye()
 PRINT *, 'Bye!'
END SUBROUTINE say_bye

greet.f90

PROGRAM main
 CALL say_hi()
 CALL say_bye()
END PROGRAM main

The following command line creates the PIC object files (the -c option
suppresses linking):

$ f90 -c +pic=short bye.f90 hi.f90

The next command line links the object files into the shared library:

$ ld -b -o my_lib.sl bye.o hi.o

The last command line compiles the source file greet.f90 and links the
object code with the shared library to produce the executable program
a.out:

$ f90 greet.f90 my_lib.sl

The following is the output from a sample run of the executable program:

$ a.out
 Hi!
 Bye!

Chapter 2 81

Compiling and linking
Special-purpose compilations

Using the C preprocessor
You can use the f90 command to pass source files to the C preprocessor
(cpp) before they are compiled. If the source files contain C preprocessor
directives, cpp will act on the directives, modifying the source text
accordingly. The f90 driver will then pass the preprocessed source text
to the compiler. Adding cpp directives to program source files and
having the cpp command preprocess them is a convenient way to
maintain multiple versions of a program—for example, a debugging
version and a production version—in one set of files.

cpp directives are similar to debugging lines, a feature of many Fortran
implementations (see “Using debugging lines” on page 117). Like cpp
directives, debugging lines enable the compiler to treat source lines as
either compilable statements or comments to be removed before
compilation. But debugging lines are nonstandard, available only in
fixed-form source, and not nearly as powerful as the cpp directives.
Although cpp directives are not a standard feature of Fortran, cpp is a
de facto standard feature of UNIX systems.

This section discusses how to do the following:

• Invoke cpp from the f90 command line.

• Use the -D option to define cpp macros.

• Save the preprocessed output generated by cpp.

For more information about the cpp command and the directives it
supports, see the cpp(1) man page.

Processing cpp directives
By default, the f90 command passes source files ending in the .F
extension to cpp. Compiling with the +cpp=yes option enables you to
override this default and cause the f90 driver to pass all source files to
cpp. If you do not compile with the +cpp=yes option and if the source
file does not have the .F extension, the compiler treats any cpp
directives (but not any embedded Fortran statements) as comments and
ignores them. (As a language extension, HP Fortran allows comments
to begin with the # character, which is also the prefix character for all
cpp directives.)

82 Chapter 2

Compiling and linking
Special-purpose compilations

Consider the following program:

cpp_direct.f90

PROGRAM main
 REAL :: x

 WRITE (6, FMT=’(A)’, ADVANCE=’NO’) ‘Enter a real number: ‘
 READ *, x
#ifdef DEBUG
PRINT *, ‘The value of x in main: ‘, x
#endif
 PRINT *, ‘x =’, double_it(x)
END PROGRAM main

REAL FUNCTION double_it(arg)
 REAL :: arg

#ifdef DEBUG
PRINT *, ‘The value of x in double_it: ‘, arg
#endif
 double_it = 2.0 * arg
END FUNCTION double_it

The program uses the #ifdef and #endif directives around PRINT
statements. If the macro DEBUG is defined, cpp will leave the PRINT
statements in the source text that is passed to the compiler; if it is not
defined, cpp will remove the statements. You can define the macro in the
source text, using the #define directive; or you can define it on the
command line, using the -D command-line option. The advantage of the
option is that it does not require editing the source file to define or
undefine a macro.

The following command line uses the -D option to define the macro
DEBUG (the space between -D and DEBUG is optional):

$ f90 +cpp=yes -D DEBUG cpp_direct.f90

Here is the output from a sample run of the executable program created
by the preceding command line:

$ a.out
Enter a real number: 3
 The value of x in main: 3.0
 The value of x in double_it: 3.0
 x = 6.0

The next command line does not use the -D option, so that DEBUG is
undefined, causing cpp to remove the PRINT statements from the source
text that is passed to the compiler:

$ f90 +cpp=yes cpp_direct.f90

Chapter 2 83

Compiling and linking
Special-purpose compilations

Here is the output from the nondebugging version of the program:

$ a.out
Enter a real number: 3.3
 x = 6.6

Saving the cpp output file
By default, the f90 command discards the source text as processed by
cpp after compilation. However, you can preserve this text by compiling
with the +cpp_keep option. If the source file has the .F or .f extension,
the output from cpp is written to a file with the same name but with the
.i extension. If the source file extension is .f90, the output file has the
.i90 extension.

Here is the previous command line to preprocess and compile
cpp_direct.f90, with the addition of the +cpp_keep option:

$ f90 +cpp_keep +cpp=yes cpp_direct.f90

After the PRINT statements have been removed, the resulting output file
looks like this:

$ cat cpp_direct.i90
1 "cpp_direct.f90"
PROGRAM main
 REAL :: x

 WRITE (6, FMT='(A)', ADVANCE='NO') 'Enter a real number:'
 READ *, x

 PRINT *, 'x =', double_it(x)
END PROGRAM main

REAL FUNCTION double_it(arg)
 REAL :: arg

 double_it = 2.0 * arg
END FUNCTION double_it

84 Chapter 2

Compiling and linking
Special-purpose compilations

Creating demand-loadable executables
By default, the loader loads the entire code for an executable program
into virtual memory. For very large programs, this can increase startup
time. You can override this default by causing the linker to mark your
program demand load. A demand-loadable program is loaded into
memory a page at a time, as it is accessed.

Use the +demand_load option to make your program demand loadable,
as follows:

$ f90 +demand_load prog.f90

The f90 command passes this option to the linker, which marks the
executable program demand load.

Demand loading allows a program to start up faster because page
loading can be spread across the execution of the program. The
disadvantage of demand loading is that it can degrade performance
throughout execution.

Creating shared executables
By default, the linker marks an executable program as shared. A
shared executable is shareable by all processes that use the program.
The first process to run the program loads its code into virtual memory.
If the program is already loaded by another process, then a process
shares the code with the other process.

You can override this default with the +noshared option, which causes
the linker to mark the executable as unshared, making the program’s
code nonshareable. The following command line causes the linker to
mark prog.f90 as unshared:

$ f90 +noshared prog.f90

In some circumstances, it may help to debug a program or to improve its
runtime performance by making it nonshareable. In general, however, it
is not desirable because nonshareable executables place greater
demands on memory resources.

Chapter 2 85

Compiling and linking
Special-purpose compilations

Compiling in 64-bit mode
Compiling HP Fortran programs with the +DA2.0W option causes f90 to
produce 64-bit executable programs. You should consider compiling in
64-bit mode if your program does any of the following:

• Accesses a large shared memory (greater than 1.75 gigabytes) or
large data spaces (greater than 1 gigabyte or, if using EXEC_MAGIC,
greater than 1.9 gigabytes)

• Uses large data elements—greater than 32-bit words

• Provides objects or libraries that might be used in a 64-bit application

There are no HP Fortran language differences between 32-bit and
64-bit programs. Recompiling should suffice to convert a 32-bit Fortran
program to run as a 64-bit program.

However, the C language has some differences in data type sizes. If your
Fortran program calls functions written in C and is compiled in 64-bit
mode, the size differences may require promoting the data items that are
passed to or from the C functions. See Table 29 on page 163 and Table 30
on page 163 for the size differences between Fortran and C data types
when compiled in 64-bit mode.

NOTE If your program does not need to run in 64-bit mode, there is no benefit to
compiling it in 64-bit mode. In fact, the executable program may run slower
than if compiled in 32-bit mode.

86 Chapter 2

Compiling and linking
Using environment variables

Using environment variables
Environment variables are variables that are defined in the operating
environment of the system and are available to various system
components. For example, when you run a program, the shell looks at the
PATH variable to determine where the program is located. Table 20 lists
and briefly describes the environment variables that control the way
HP Fortran programs are compiled, linked, and run.

Table 20 HP Fortran environment variables

The following sections describe how to use the HP_F90_OPTS, LPATH,
and MP_NUMBER_OF_THREADS environment variables. See the
environ(5) man page for information about system-level environment
variables.

Environment variable Description

FTN_IO_BUFSIZ Sets the default size in bytes of the I/O library streams file
buffer; equivalent to calling setvbuf for each logical unit
that is opened; see the setbuf(3S) man page.

HP_F90OPTS Specifies a list of command-line options that f90 inserts in
the command line that invokes the HP Fortran compiler.

LPATH Specifies a list of directories that the linker is to search for
libraries.

MP_NUMBER_OF_THREADS Specifies the desired number of processors to be used to run
HP Fortran programs that have been compiled for parallel
execution.

TMPDIR Specifies a directory for temporary files; used in place of the
default directory /var/tmp.

TTYUNBUF Controls tty buffering. To enable tty buffering, set
TTYUNBUF to 0; to disable tty buffering, set it to a nonzero
value.

Chapter 2 87

Compiling and linking
Using environment variables

HP_F90OPTS environment variable
The HP_F90OPTS environment variable is read by the f90 driver for
options to insert in the command line. This variable is useful when you
want the same options and arguments each time you invoke the f90
command. For example, if HP_F90OPTS is set to the -v option, the
following command line:

$ f90 +list hello.f90

is equivalent to:

$ f90 -v +list hello.f90

The syntax of the HP_F90OPTS variable allows the bar (|) character to be
used to specify that options appearing before | are to be recognized
before any options on the command line and that options appearing after
| are to be recognized after any options on the command line. For
example, the commands:

$ export HP_F90OPTS="-O|-lmylib"
$ f90 -v hello.f90

are equivalent to:

$ f90 -O -v hello.f90 -lmylib

If you are programming in the csh, the command line to define
HP_F90OPTS would be:

% setenv HP_F90OPTS "-O|-lmylib"

LPATH environment variable
The LPATH environment variable is read by the linker to determine
where to look for libraries to link with a program’s object file. Depending
on whether LPATH is set or not, one of the following actions occurs:

• If LPATH is already set, only the directories listed in LPATH are
searched. This happens, for example, when LPATH is set in a user’s
.kshrc or .cshrc file, or after LPATH is defined from the command
line.

• If LPATH is not set, the f90 command sets default LPATH settings
that are used when linking the object files listed on the f90 command
line.

88 Chapter 2

Compiling and linking
Using environment variables

Because the f90 command sets LPATH before calling the linker, it should
not be necessary to set this variable for most compilations. However, if
you do need to set it (for example, you use the ld command to link), the
following directories should be the first items in LPATH:

• /opt/fortran90/lib

• /usr/lib

• /opt/langtools/lib

The following command lines set LPATH to include these directories,
using (respectively) the ksh and csh syntax:

$ export LPATH:/opt/fortran90/lib:/usr/lib:/opt/
langtools/lib

% setenv LPATH "/opt/fortran90/lib:/usr/lib:/opt/
langtools/lib"

To see how f90 sets LPATH before calling the linker, compile with the -v
option for verbose output. For an example, see “Linking with f90 vs. ld”
on page 65.

MP_NUMBER_OF_THREADS environment
variable
The MP_NUMBER_OF_THREADS environment variable sets the number of
processors that are to execute a program that has been compiled for
parallel execution. If you do not set this variable, it defaults to the
number of processors on the executing machine.

The following command lines set MP_NUMBER_OF_THREADS to specify
that programs compiled for parallel execution can execute on two
processors:

$ export MP_NUMBER_OF_THREADS=2 # ksh syntax

% setenv MP_NUMBER_OF_THREADS 2 # csh syntax

For information about parallel execution, see “Compiling for parallel
execution” on page 144.

89

3 Controlling data storage

This chapter describes the use of command-line options, directives, and
other language features to control data in HP Fortran programs. In
particular, it discusses the following topics:

• Disabling implicit typing

• Automatic and static variables

• Increasing the precision of constants

• Increasing default data sizes

• Sharing data among programs

• Modules vs. common blocks

NOTE For information about how HP Fortran aligns data, refer to the HP Fortran
Programmer's Reference.

90 Chapter 3

Controlling data storage
Disabling implicit typing

Disabling implicit typing
By default, HP Fortran uses implicit typing to determine the type of a
variable or function that has not been declared with a type declaration
statement. That is, the type of an undeclared entity is determined by the
first letter of its name: if the letter is in the range I - N, the entity is of
type integer; otherwise, it is of type real.

Although implicit typing is mandated by the Standard, its use can
become a source of runtime bugs because implicit typing allows the
inadvertent use of undeclared variables or functions. For the sake of
illustration, consider a program that calls a nonintrinsic library function
named foo. Assume that:

• The default typing rules are in effect.

• foo returns an integer.

• The programmer has not declared the return type of foo and has
assigned its return value to a variable of type real.

Experience has shown that this is not an unlikely scenario and that it
can produce bad results.

The Standard provides the IMPLICIT NONE statement to override
implicit typing. But the IMPLICIT NONE statement is limited in scope to
the program unit in which it appears. To force explicit typing for all files
specified on the command line, use the +implicit_none option. This
option disables implicit typing; that is, all variables, arrays, named
constants, function subprograms, ENTRY names, and statement functions
(but not intrinsic functions) must be explicitly declared.

Using this option is equivalent to specifying IMPLICIT NONE for each
program unit in each file specified on the f90 command line. However,
the +implicit_none option does not override any IMPLICIT
statements in the source file. The HP Fortran Programmer's Reference
describes the implicit typing rules, the IMPLICIT NONE statement, and
the +implicit_none option.

Chapter 3 91

Controlling data storage
Automatic and static variables

Automatic and static variables
By default, HP Fortran allocates stack storage for program variables.
Such variables are called automatic variables because they are
allocated at each invocation of the program unit in which they are
declared.

Static variables are allocated storage from static memory when the
program is first loaded into memory. They remain allocated for the life of
the program.

HP Fortran allocates static storage for the following variables:

• Variables specified in a COMMON or EQUIVALENCE statement.

• Variables initialized in a type declaration statement or in a DATA
statement.

• Variables specified in a SAVE or STATIC statement. A SAVE
statement without a variable list specifies static storage for all
variables in the scoping unit.

• Variables in program files that have been compiled with the +save or
+Oinitcheck command-line option. See “Uninitialized variables” on
page 226 for information about using these options when porting.

Static variables have two characteristics that are of special interest:

• They are set to 0 or null value at load-time.

• They do not require re-initialization at each invocation of their
program unit.

Static variables have several disadvantages. In Fortran programs that
use recursion, static variables can defeat one purpose of recursion—to
provide a fresh set of local variables at each recursive call. Also, the
widespread use of static variables in a program can slow its performance:
static variables are ineligible for such fundamental optimizations as
register allocation, and they can limit the optimization of program units
that use them.

The following example program illustrates the difference between
automatic and static variables. The program consists of a main program
unit that calls a recursive internal subroutine. The subroutine
increments two variables (stat_val and auto_val), prints the updated

92 Chapter 3

Controlling data storage
Automatic and static variables

variables, and then calls itself recursively. Neither of the two variables is
explicitly initialized, but stat_val is declared with the SAVE attribute,
which means that it is allocated static storage and is pre-initialized to 0
by the compiler.

The program is shown below.

recursive.f90

PROGRAM main
! This program calls a recursive internal subroutine.

 CALL recurse

 CONTAINS
 ! This subroutine calls itself four times.
 ! Each time it is called, it adds 1 to the values in
 ! stat_val and auto_val and displays the result.
 ! stat_val has the SAVE attribute and therefore is
 ! pre-initialized and retains its value between calls.
 ! auto_val is an automatic variable and therefore has
 ! an unpredictable value (plus 1) at each call.
 RECURSIVE SUBROUTINE recurse
 INTEGER(KIND=1), SAVE :: stat_val
 INTEGER(KIND=1) :: auto_val

 stat_val = stat_val + 1
 auto_val = auto_val + 1
 PRINT *, ‘stat_val = ‘, stat_val
 PRINT *, ‘auto_val = ‘, auto_val
 IF (stat_val < 4) THEN
 CALL recurse()
 END IF

 END SUBROUTINE recurse

END PROGRAM main

Following are the command lines to compile and execute this program,
along with sample output. Notice that stat_val regularly increments at
each call. The reason is that it is a static variable and therefore retains
its value between calls. But auto_val is not actually incremented; it is
an automatic variable and is given a fresh (and uninitialized) memory
location at each call. In other words, the subroutine adds 1 to whatever
value happened to be in the memory location that was allocated to
auto_val at the start of the call:

$ f90 recursive.f90
$ a.out
 stat_val = 1
 auto_val = 124

Chapter 3 93

Controlling data storage
Automatic and static variables

 stat_val = 2
 auto_val = 1
 stat_val = 3
 auto_val = 65
 stat_val = 4
 auto_val = 65

NOTE HP Fortran provides the AUTOMATIC and STATIC statements as porting
extensions. The STATIC statement is functionally the same as the SAVE
statement, and the AUTOMATIC statement may be used to declare a variable
as automatic. However, such a declaration is generally pointless because
variables compiled under HP Fortran are automatic by default.

The HP Fortran Programmer's Reference provides detailed information
about the AUTOMATIC, SAVE, and STATIC statements.

94 Chapter 3

Controlling data storage
Increasing the precision of constants

Increasing the precision of constants
By default, HP Fortran evaluates all floating-point constants as single-
precision. For example, the compiler treats following constant

3.14159265358979323846

as though you had specified:

3.1415927

Although the loss of precision might be acceptable when assigning to
single-precision variables, it is might be less acceptable when assigning
to double-precision variables or when using floating-point constants in
expressions where the loss in precision might result in significant round-
off differences.

NOTE HP Fortran provides two ways to override the default precision of individual
constants: the kind parameter and the exponent form. The kind parameter
indicates the precision of floating-point constants: 4 for single-precision, 8
for double-precision, and 16 for quad-precision.

In the following example, the kind parameter _8 specifies that the
constant is to be evaluated as double-precision:

3.14159265358979323846_8

To change the precision of all floating-point constants (except those
having a kind parameter), you can use the +real_constant option.
This option takes two forms, +real_constant=double and
+real_constant=single, which specify (respectively) double-precision
and single-precision for floating-point constants in the files compiled
with this option. The +real_constant=single form is the default.
Neither form of the option has any affect on constants that have the kind
parameter.

To promote all floating-point constants in the source files x.f, y.f, and
z.f, compile with the command line:

$ f90 +real_constant=double x.f y.f z.f

The +real_constant=single option specifies that all floating-point
constants in a file are to be treated as single-precision (the default). The
following command line specifies single-precision for all floating-point
constants in the files a.f, b.f, and c.f:

$ f90 +real_constant=single a.f b.f c.f

Chapter 3 95

Controlling data storage
Increasing the precision of constants

Note that +real_constant=single does not demote constants that use
either the kind parameter or the exponent form (for example, 4.0D0).

For information about increasing the precision of variables, see
“Increasing default data sizes” on page 96. The HP Fortran
Programmer’s Reference describes the syntax of the kind parameter and
the exponent form and the +real_constant option. For detailed
information about how floating-point arithmetic is implemented on HP
9000 computers and how floating-point behavior affects the programmer,
refer to the HP-UX Floating-Point Guide.

96 Chapter 3

Controlling data storage
Increasing default data sizes

Increasing default data sizes
The +autodbl and +autodbl4 options enable you to increase the
default sizes (that is, the number of storage bytes) for both constants and
variables of default numeric and logical types. Unlike the
+real_constant option, the +autodbl and +autodbl4 options affect
both constants and variables of both real and integer types. (For
information about using the +real_constant option, see “Increasing
the precision of constants” on page 94.)

When compiled with the +autodbl and +autodbl4 options, constants
are treated as though they had twice the default number of bytes (4)
available for evaluating them. The effect of these options is to increase
the range of default integers and the precision of default reals.

The +autodbl and +autodbl4 options have no effect on the size of
entities declared with the CHARACTER, BYTE, or DOUBLE COMPLEX
statements, nor on entities that are explicitly sized. That is, if a variable
is declared with a kind parameter or if a constant has a kind parameter,
it is unchanged by +autodbl or +autodbl4.

NOTE HP Fortran interprets the kind parameter as indicating the number of storage
bytes to allocate for a variable. When used with variables and constants of
type real, the kind parameter also indicates the precision: 4 for single-
precision, 8 for double-precision, and 16 for quad-precision.

Promoting double-precision variables to quad-precision can have a
severe impact on performance because the instructions to perform quad-
precision operations are implemented in software. If you are concerned
about performance and want to increase default data sizes, consider
using the +autodbl4 option, which does not promote variables declared
with the DOUBLE PRECISION statement. There is no other difference
between +autodbl or +autodbl4.

These options affect all files on the command line. To increase the size or
precision of selected variables and constants, use the kind parameter.

Figure 2 on page 97 shows the default data types whose sizes are
changed by the +autodbl and +autodbl4 options.

Chapter 3 97

Controlling data storage
Increasing default data sizes

 Figure 2 Increasing default data sizes

The following program illustrates the different effects of the +autodbl
and +autodbl4 options. The program assigns the same quad-precision
constant to three variables:

• x, a default (that is, single-precision) real

• y, a real that is declared as double-precision with the kind parameter

• z, a double-precision real that is declared with the DOUBLE
PRECISION statement

0 4 8 16

Bytes

INTEGER:

LOGICAL:

REAL:

DOUBLE

COMPLEX:

PRECISION:

Key

= +noautodbl and +noautodbl4 (the default)

= +autodbl

= +autodbl4

98 Chapter 3

Controlling data storage
Increasing default data sizes

The following program includes PRINT statements to show the stored
values.

precision.f90

PROGRAM main
REAL x
REAL(KIND=16) y
DOUBLE PRECISION z

! Assign a quad-precision constant to a default real:
x = 3.14159265358979323846_16
PRINT 10, ‘Stored in x: ‘, x

! Assign a quad-precision constant to a variable that
! has been explicitly sized for quad-precision:
y = 3.14159265358979323846_16
PRINT 10, ‘Stored in y: ‘, y

! Assign a quad-precision constant to a variable
! declared with the DOUBLE PRECISION statement:
z = 3.14159265358979323846_16
PRINT 10, ‘Stored in z: ‘, z

10 FORMAT (A, F22.20)

END PROGRAM main

Following are three different sets of command lines to compile and
execute this program, including sample output from each compilation.
Note that variable y remains the same for each compilation: the
compiler does not promote variables that are sized with the kind
parameter.

First, the program is compiled without any option:

$ f90 precision2.f90
$ a.out
Stored in x: 3.14159274101257320000
Stored in y: 3.14159265358979323846
Stored in z: 3.14159265358979310000

Next, the program is compiled with the +autodbl option. As shown in
the output, x is promoted to double-precision and z to quad-precision:

$ f90 +autodbl precision2.f90
$ a.out
Stored in x: 3.14159265358979310000
Stored in y: 3.14159265358979323846
Stored in z: 3.14159265358979323846

Chapter 3 99

Controlling data storage
Increasing default data sizes

Finally, the program is compiled with the +autodbl4 option. As shown
in the output, x is promoted, but z is not:

$ f90 +autodbl4 precision2.f90
$ a.out
Stored in x: 3.14159265358979310000
Stored in y: 3.14159265358979323846
Stored in z: 3.14159265358979310000

Though useful for increasing the range and precision of numerical data,
the +autodbl and +autodbl4 options are especially useful when
porting; see “Large word size” on page 227. For detailed information
about these options, see the HP Fortran Programmer’s Reference. For
detailed information about how floating-point arithmetic is implemented
on HP 9000 computers and how floating-point behavior affects the
programmer, refer to the HP-UX Floating-Point Guide.

100 Chapter 3

Controlling data storage
Sharing data among programs

Sharing data among programs
If you are designing an application that requires multiple threads of
control that share the same data, the design can take either of two forms:

• The program makes calls to the threads library:

/usr/lib/libpthread.sl

which creates multiple threads executing in a single process and
therefore all sharing the same address space.

• The application consists of several programs that run simultaneously
in separate processes and that access an HP-UX shared memory
segment.

The first approach is beyond the scope of this manual and requires that
you have an understanding of how to call the threads library.1 The
second approach is described here.

To share data among several HP Fortran programs that are executing
simultaneously in separate processes, use the HP SHARED_COMMON
directive. This directive enables you to create a common block that is
accessible by HP Fortran programs executing in different processes.

The HP SHARED_COMMON directive causes the compiler to insert HP-
UX system calls to perform shared memory operations. To the
programmer, the programs sharing the memory segment appear as
though they were program units in the same program, accessing a set of
common block variables.

Following are two programs to illustrate how the HP SHARED_COMMON
directive works:

• The first program, go_to_sleep.f90, must execute first. Because it
executes first, it creates the shared memory segment and then enters
a DO loop, where it waits until the second program starts to execute.
You can use the ipcs -m command to confirm that a shared memory
segment has been created.

1. Specifying the +Oparallel option causes the compiler to trans-
form eligible loops in an HP Fortran program for parallel execu-
tion. For information about compiling for parallel execution, see
“Compiling for parallel execution” on page 144.

Chapter 3 101

Controlling data storage
Sharing data among programs

• When the second program, wake_up.f90, starts to execute, it writes
to the shared common block variables, one of which causes
go_to_sleep.f90 to break out of the DO loop and run to completion.

The HP SHARED_COMMON directive must appear at the beginning of
the specification part of the main program unit of each program sharing
the memory segment. Also, the common block specified for sharing must
have the same layout in all files in which it is declared.

You can use the ipcs -m command both to determine that HP-UX has
created a shared memory segment and, after the programs complete
execution, to confirm that it has been released.

The following two examples illustrate these concepts.

go_to_sleep.f90

PROGRAM main
! This program, go_to_sleep.f90, and its companion, wake_up.f90,
! share data in a common block, using the HP SHARED_COMMON
! directive. Execute this program first. After it starts to
! execute, use ipcs(1) to confirm that a shared memory segment
! has been created. In a separate process, run wake.f90.
! When it executes, it assigns to alarm, ending this program.

 LOGICAL :: alarm
 CHARACTER(LEN=8) :: message

! Declare a common block, shared_data, for sharing among
! multiple, simultaneously executing programs. Each program
! that shares the common block must reference it by the same
! key, 'scb1'.
!HP SHARED_COMMON KEY=’scb1’ /shared_data/

! Declare a common block with two variables: alarm and message.
! when alarm is set by wake_up.f90, this program breaks out
! of the DO loop, prints message (which wake_up.f90 has
! written to), and exits.
 COMMON /shared_data/ alarm, message

 alarm = .FALSE.
! Wait for alarm to be set...
 DO WHILE (alarm .EQ. .FALSE.)
 ! sleep(1) is an HP-UX system call that suspends a process
 ! for the number of seconds specified by the argument.
 ! The %VAL function tells Fortran that sleep expects
its
 ! argument to be passed by value.
 CALL sleep(%VAL(1))
 END DO

102 Chapter 3

Controlling data storage
Sharing data among programs

! Message from wake.f90:
 PRINT *, message

! The shared memory segment is destroyed when this program halts.

 END

NOTE In the example above, you must use +U77 to access the correct sleep in the
Fortran library. If you use +U77, the line above:

CALL sleep (%VAL(1))

should instead read:

CALL sleep (1)

wake_up.f90

PROGRAM main
! This program, wake_up.f90, should be run just after its
! companion, go_to_sleep.f90, starts to execute but in a
! separate process. The HP SHARED_COMMON directive
! enables both programs to share the same memory.

! Directive puts the common block in shared memory.
$SHARED_COMMON KEY=’scb1’ /shared_common/

 LOGICAL :: alarm
 CHARACTER(LEN=8) :: message

! Declare a named common block for shared memory. It must
! be laid out n exactly the same way in both programs.
 COMMON /shared_common/ alarm, message

! Write to message, sleep reads it.
 message = "I'm up!"

! Set alarm to wake up sleep.
 alarm = .TRUE.

! The shared memory segment will now be detached.
! However, because go_to_sleep is still running,
! the segment will still be present in memory until
! it stops executing, too.

 END

Following are the command lines to compile each program:

$ f90 -o go_to_sleep go_to_sleep.f
$ f90 -o wake_up wake_up.f

Run the first program in any process by doing the following:

Chapter 3 103

Controlling data storage
Sharing data among programs

$ go_to_sleep

104 Chapter 3

Controlling data storage
Sharing data among programs

In another process, use the following command line to confirm that a
shared memory segment has been created for the program (the last in
the list is the newly created one):

$ ipcs -m
IPC status from /dev/kmem as of Fri Mar 21 15:55:29 1997
T ID KEY MODE OWNER GROUP
Shared Memory:
m 0 0x4119c72b --rw-rw-rw- root root
m 1 0x4e180002 --rw-rw-rw- root root
m 2 0x41187bf4 --rw-rw-rw- root root
m 3 0x00000000 --rw------- root sys
m 7004 0x43186ea0 --rw-rw-rw- daemon daemon
m 6005 0x73636231 --rw-rw-rw- ed lang

Now run the second program in the second process:

$ wake_up

At this point, the program executing in the first process outputs the
following and completes execution:

 I'm up!

The following command line confirms that the shared memory segment
was released:

$ ipcs -m
IPC status from /dev/kmem as of Fri Mar 21 15:55:29 1997
T ID KEY MODE OWNER GROUP
Shared Memory:
m 0 0x4119c72b --rw-rw-rw- root root
m 1 0x4e180002 --rw-rw-rw- root root
m 2 0x41187bf4 --rw-rw-rw- root root
m 3 0x00000000 --rw------- root sys
m 7004 0x43186ea0 --rw-rw-rw- daemon daemon

For information about sharing data between Fortran program units and
C functions within the same program, see “Sharing data” on page 183.
The HP Fortran Programmer's Reference provides detailed information
about the COMMON statement and about the HP SHARED_COMMON
directive. Refer to the shmop(2) man page for information about HP-UX
shared memory operations.

Chapter 3 105

Controlling data storage
Modules vs. common blocks

Modules vs. common blocks
The common block has been a mainstay of Fortran programs throughout
the evolution of the language, and it continues to be a part of Fortran.
The common block provides a convenient means to share data among
program units, especially when the program units sharing data do not
otherwise communicate with each other. The common block can also be
used to share data between simultaneously executing Fortran programs
(see “Sharing data among programs” on page 100) and between Fortran
program units and C functions linked together in the same program (see
“Sharing data” on page 183).

One of the problems with the common block, however, is that the
programmer must replicate the COMMON declaration in each of the
sharing program units. If any of the common variables are out of order
or have a different type or size, the program units may not access the
same data. The compiler gives no indication of this discrepancy because
it assumes that the programmer is giving one program unit a different
view of the shared storage—even when the discrepancy is owing to
oversight.

To deal with this problem, many implementations of FORTRAN 77 have
provided the INCLUDE extension. This extension enables the user to
centralize common block definitions in one file. At compile-time, the
compiler reads the file into program units that have the INCLUDE line.
While this approach eliminates the problem of discrepant common
blocks, it introduces another problem: the INCLUDE facility is
nonstandard FORTRAN 77, and its use is nonportable.

To deal with the portability issue, Standard Fortran defines the INCLUDE
line. Unfortunately, the definition in the Standard leaves many of the
details up to the implementation, so that use of the INCLUDE line in
Fortran programs still runs the risk of nonportability.

Another problem with the common block—especially when used with
equivalencing—is that it can inhibit optimization. Common block
variables are generally ineligible for register allocation, and aliasing
variables in common can prevent the optimization of the program units
that use the aliased variables.

106 Chapter 3

Controlling data storage
Modules vs. common blocks

The module program unit is the Fortran answer to the common block.
The programmer declares shareable variables in a module. Any program
unit that wants to access them references the name of the module in a
USE statement. The concept of the module eliminates the need to re-
declare the common variables, without requiring the INCLUDE line.

In addition, the module provides the following controls on access to
module data:

• The PUBLIC and PRIVATE statements declare which module
variables are accessible outside the module and which are not.

• The USE statement has an ONLY clause that specifies which module
variables are accessible to a particular program unit.

• The USE statement also has a renaming feature to resolve name
clashes between local variables and module variables.

Another feature of the module is that it can include procedures. This
feature provides a way to package data with the procedures needed to
operate on the data. A program unit accesses module procedures in the
same way it does module data, with the USE statement. The interface of
module procedures is available to the compiler, which can perform
compile-time checks on the actual arguments that are passed to a
module procedure.

Although the module does not completely replace the common block (see,
for example, “Sharing data among programs” on page 100), it does
provide a safer and more flexible alternative to the more common uses—
and abuses—of the common block.

For an example of a program that uses the module to share data, see
“Compiling programs with modules” on page 72. The HP Fortran
Programmer's Reference provides detailed information about the module
program unit and the MODULE and USE statements.

107

4 Debugging

This chapter describes different HP Fortran features for debugging
programs. These features include compile-line options, compiler
directives, and programming tools that are useful for locating errors in
your program. More specifically, this chapter discusses the following
topics:

• Using the HP WDB debugger

• Stripping debugging information

• Handling runtime exceptions

• Using debugging lines

108 Chapter 4

Debugging
Using the HP WDB debugger

Using the HP WDB debugger
The HP WDB debugger is the primary tool for debugging HP Fortran
programs. The debugger provides such basic debugging functions as
program control, process control, program and data monitoring, and
expression evaluation. The debugger has both a graphical interface and a
line-mode interface.

The debugger software includes different managers that enable it to
handle different source languages, target machines, object file formats,
and user formats. The Fortran language manager allows you to use
Fortran syntax when entering expressions on the debugger command
line.

Before beginning a debugging session, you must compile the program
with the -g compile-line option. If you compile and link separately, you
must use the -g option on both command lines. The option causes the
compiler to generate additional information needed by the debugger and
to insert it into the output code.

After compiling your program with the -g option, invoke the debugger
with the wdb command, supplying the name of the executable as an
argument. For example, the following command compiles prog.f90 for
debugging:

$ f90 -g prog.f90 -o db_prog

Here is the command to start debugging the executable program:

$ wdb db_prog

You can use the debugger to debug code that has been optimized at levels
0, 1, and 2. To debug optimized code, compile the program with both the
-g and +Oopt-level options, where opt-level is 0, 1, or 2. The following
command line prog.f90 at optimization level 2 and prepares for
debugging:

$ f90 +O2 -g prog.f90 -o db_prog

Compiling with the -g option increases the size of both the object file and
the executable file. After you have debugged your program and are
ready to build the production version, you may want to recompile without
the -g option.

Chapter 4 109

Debugging
Using the HP WDB debugger

For complete information about HP WDB debugger, refer to http://
www.hp.com/go/wdb. Printed and online documentation are available at
this site.

110 Chapter 4

Debugging
Stripping debugging information

Stripping debugging information
Programs compiled with HP Fortran include minimal debugging
information in the executable program. This information consists of a
symbol table—a list of all the symbols in your program and their offset
addresses. The symbol table provides the information needed to produce
a procedure traceback. It is also used by the debugger and by the CXperf
performance analysis tool.

However, the symbol table is not the same as the debugging information
that is added to your program when you compile with the -g option. The
symbol table is added to an executable even if the program is not
compiled with the -g option.

If the size of executable is critical to your application, you can use the
+strip option to remove symbol table information from the production
version of your program. If you compile and link on separate command
lines, you must use the +strip option on both command lines. Instead
of recompiling with +strip, you can use the strip utility, which
removes all debugging information, including the symbol table.

If the size of your executable is not important, you may want to retain
the symbol table in the production version of your program. This table
can be used by the debugger to provide minimal debugging. If a program
has not been compiled with -g and does not include a symbol table, it is
unusable by the debugger. Also, without the information provided by the
symbol table, a procedure traceback displays virtual addresses only.

The amount of code that the symbol table information that adds to an
executable is considerably less than the amount that compiling with -g
adds. For descriptions of the -g and +strip options, refer to the
HP Fortran Programmer’s Reference. For information about the strip
utility, refer to the strip(1) man page.

Chapter 4 111

Debugging
Handling runtime exceptions

Handling runtime exceptions
Broadly defined, an exception is an error or fault condition that affects
a program’s results. Exceptions can range from the relatively benign
inexact result condition that occurs in certain floating-point operations
to the more severe segmentation violation that occurs when a
runaway program attempts to access unallocated memory.

Exceptions that threaten the integrity of the operating system can cause
HP-UX to raise an exception signal (for example, SIGSEGV for a
segmentation violation) so that the process can take appropriate action
to recover from the exception. Such exceptions may cause the program
that took the exception to abort, but not necessarily. By trapping an
exception—that is, by catching the signal—a program may handle the
exception, if only by aborting when it occurs.

There are also a well-defined set of floating-point conditions that,
although they pose no threat to the operating system, can also cause an
exception—for example, dividing a floating-point number by zero. By
default, traps for floating-point exceptions are disabled on HP 9000
computers, but they can be enabled by +fp_exception and +FP options.
(You can also use the ON statement to enable traps for floating-point
exceptions.)

Programs that have been compiled with the +fp_exception option can
trap the exceptions listed in Table 21. Any of the exceptions listed in the
second column will cause the operating system to generate the signal
listed in the first column. Programs compiled with +FP can trap specific
floating-point exceptions (SIGFPE).

Table 21 Signals recognized by +fp_exception

Signal Exception

SIGBUS Bus error instruction

SIGFPE Floating-point exceptions

SIGILL Illegal instruction

SIGSEGV Segmentation violation or memory fault

SIGSYS Bad argument to a kernel system call

112 Chapter 4

Debugging
Handling runtime exceptions

When a program compiled with +fp_exception takes an exception, the
following events occur:

• The program traps the exception.

• A procedure traceback is displayed on standard error. A procedure
traceback lists routine names and their offsets that are helpful in
locating the code that triggered the exception.

• The program aborts.

The following sections discuss each of exceptions listed in Table 21. For
more information about signals, refer to the signal(2) and signal(5) man
pages.

NOTE Standard Fortran 90 provides the IOSTAT= and ERR= specifiers for handling
I/O runtime errors. For information about these specifiers, refer to the
descriptions of the I/O statements (for example, OPEN and READ) in the
HP Fortran Programmer’s Reference. For a descriptive list of the error
messages that can be returned by IOSTAT=, refer to the HP Fortran
Programmer’s Reference.

Bus error exception
A bus error exception occurs when a program references an inaccessible
memory location, typically because the reference is to an unaligned or
nonexistent address, or because of a hardware failure.

The most likely cause of a bus error is unaligned data reference. A
program that passes an array of (KIND=1) elements to a routine that
attempts to access them as (KIND=4) elements may take a bus error
exception. Or if an array of (KIND=1) elements is declared in a common
block and the third element is passed to a routine that attempts to access
it as a (KIND=4) variable, the program will take a bus error exception.
For information about the alignment of HP Fortran data types, refer to
the HP Fortran Programmer’s Reference.

Bus errors can occur (as can other exceptions) in any program that
generates bad address references. Although less likely to happen with
programs that use the standard Fortran 90 pointer, bad address
references can happen when the Cray-style pointer extension is misused
or when Fortran program unit passes a parameter by value to a C
routine that attempts to use it as a pointer.

Chapter 4 113

Debugging
Handling runtime exceptions

Floating-point exceptions
In accordance with the IEEE Posix Standard, floating-point exceptions
are disabled on HP 9000 computers. Thus, if a program attempts the
following operation:

x = 1.0/0.0

it will not trap it as an exception and will not abort. Instead, the value of
a positive infinity (displayed as +INF) will be assigned to x.

HP Fortran provides two compile-line options, +FP and +fp_exception,
which enable traps for floating-point exceptions. The differences
between the two options are:

• The +fp_exception option enables traps for the following IEEE
floating-point exceptions:

– Invalid operation

– Division by zero

– Overflow

– Underflow

The +FP option also enables the trap for the inexact operation
exception. For detailed descriptions of these exceptions, refer to the
HP-UX Floating-Point Guide.

• Unlike the +fp_exception option, the +FP option includes a flags
argument by which you can enable specific exceptions.

• The +FP option can also be used to enable fast underflow on
systems that support it (chiefly PA2.0 systems).

• Both options cause your program to abort when it traps the exception.
However, +fp_exception identifies the type of the exception that
occurred and the virtual address of the statement that triggered it.
Also, +FP causes a core dump; +fp_exception does not.

You can also trap floating-point exceptions with the ON statement.
Although the ON statement requires you to modify source code, it enables
you to write trap procedures so that your program can recover from
exceptions. For more information about using the ON statement, see
Chapter 5, “Using the ON statement,” on page 119.

114 Chapter 4

Debugging
Handling runtime exceptions

Refer to the HP Fortran Programmer’s Reference, for detailed
information about the +FP and +fp_exception options. Also, the HP-
UX Floating-Point Guide has a useful discussion of both options and
includes detailed information on floating-point exceptions and how to
handle them.

Illegal instruction exception
An illegal instruction exception occurs when a program attempts to
execute a bit pattern that is not an op-code. A common cause of this
exception is an overwritten stack. If a program overwrites the part of the
stack that holds the return address, the new (and bad) address may
cause execution control to jump to a memory location that contains data
or some other nonexecutable bit pattern. The attempt to execute this
location will result in an illegal instruction exception.

This exception can also occur if your program is linked to a bad library,
especially if the library contains code that was written in assembler or if
it was corrupted during a file transfer.

This exception may indicate a compiler error. If you cannot find the
cause of this exception in your code, contact your HP support
representative.

Segmentation violation exception
Before a program starts to execute, it is allocated a memory segment,
which defines the area of memory that it can use. If the program
attempts to access a memory location outside its segment, the operating
system will raise the SIGSEGV signal, indicating a segmentation
violation or memory fault.

Any program that can generate address references outside its segment—
for example, by indexing beyond the declared boundary of an array—may
cause a segmentation violation. In C programs, bad pointers often result
in this exception. The standard Fortran 90 pointer is more self-protective
than the C pointer, but it too can be misused and lead to the state of
mind memorialized in the lyric (known only to Cooper Redwine1): “I’ve
got those segmentation violation, core dumped blues.” The Cray-style
pointer extension is more like the C pointer and is therefore more
susceptible to the abuse that results in segmentation violations.

1. See his Upgrading to Fortran 90 (New York 1995), p. 278.

Chapter 4 115

Debugging
Handling runtime exceptions

Programs that cause a stack overflow (for example, by attempting to
allocate more local variables on the stack than the kernel can handle or
by infinite recursion) can also cause a segmentation violation. If your
program needs a bigger stack, run the System Administrator Manager
(SAM) and increase the maxssiz parameter. Also, see the HP-UX
System Administration Tasks manual for information about
reconfiguring the kernel.

Segmentation violations are especially common when calling C functions
from Fortran program units. If the number, type, or calling conventions
of the arguments being passed do not match, the call is likely to result in
an exception. For example, if you use the built-in function %VAL to
declare an argument as passed by value, but the C function is expecting
a pointer, a segmentation violation may occur. (%VAL and %REF are
HP Fortran extensions; for information about using them when calling a
C routine from Fortran, see “Argument-passing conventions” on
page 168.)

In most cases, debugging requires locating the code that caused the
segmentation violation and rewriting it. If your program aborts with this
error, recompile it with the +fp_exception option. A program compiled
with this option will display a procedure traceback when it aborts. The
procedure traceback lists procedure names and offset addresses of the
code that caused the exception.

If you suspect that an out-of-bounds array reference is causing the
segmentation violation, you can use the +check=all option instead of
the +fp_exception option. When compiled with the +check=all
option, a program that attempts to reference an array element that is
outside the declared array boundary will abort with an error message
that gives the line number of where the reference was detected.

The +check=all also performs runtime checks for out-of-bounds
substrings and for integer overflow; see “Calling a trap procedure” on
page 125. The +check option is fully described in the HP Fortran
Programmer’s Reference.

116 Chapter 4

Debugging
Handling runtime exceptions

Bad argument exception
This exception occurs when a bad argument (for example, an out-of-
range argument) is passed to a kernel system routine. This exception
can also occur in programs that make explicit calls to the kernel threads
library, /usr/lib/libpthread.sl, and pass bad arguments.

Chapter 4 117

Debugging
Using debugging lines

Using debugging lines
An HP Fortran program that has been written in fixed source form can
contain debugging lines. These are statements that begin with the letter
D or d in column 1. When compiled with the +dlines option, the
debugging lines are treated as statements and compiled; otherwise, they
are treated as comments and ignored. A program that contains
debugging lines must also be compiled for fixed source form; that is, the
filename extension must be either .f or .F, or the program must be
compiled with the +source=fixed option.

The +dlines option makes it possible to include WRITE statements as
debugging lines in the source file and to remove them from the
production version of the program without having to change source code.
Instead of deleting the WRITE statements when you are ready to build
the production version, you recompile without the +dlines option, or
with the +nodlines option.

Although debugging lines are supported by many implementations of
Fortran (especially FORTRAN 77), it is nonstandard and therefore
nonportable. Use of this feature is even more restrictive by reason of its
being incompatible with free source form. If you try to compile a
Fortran 90 program as free source form and the program contains
debugging lines, the compilation will almost certainly fail with syntax
errors.

The C preprocessor (cpp) provides a set of directives that have the same
functionality as debugging lines but are much more powerful and can be
used in either fixed or free source form. Although the cpp directives are
not part of standard Fortran 90, they are available on most UNIX
systems, such as HP-UX.

The cpp directives are described in the cpp(1) man page. See the
HP Fortran Programmer’s Reference for information about the source
form of HP Fortran programs and the +dlines option.

118 Chapter 4

Debugging
Using debugging lines

119

5 Using the ON statement

Whenever a runtime error occurs, the default action of your program
depends on the type of the error. If the error results from a floating-point
exception, the program will continue to execute. Other errors will cause
it to abort.

As described in “Handling runtime exceptions” on page 111, the
+fp_exception and +FP options provide control over how a program
behaves when a runtime error occurs. The ON statement provides an
additional level of control by enabling your program to handle floating-
point and integer exceptions and +Ctrl-C interrupts. Before an exception
can be handled, the flow of control must pass through an ON statement
that specifies:

• The type of the exception

• One of the following actions:

– Execute a trap procedure

– Ignore the interrupt

– Abort the program

The action specified by the ON statement can only be changed by another
ON statement that specifies the same exception.

This chapter describes how to use the ON statement. The syntax of the
ON statement is described in the HP Fortran Programmer’s Reference.
For detailed information about trapping math errors, see the HP-UX
Floating-Point Guide.

NOTE If you include the ON statement in a program that you optimize at level 2 or
higher and the program takes an exception, the results may vary from those
you would get from an unoptimized program or from a program that didn’t
have the ON statement.

120 Chapter 5

Using the ON statement
Exceptions handled by the ON statement

Exceptions handled by the ON
statement
Like the +fp_exception option, the ON statement enables traps for
floating-point exceptions (by default, traps for floating-point exceptions
are disabled on HP 9000 computers). When traps are enabled, an
executing program that takes any of the following exceptions will abort,
unless an ON statement specifies a different action:

• Division by zero

• Overflow

• Underflow

• Inexact result

• Invalid (or illegal) operation

These exceptions are defined by the IEEE standard for floating-point
operations. The ON statement enables traps for these exceptions,
regardless of whether the exception is taken by user code or by a call to a
library routine. In addition, the ON statement also enables traps for
integer division by zero, integer overflow, and +Ctrl-C interrupts. The
+Ctrl-C interrupt occurs when the user presses +Ctrl-C during program
execution.

Table 22 on page 121 lists the exceptions handled by the ON statement
and gives the keywords that must be specified in the ON statement to
indicate the exception being handled. The first column indicates the type
of exception. The second column gives the keywords that must appear in
the ON statement, immediately following the word ON. The third column
gives alternate keywords you can specify instead of those in the second
column.

For example, the following ON statement will trap attempts to divide by
zero with 8-byte floating-point operands:

ON REAL(8) DIV 0 CALL div_zero_trap

The next example ON statement does the same as the first but uses the
alternate keywords from the third column of the table:

ON DOUBLE PRECISION DIV 0 CALL div_zero_trap

Chapter 5 121

Using the ON statement
Exceptions handled by the ON statement

Table 22 Exceptions handled by the ON statement

Exceptions Exception keywords Alternate keywords

Division by zero REAL(4) DIV 0 REAL DIV 0

REAL(8) DIV 0 DOUBLE PRECISION DIV 0

REAL(16) DIV 0 (none)

INTEGER(2) DIV 0 INTEGER*2 DIV 0

INTEGER(4) DIV 0 INTEGER DIV 0

Overflow REAL(4) OVERFLOW REAL OVERFLOW

REAL(8) OVERFLOW DOUBLE PRECISION OVERFLOW

REAL(16) OVERFLOW (none)

INTEGER(2) OVERFLOW INTEGER*2 OVERFLOW

INTEGER(4) OVERFLOW INTEGER OVERFLOW

Underflow REAL(4) UNDERFLOW REAL UNDERFLOW

REAL(8) UNDERFLOW DOUBLE PRECISION UNDERFLOW

REAL(16) UNDERFLOW (none)

Inexact result REAL(4) INEXACT REAL INEXACT

REAL(8) INEXACT DOUBLE PRECISION INEXACT

REAL(16) INEXACT (none)

Invalid (illegal) operation REAL(4) ILLEGAL REAL ILLEGAL

REAL(8) ILLEGAL DOUBLE PRECISION ILLEGAL

REAL(16) ILLEGAL (none)

+Ctrl-C interrupt CONTROLC (none)

122 Chapter 5

Using the ON statement
Actions specified by ON

Actions specified by ON
The action taken after an exception is trapped depends on the action
specified by the most recently executed ON statement for that exception.
To specify an action, the ON statement must include the keyword ABORT,
IGNORE, or CALL. These keywords have the following meanings:

• If ABORT is specified, a standard error message is generated and the
program is aborted.

• If IGNORE is specified, processing continues with the next instruction.

If the exception is an integer division by zero, the result is set to zero.
For other conditions, the previous content of the target register is
supplied as the result.

IGNORE is particularly useful for preventing +Ctrl-C interrupts at
inconvenient times during program execution.

• If CALL is specified, the normal (ABORT) error message is suppressed,
and control is transferred to the specified trap procedure.

Zero or one parameter is passed to the trap procedure. If an
argument is specified, it is the result of the operation that took the
exception. The procedure can analyze this value to get more precise
information, and it can assign another value to the parameter to
recover from the error. The type of the argument must be the same as
that specified in the keywords.

The specified trap procedure is generally an external procedure.
However, it is also possible to specify a dummy procedure argument.

The following sections describe how to use the ON statement to specify
different actions to take in the event of an exception.

Terminating program execution
Use the ABORT form of the CALL statement to terminate the program
when an exception occurs. In the following example, the log is taken of a
negative number. The ABORT clause causes the program immediately
after the exception is detected and to issue a procedure traceback:

Chapter 5 123

Using the ON statement
Actions specified by ON

abort.f90

PROGRAM main
 REAL :: x, y, z
 ! The next statement enables traps for floating-point
exceptions
 ! and specifies the action to take for divide by zero.
! ON REAL DIV 0 ABORT
 x = 10.0
 y = 0.0
 z = x / y
 PRINT *, y
END PROGRAM main

Here is the command line and the output from a sample run:

$ f90 abort.f90
$ a.out
PROGRAM ABORTED : IEEE divide by zero

PROCEDURE TRACEBACK:

(0) 0x0000248c _start + 0x6c [./a.out]

The program would have the same result if you were to comment out the
ON statement and compile with the +fp_exception option.

Ignoring errors
You can use the ON statement to ignore an exception by specifying the
IGNORE keyword. The following paragraphs discuss an example
program, ignore.f90, that uses the ON statement to ignore an invalid
operation. The following program illustrates this.

ignore.f90

PROGRAM main
 REAL :: x, y, z

 ! The following ON statement enables traps for floating-point
 ! exceptions and causes the program to ignore an invalid
 ! operation exception.
 ON REAL ILLEGAL IGNORE

 ! The next two statements pass a negative argument to the LOG
 ! intrinsic, resulting in an invalid operation. This
 ! exception is ignored, as specified by the ON statement.
 x = -10.0
 y = LOG(x)

 PRINT *, y

 ! The next three statements attempt to divide by zero. The
 ! trap for this exception is enabled by the previous

124 Chapter 5

Using the ON statement
Actions specified by ON

 ! ON statement but no action is specified. Therefore,
 ! the program will abort execution.
 x = 9.0
 y = 0
 z = x/y

 PRINT *, z

END PROGRAM main

As defined by the IEEE standard, a floating-point operation that results
in a NaN is an exception known as an invalid operation. The example
program performs an invalid operation when it passes a negative
argument to the LOG intrinsic, causing the intrinsic to return a NaN. The
following ON statement:

ON REAL INVALID IGNORE

causes the program to ignore this exception and continue execution.

The program also attempts to divide by zero. Although the ON statement
enables the trap triggered by a divide-by-zero exception, the statement
has no other effect. As a result, the exception will cause the program to
abort. To ignore the divide-by-zero exception would require an
additional ON statement:

ON REAL DIV 0 IGNORE

Here is command line to compile the program, followed by the output
from a sample run:

$ f90 ignore.f90
$ a.out
 NaN
PROGRAM ABORTED : IEEE divide by zero

PROCEDURE TRACEBACK:

(0) 0x00002504 _start + 0xbc [./a.out]

Chapter 5 125

Using the ON statement
Actions specified by ON

Calling a trap procedure
You can write trap procedures that are callable by the ON statement to
handle arithmetic errors in user code and in library routines. Trap
procedures can take zero or one argument. If an argument is specified, it
is the result and must have the type specified by the exception keyword.
For example, if the following ON statement occurs in a program:

ON DOUBLE PRECISION OVERFLOW CALL trap

then the procedure trap could declare one argument of type DOUBLE
PRECISION. Note that the argument is optional. Also, depending on the
exception, the contents of the argument may not always be meaningful.

The following sections discuss two example programs that use the ON
statement to call a trap procedure for floating-point exception and for an
integer exception.

Trapping floating-point exceptions
The following program, call_fptrap.f90, causes an invalid operation
exception and includes an ON statement to handle the exception. The ON
statement calls the trap procedure trap_illegal, which assigns a
different value to the result argument. The program prints the result.
Here is the program listing:

call_fptrap.f90

PROGRAM main
 REAL :: x, y
 ON REAL ILLEGAL CALL trap_illegal
 x = -10.0
 y = LOG(x) ! causes an invalid operation
 PRINT *, y
END PROGRAM main

SUBROUTINE trap_illegal(res)
 ! res is the result value of the invalid operation
 ! trapped by the ON statement
 REAL :: res
 res = 99.87 ! assign another value to the result argument
END SUBROUTINE trap_illegal

Here is the command line, followed by the output from a sample run:

$ f90 call_fptrap.f90
$ a.out
 99.87

126 Chapter 5

Using the ON statement
Actions specified by ON

Upon exit from a trap procedure, control returns to the instruction
following the one that activated the trap, regardless of whether the
erring instruction appears in user code or in a library routine.

Without the ON statement, this program would never execute its trap
procedure and output a NaN, as shown by the output from a similar
program in “Ignoring errors” on page 123.

Trapping integer overflow exceptions
This section discusses an example program that illustrates how to use
the ON statement to call a trap procedure for an integer overflow
exception.

An integer overflow occurs when an operation on an integer variable
results in the attempt to assign it an out-of-range value. HP Fortran
does not trap this exception by default. However, you can use the ON
statement in conjunction with the HP CHECK_OVERFLOW directive to
trap an integer overflow. The following program, call_itrap.f90,
illustrates how to do this:

call_itrap.f90

PROGRAM main
!HP CHECK_OVERFLOW INTEGER ON

 INTEGER :: i

 ON INTEGER OVERFLOW CALL trap_oflow

 ! assign to i the biggest number it can hold
 i = 2147483647
 ! now add 1
 i = i + 1
 PRINT *, i
END PROGRAM main

SUBROUTINE trap_oflow(n)
 INTEGER :: n

 ! write error message to standard error
 WRITE (7, *) 'integer overflow occurred, assigning 0 to result'
 n = 0
END SUBROUTINE trap_oflow

Here is the command line, followed by the output from a sample run:

$ f90 call_itrap.f90
$ a.out
 integer overflow occurred, assigning 0 to result
 0

Chapter 5 127

Using the ON statement
Actions specified by ON

If you were to comment out the ON statement but keep the directive, the
program would abort with a procedure traceback and a core dump.
Compiling with the +check=all option would have the same effect.

128 Chapter 5

Using the ON statement
Trapping +Ctrl-C trap interrupts

Trapping +Ctrl-C trap interrupts
A +Ctrl-C interrupt can occur during the following circumstances:

• When the user enters the interrupt code from the terminal while the
program is running or awaiting input

• During the execution of a PAUSE statement

The trap procedure for a +Ctrl-C interrupt must have no formal
arguments. The interrupt code is the character defined by the HP-UX
stty(1) command for the intr parameter. The system default for intr is
+Ctrl-C.

You can use the +Ctrl-C form of the ON statement to handle the interrupt
signal 2. In the following example, when an interrupt occurs, the
program reports status information on standard output, assuring the
user that the program is still at work in the DO loop. The program uses
the ON statement to set the action for a +Ctrl-C interrupt to be the call to
the trap handler status:

PROGRAM main
 COMMON i
 ON CONTROLC CALL status

 DO i = 1, 100000
 ... ! Long computation
 END DO
END

SUBROUTINE status
 COMMON i
 PRINT *, 'Currently on iteration ', i
END SUBROUTINE status

When this program is run, a +Ctrl-C interrupt causes the status
routine to be called, which prints the iteration count. The program then
resumes executing the DO loop.

Chapter 5 129

Using the ON statement
Allowing core dumps

Allowing core dumps
If a program includes the ON statement and takes an exception other
than the one specified by the exception keywords, the program will abort
with a procedure traceback but without a core dump. If you want to
allow a core dump for one or more signals for a program that includes the
ON statement, you must revise the program for each such signal.

For example, you may wish to handle floating-point exceptions with the
ON statement, but still allow a core dump for other signals (for example, a
bus error). The following example program uses the SIGNAL routine in
the libU77 library to reset the default behavior for a bus error signal.
The program uses the ON statement to handle floating-point exceptions,
but allows a core dump when a bus error occurs:

allow_core.f90

PROGRAM main
 ON REAL OVERFLOW IGNORE
 CALL take_err
END PROGRAM main

SUBROUTINE take_err
 DOUBLE PRECISION :: d
 POINTER (ip, d) ! Cray-style pointer
 REAL :: x, y
 INTEGER, PARAMETER :: sigbus=10, sigdfl=0
 INTEGER :: sigrtn, SIGNAL

 ! Set the action for bus error to be the default (DUMP CORE),
 ! overriding the action of issuing a procedure traceback
 ! that is established by using the ON statement.
 ! To suppress the core dump and enable a procedure traceback,
 ! comment out the next statement

 sigrtn = SIGNAL(sigbus, 0, sigdfl)

 x = 1.0E38
 x = y * 10.0 ! causes a real overflow

 ! Bus error is caused by the next statements
 ip = MALLOC(40)
 ip = ip + 4 ! ip is now 4-byte aligned
 d = 99.0 ! bus error
END SUBROUTINE take_err

130 Chapter 5

Using the ON statement
Allowing core dumps

This program must be compiled with the +U77 option to link in the
libU77 library. Here is the command line and the output from a sample
run:

$ f90 +U77 allow_core.f90
$ a.out
Bus error(coredump)
$ ls core
core

131

6 Performance and optimization

This chapter describes how to use different features of the HP Fortran to
tune your program for optimum performance. The most important of
these features is the optimizer. You invoke the optimizer when compiling
your program by specifying either +On (where n represents the level of
optimization to be applied to your program) or the -O option for the
default level of optimization (level 2). The -O option is provided for
compatibility with the POSIX standard and has the same functionality
as the +O2 option.

The following command line compiles prog.f90, using the default level
of optimization:

$ f90 -O prog.f90

For most applications, -O provides effective optimization. However, some
applications can realize significant increases in performance at higher
levels of optimization or when you use other features of the optimizer to
boost performance. This chapter discusses these features as well as the
following topics:

• Using profilers

• Using options to control optimization

• Conservative vs. aggressive optimization

• Parallelizing HP Fortran programs

• Vectorization

• Controlling code generation for performance

For information about getting the best performance from floating-point
intensive applications running on HP-UX, see the HP-UX Floating-Point
Guide.

132 Chapter 6

Performance and optimization
Using profilers

Using profilers
A profiler is a tool for sampling a program during execution so that you
can determine where your program spends most of its time. After
examining the data provided by a profiler, you can decide whether to
redesign parts of the program to improve their performance or to re-
compile the program with optimization options. For example, if your
program contains a loop with an embedded call and profiling reveals that
the program spends much of its time in the loop, you may decide to inline
the embedded call.

The following sections describe the CXperf performance analysis tool,
which is bundled with HP Fortran as well as the two UNIX profilers,
gprof and prof.

NOTE As described in “Stripping debugging information” on page 110, all programs
compiled by HP Fortran include symbol table information in the executable
file, unless you compile with the +strip option or have removed the symbol
table with the strip utility. This information must be present in the
executable in order to use the profiling tools.

CXperf
When working on HP V-Class systems, you can use the CXperf profiler to
get loop-level and routine-level information on HP Fortran programs. For
CXperf support, compile using the +pa option (for routine-level data) or
the +pal option (for loop-level and routine-level data). For example:

% f90 +pal foo.f

The +pa and +pal options cause HP Fortran to run cxoi (the CXperf
object instrumentor) as part of the compilation process to create an
executable program that supports CXperf ’s methods of collecting
statistics.

To collect profile statistics for a program that was compiled with +pa or
+pal, run CXperf and specify the executable program you want to
profile. For example:

% /opt/cxperf/bin/cxperf a.out

Chapter 6 133

Performance and optimization
Using profilers

CXperf creates a profile of a program by collecting information on the
wall clock time and CPU time spent per routine (and, if requested, per
loop). It also can gather statistics on cache hits and misses and other
aspects of the program’s execution, such as the sequence in which
routines are called (viewable as a graphical “call graph”).

More information about CXperf is available from its Help menu.

gprof
The gprof profiler enables you to determine which subprograms are
called the most and how much time is spent in each subprogram.To use
gprof, do the following:

1 Compile the program with the +gprof option. For example:

$ f90 -o prog +gprof prog.f90

2 Run the program. This creates the file gmon.out in the current
directory. For example:

$ prog
$ ls gmon.out
gmon.out

3 Run gprof, specifying the name of the program as an argument. It
will display two tables to standard output: a flat profile and a call
graph profile. Since these tables can be quite large, you may want to
redirect the output from gprof, as follows:

$ gprof prog >gprof.out

The flat profile lists the number of times each subprogram was called
and the percentage of the total execution time for each of the
subprogram times. The call graph profile includes such information
as the index of the function in the call graph listing, the percentage of
total time of the program accounted for by a routine and its
descendents, and the number of seconds spent in the routine itself.

4 Once gprof is finished, you can view the output tables using an
ASCII editor.

For more information about gprof, see the gprof(1) man page.

134 Chapter 6

Performance and optimization
Using profilers

prof
The prof profiler can also be used for profiling. Unlike the gprof
profiler, prof does not generate the call graph profile. To use prof, do
the following:

1 Compile the program with the +prof option. For example:

$ f90 -o prog +prof prog.f90

2 Run the program. This creates a file named mon.out in the current
directory. For example:

$ prog
$ ls mon.out
mon.out

3 Run prof, giving the name of the program as an argument, as
follows:

$ prof prog

prof produces a listing on standard output showing the time spent in
each routine.

For more information about prof, see the prof(1) man page.

Chapter 6 135

Performance and optimization
Using options to control optimization

Using options to control optimization
HP Fortran includes a rich set of command-line options for controlling
optimization. For most applications, we recommend optimizing with -O,
which enables the default level of optimization. (For information about
the default level of optimization, refer to Table 23 on page 136; look up
+O2 in the first column.) You can raise or lower the level of optimization
with the +Oopt-level option, and you can use the +Ooptimization option to
control the kinds of optimizations that are available at each level.

The following sections describe how to use the +Oopt-level and
+Ooptimization options. For detailed descriptions of the optimization
options, see the HP Fortran Programmer’s Reference.

Using +O to set optimization levels
HP Fortran provides four levels of optimization. Each higher level is a
superset of the lower levels; level 4 is the highest level and can result in
a significant increase in program performance. Level 2 is the default
level of optimization.

You invoke optimization by compiling with the +Oopt-level option, where
opt-level is an integer in the range 0 - 4. The following command line
invokes the optimizer at the highest level:

$ f90 +O4 file.f90
You can invoke level 2 (the default level) by specifying the -O option.

Table 23 summarizes each level, giving the option that invokes that
level, the advantages, disadvantages, and recommended usages. For
technical information about the specific optimizations at each level, refer
to the HP PA-RISC Compiler Optimization Technology White Paper. A
PostScript version of this document is available online in /opt/
langtools/newconfig/white_papers/optimize.ps.

NOTE You can debug programs optimized up to level 2. To prepare an optimized
program for debugging, use the command line:

$ f90 -g +Oopt-level prog.f90
where opt-level is an integer in the range 0-2. If you use the -g option at a
higher level of optimization, the compiler lowers the level to 2 and compiles
for debugging.

136 Chapter 6

Performance and optimization
Using options to control optimization

Table 23 Optimization levels

Option Optimizations
performed Advantages Disadvantages Recommended

use

+O0
default

Constant folding and
partial evaluation of
test conditions.

Compiles
fastest;
compatible
with the
debugger
option -g.

Does very little
optimization.

During program
development.

+O1 Level 0 optimizations,
plus branch
optimization, dead
code elimination, more
efficient use of
registers, instruction
scheduling, and
peephole optimization.

Produces faster
programs than
level 0;
compiles faster
than level 2;
compatible
with the
debugger
option -g.

Compiles slower
than level 0.

During program
development.

+O2, -O Default level
optimizations,
including level 1, plus
coloring register
allocation, induction
variable elimination
and strength
reduction, common
subexpression
elimination, loop
invariant code motion,
store/copy
optimization, unused
definition elimination,
software pipelining,
and register
reassociation.

Can
significantly
increase
performance
over level 1;
works with
debugger
option -g.

Compiles slower
than level 0 and
1.

During program
development and
when building
the production
version;
especially
effective in
optimizing loops
that perform
arithmetic
operations on
large float and
double arrays.

Chapter 6 137

Performance and optimization
Using options to control optimization

Using the optimization options
The +Ooptimization options enable you to control the kind of
optimizations that are applied to your program at each level. Table 24 on
page 138 and Table 25 on page 139 list the options. The first column of
each table lists each option, the second column gives the optimization
level at which the option can be used, and the third column identifies
what the option does. When using any of these options except +Oall, you
must also use the +On option to specify the optimization level listed in
the second column of the tables. The +Oall option automatically invokes
the optimizer at the highest level.

+O3 Level 2 optimizations,
plus loop transforms,
parallelization,
vectorization, cloning,
and inlining within a
file. Some
optimizations may
require additional
options; see “Using the
optimization options”
on page 137.

Can
significantly
increase
performance
over level 2.

Compiles slower
than lower
levels; increases
object code size;
not compatible
with the
debugger option
-g.

When building
the production
version;
especially
effective when
used on source
files containing
frequently
executed loops
and
subprograms.

+O4 Level 3 optimizations
applied across all
program files compiled
with +O4.

Provides the
highest level of
optimization;
can
significantly
increase
performance
over level 3.

Can use large
amounts of
system
resources; may
increase link-
time and object
code size; not
compatible with
the debugger
option -g.

When building
the production
version;
especially
effective when
used on source
files containing
frequently
executed loops
and
subprograms.

Option Optimizations
performed Advantages Disadvantages Recommended

use

138 Chapter 6

Performance and optimization
Using options to control optimization

Table 24 lists the “packaged” options. These options enable or disable a
set of related optimizations, such as optimizations that do not increase
code size. Table 25 lists options that enable or disable specific
optimizations.

The options in both tables can be combined on the same command line,
except as noted. For example, the following command line requests
aggressive optimizations at level 2 that do not increase code size:

$ f90 +02 +Oaggressive +Osize prog.f90

Nearly all of the optimization options can be used to enable or disable an
optimization or a package of optimizations. For example, the following
command line requests aggressive level 4 optimizations that do not
result in roundoff errors:

$ f90 +O4 +Oaggressive +Ofltacc prog.f90

The Parallel Programming Guide for HP-UX Systems fully describes all
of the optimization options.

Table 24 Packaged optimization options

Option Level Function

+O[no]aggressive +O2 or higher Enable [disable] optimizations that can
significantly improve performance in
standard-conforming programs. The default
is +Onoaggressive. For more information
about this option, see “Conservative vs.
aggressive optimization” on page 142.

+O[no]all Invokes highest
level

Enable [disable] maximum optimization.
The default is +Onoall.

+O[no]conservative +O2 or higher Suppress [do not suppress] optimizations
that assume strict conformity to the
Fortran 90 standard. The default is
+Onoconservative. For more information
about this option, see “Conservative vs.
aggressive optimization” on page 142.

+O[no]limit +O2 or higher Enable [disable] optimizations that do not
make large demands on system resources.
The default is +Onolimit.

Chapter 6 139

Performance and optimization
Using options to control optimization

Table 25 Fine-tuning optimization options

+O[no]size +O2 or higher Enable [disable] optimizations that do not
significantly increase code size. The default
is +Onosize.

Option Level Function

+O[no]cache_pad_common +O3 or
higher

Pad [do not pad] common blocks to avoid
cache collisions. The default is
+Onocache_pad_common.

+O[no]dataprefetch +O2 or
higher

Insert [do not insert] instructions within
innermost loops to explicitly prefetch data
from memory into the data cache. The
default is +Onodataprefetch.

+O[no]entrysched All Perform [do not perform] instruction
scheduling on entry and exit code. The
default is +Onoentrysched.

+O[no]fastaccess All Enable [disable] fast access to global data.
The default is +Onofastaccess at levels
1, 2, and 3; +Ofastaccess at level 4.

+O[no]fltacc +O2 or
higher

Disable [enable] floating-point
optimizations that can result in numerical
differences. By default, the optimizer does
not perform such optimizations. For
information about the effect this option can
have on your program, refer to the HP-UX
Floating-Point Guide.

+O[no]info All Display [do not display] information about
the optimization process. This option is
most useful at level 3 and above. The
default is +Onoinfo.

Option Level Function

140 Chapter 6

Performance and optimization
Using options to control optimization

+O[no]initcheck +O2 or
higher

Enable [disable] initialization of any local,
scalar, automatic variable that is found to
be uninitialized. The default is to initialize
if the variable is uninitialized with respect
to every path leading to its use. For more
information about this option, see
“Uninitialized variables” on page 226.

+O[no]inline +O3 or
higher

Enable [disable] inlining. The default is
+Oinline.

+Oinline_budget=n +O3 or
higher

Perform more aggressive inlining, as
specified by n. The default is
+Oinline_budget=100.

+O[no]libcalls All Substitute [do not substitute] millicode
versions of specific intrinsics. The default
is +Olibcalls.

+O[no]loop_unroll=n +O2 or
higher

Unroll [do not unroll] program loops by a
factor of n. The default is
+Oloop_unroll=4.

+O[no]moveflops +O2 or
higher

Enable [disable] moving conditional
floating-point instructions out of loops.
The default is +Omoveflops.

+O[no]parallel +O3 or
higher

Transform [do not transform] eligible loops
for parallel execution. The default is
+Onoparallel.

+O[no]parmsoverlap +O2 or
higher

Suppress optimizations that assume [do
not assume] that arguments may refer to
the same memory locations. The default is
+Onoparmsoverlap.

+O[no]pipeline +O2 or
higher

Enable [disable] software pipelining. The
default is +Opipeline.

Option Level Function

Chapter 6 141

Performance and optimization
Using options to control optimization

+O[no]procelim All Remove [do not remove] unreferenced
procedures from the executable. The
default is +Onoprocelim at levels 0 - 3,
+Oprocelim at level 4.

+O[no]regreassoc +O2 or
higher

Enable [disable] register association. The
default is +Oregreassoc.

+O[no]vectorize +O32 or
higher

Replace [do not replace] eligible loops with
calls to the math library; for more
information, see “Using the +Ovectorize
option” on page 149. The default is
+Onovectorize.

Option Level Function

142 Chapter 6

Performance and optimization
Conservative vs. aggressive optimization

Conservative vs. aggressive
optimization
At optimization level 2 or higher, the optimizer makes a number of
assumptions about the program it is optimizing—for example, that re-
ordering an expression for improved instruction scheduling will not
change its results. In general, these assumptions relate to how closely
the target program conforms to the Fortran 90 Standard. For programs
that conform to the Standard, it is safe for the optimizer to apply certain
optimizations that can significantly improve performance. For
nonstandard-conforming programs, these same optimizations could
change the results or behavior of the program in ways that may not be
acceptable to the programmer.

The +Oconservative and +Oaggressive options enable you to set the
optimizer’s assumptions about which optimizations it can and cannot
apply to a program. Each option invokes a subset of the fine-tuning
options that balances safety and performance according to the coding
style of the target program. You can use either option at optimization
level 2 or higher.

NOTE +Oaggressive and +Oconservative are incompatible and must not
appear on the same command line.

Table 26 on page 143 lists the assumptions that the optimizer makes
about your program when you compile with +Oconservative,
+Oaggressive, or neither option (the default). The table also lists the
fine-tuning options that are invoked by +Oconservative and
+Oaggressive. The options listed for the default case are the subset of
the ones invoked by +Oconservative and +Oaggressive. For
information about the fine-tuning options listed in the third column, see
Table 25 on page 139.

Chapter 6 143

Performance and optimization
Conservative vs. aggressive optimization

Table 26 Conservative, aggressive, and default optimizations

Specified options Assumptions Invoked options

+Onoconservative
+Onoaggressive
(the default)

• Standard-conforming +Onoentrysched
+Omoveflops
+Onoparmsoverlap
+Onovectorize

+Oconservative • Nonstandard

• Sensitive to rounding differences

• Contains floating-point expressions
that must be evaluated in the specified
order

• Procedure arguments may overlap

+Ofltacc
+Onomoveflops
+Oparmsoverlap

+Oaggressive • Standard-conforming

• Contains floating-point expressions
that permit re-ordering for
optimization

• Does not contain uninitialized
variables

+Oentrysched
+Onofltacc
+Onoinitcheck
+Ovectorize

144 Chapter 6

Performance and optimization
Parallelizing HP Fortran programs

Parallelizing HP Fortran programs
The following sections discuss how to use the +Oparallel option and
the parallel directives when preparing and compiling HP Fortran
programs for parallel execution. Later sections also discuss reasons why
the compiler may not have performed parallelization. The last section
describes runtime warning and error messages unique to parallel-
executing programs.

For a description of the +Oparallel option, see “Fine-tuning
optimization options” on page 54.

Compiling for parallel execution
The following command lines compile (without linking) three source files:
x.f90, y.f90, and z.f90. The files x.f90 and y.f90 are compiled for
parallel execution. The file z.f90 is compiled for serial execution, even
though its object file will be linked with x.o and y.o.

f90 +O3 +Oparallel -c x.f90 y.f90
f90 +O3 -c z.f90

The following command line links the three object files, producing the
executable file para_prog:

f90 +O3 +Oparallel -o para_prog x.o y.o z.o

As this command line implies, if you link and compile separately, you
must use f90, not ld. The command line to link must also include the
+Oparallel and +O3 options in order to link in the parallel runtime
support.

Performance and parallelization
To ensure the best runtime performance from programs compiled for
parallel execution on a multiprocessor machine, do not run more than
one parallel program on a multiprocessor machine at the same time.
Running two or more parallel programs simultaneously may result in
their sharing the same processors, which will degrade performance. You
should run a parallel-executing program at a higher priority than any
other user program; see rtprio(1) for information about setting real-time
priorities.

Chapter 6 145

Performance and optimization
Parallelizing HP Fortran programs

Running a parallel program on a heavily loaded system may also slow
performance.

Profiling parallelized programs
You can profile a program that has been compiled for parallel execution
in much the same way as for non-parallel programs:

1 Compile the program with the +gprof option.

2 Run the program to produce profiling data.

3 Run gprof against the program.

4 View the output from gprof.

The differences are:

• Step 2 produces a gmon.out file with the CPU times for all executing
threads.

• In Step 4, the flat profile that you view uses the following notation to
denote DO loops that were parallelized:

routine_name##pr_line_nnnn

where routine_name is the name of the routine containing the loop,
pr (parallel region) indicates that the loop was parallelized, and nnnn
is the line number of the start of the loop.

Conditions inhibiting loop parallelization
The following sections describe conditions that can cause the compiler
not to parallelize. These include the following:

• Calling routines with side effects

• Indeterminate iteration counts

• Data dependences

146 Chapter 6

Performance and optimization
Parallelizing HP Fortran programs

Calling routines with side effects
The compiler will not parallelize any loop containing a call to a routine
that has side effects. A routine has side effects if it does any of the
following:

• Modifies its arguments

• Modifies a global, common-block variable, or save variable

• Redefines variables that are local to the calling routine

• Performs I/O

• Calls another subroutine or function that does any of the above

You can use the DIR$ NO SIDE EFFECTS directive to force the compiler
to ignore side effects when determining whether to parallelize the loop.
For information about this directive, see .

NOTE A subroutine (but not a function) is always expected to have side effects. If
you apply this directive to a subroutine call, the optimizer assumes that the
call has no effect on program results and can eliminate the call to improve
performance.

Indeterminate iteration counts
If the compiler finds that a runtime determination of a loop's iteration
count cannot be made before the loop starts to execute, the compiler will
not parallelize the loop. The reason for this precaution is that the
runtime code must know the iteration count in order to determine how
many iterations to distribute to the executing processors.

The following conditions can prevent a runtime count:

• The loop is a DO-forever construct.

• An EXIT statement appears in the loop.

• The loop contains a conditional GO TO statement that exits from the
loop.

• The loop modifies either the loop-control or loop-limit variable.

• The loop is a DO WHILE construct and the condition being tested is
defined within the loop.

Chapter 6 147

Performance and optimization
Parallelizing HP Fortran programs

Data dependences
When a loop is parallelized, the iterations are executed independently on
different processors, and the order of execution will differ from the serial
order when executing on a single processor. This difference is not a
problem if the iterations can occur in any order with no effect on the
results. Consider the following loop:

 DO I = 1, 5
 A(I) = A(I) * B(I)
 END DO

In this example, the array A will always end up with the same data
regardless of whether the order of execution is 1-2-3-4-5, 5-4-3-2-1, 3-1-4-
5-2, or any other order. The independence of each iteration from the
others makes the loop an eligible candidate for parallel execution.

Such is not the case in the following:

 DO I = 2, 5
 A(I) = A(I-1) * B(I)
 END DO

In this loop, the order of execution does matter. The data used in
iteration I is dependent upon the data that was produced in the previous
iteration (I-1). The array A would end up with very different data if the
order of execution were any other than 2-3-4-5. The data dependence in
this loop thus makes it ineligible for parallelization.

Not all data dependences inhibit parallelization. The following
paragraphs discuss some of the exceptions.

Nested loops and matrices
Some nested loops that operate on matrices may have a data dependence
in the inner loop only, allowing the outer loop to be parallelized. Consider
the following:

 DO I = 1, 10
 DO J = 2, 100
 A(J,I) = A(J-1,I) + 1
 END DO
 END DO

The data dependence in this nested loop occurs in the inner (J) loop: each
row access of A(J,I) depends upon the preceding row (J-1) having been
assigned in the previous iteration. If the iterations of the J loop were to
execute in any other order than the one in which they would execute on a
single processor, the matrix would be assigned different values. The
inner loop, therefore, must not be parallelized.

148 Chapter 6

Performance and optimization
Parallelizing HP Fortran programs

But no such data dependence appears in the outer loop: each column
access is independent of every other column access. Consequently, the
compiler can safely distribute entire columns of the matrix to execute on
different processors; the data assignments will be the same regardless of
the order in which the columns are executed, so long as the rows execute
in serial order.

Assumed dependences
When analyzing a loop, the compiler may err on the safe side and assume
that what looks like a data dependence really is one and so not
parallelize the loop. Consider the following:

 DO I = 101, 200
 A(I) = A(I-K)
 END DO

The compiler will assume that a data dependence exists in this loop
because it appears that data that has been defined in a previous iteration
is being used in a later iteration. On this assumption, the compiler will
not parallelize the loop.

However, if the value of K is 100, the dependence is assumed rather than
real because A(I-K) is defined outside the loop. If in fact this is the case,
the programmer can insert one of the following directives immediately
before the loop, forcing the compiler to ignore any assumed dependences
when analyzing the loop for parallelization:

• DIR$ IVDEP

• FPP$ NODEPCHK

• VD$ NODEPCHK

For more information about these directives, see “Compatibility
directives” on page 196.

Chapter 6 149

Performance and optimization
Vectorization

Vectorization
When vectorization is enabled, the optimizer replaces eligible loops
with calls to specially tuned routines in the math library. When you
compile with the +Ovectorize option, the optimizer vectorizes
wherever it determines that it is safe and feasible to do so. However, you
can use directives to limit vectorization. As an alternative to the
optimizer’s automatic vectorization, you can make explicit calls to the
Basic Linear Algebra Subroutine (BLAS) library to perform common
vector and matrix operations.

The following sections describe how to use the vectorizing capabilities of
the optimizer.

Using the +Ovectorize option
To enable vectorization, you must compile the program at optimization
level 3 or higher and specify the +Ovectorize option, as in the following
example command line:

f90 +O3 +Ovectorize prog.f90

When vectorization is enabled, the optimizer uses a pattern-matching
algorithm to identify program loops as eligible for vectorization. If the
optimizer can also determine that:

• Vectorization will produce the same results as the original loop

• There are no other optimizations that will yield better performance

the optimizer replaces the loop by a call to one of the math library
routines listed in Table 27.

Table 27 Vector routines called by +Ovectorize

Vector routine Description

daxpy Add a scalar multiple of a vector to a vector, using
double-precision operands.

ddot Compute the dot product of two double-precision
vectors.

memcpy See the memory(1) man page.

150 Chapter 6

Performance and optimization
Vectorization

If your PA2.0 application uses very large arrays, compiling with both
+Ovectorize and +Odataprefetch may also increase performance.
The math library contains special prefetching versions of the vector
routines that are called if you specify both options.

If you compile with the +Ovectorize and +Oinfo options, the optimizer
will identify which loops it vectorized. If you find that the extent of
vectorization is not significant, you may want to consider some other
optimization, such as parallelization.

Controlling vectorization locally
When you compile with the +Ovectorize option, the optimizer
considers all loops in the source file as candidates for vectorization. The
$ [NO]VECTORIZE directive enables you to limit vectorization. You
use the *$* NOVECTORIZE form of the directive to disable vectorization
and the *$* VECTORIZE form to enable it. The directive applies to the
beginning of the next loop and remains in effect for the rest of the
program unit or until superseded by a later directive. The directive is
ignored if you do not compile with the +Ovectorize option and specify
an optimization of 3 or higher.

memmove See the memory(1) man page.

memset See the memory(1) man page.

saxpy Add a scalar multiple of a vector to a vector, using
single-precision operands.

sdot Compute the dot product of two single-precision
vectors.

vec_damax Find the maximum absolute value in a double-
precision vector.

vec_dmult_add Multiply a scalar by a vector and add the result to
the result vector, using double-precision operands.

vec_dsum Sum the elements of a double-precision vector.

Vector routine Description

Chapter 6 151

Performance and optimization
Vectorization

For example, if a file containing the following code segment were
compiled with +Ovectorize, only one loop would be considered as a
candidate for vectorization:

! This is line 1 of the source file.
!*$* NOVECTORIZE
.
.
.
!*$* VECTORIZE
DO i = 1, 100
.
.
.
END DO
!*$* NOVECTORIZE
.
.
.

Note that the *$* VECTORIZE directive does not force vectorization.
The optimizer vectorizes only if:

• The loop performs a vector operation recognized by the optimizer as
in its repertoire.

• The loop is safe to vectorize. The same conditions that can prevent
parallelization—see, for example, “Data dependences” on page 147—
can also prevent vectorization.

• The optimizer can discover no other transformations that can result
in better performance.

The only way to ensure vectorization is for the programmer to edit the
source file and substitute an appropriate call to the BLAS library for the
loop, as described in “Controlling vectorization locally” on page 150.

For a detailed description of the *$* [NO]VECTORIZE directive, see the
HP Fortran Programmer's Reference.

152 Chapter 6

Performance and optimization
Vectorization

Calling BLAS library routines
The HP Fortran compiler is bundled with the Basic Linear Algebra
Subroutine (BLAS) library. This library consists of specially tuned
routines that perform low-level vector and matrix operations that
conform to a de facto, industry-wide standard1. The BLAS routines are
widely available, making them portable across many implementations of
Fortran.

HP Fortran includes a library of the BLAS routines that have been
especially tuned for performance on PA-RISC machines. You can call any
of these routines in an HP Fortran program by compiling it with the -
lblas option.

Consider the following program, which contains a loop that performs an
operation on two arrays that is identical to the saxpy routine in the
BLAS library, as noted in the comments:

saxpy.f90

PROGRAM main

INTEGER :: i, inc_x, inc_y, dim_num
REAL, DIMENSION(5) :: x, y
REAL :: b

b = 3.0
dim_num = 5
inc_x = 1
inc_y = 1

! initialize the two arrays x and y
DO i = 1, 5
 y(i) = i
 x(i) = i + 3.0
END DO
PRINT *, y

! add a scalar multiple of x to y
DO i = 1, 5
 y(i) = y(i) + b * x(i)
END DO
PRINT *, y

END PROGRAM main

1. See the LAPACK User’s Guide, ed. J. Dongarra et al (Philadelphia,
1992). Each of the BLAS routines has its own man page; see
blas(3X) for an introduction. Also, see the URL: http://
www.netlib.org.

Chapter 6 153

Performance and optimization
Vectorization

The following command lines compile and execute the program, and
show the output from a sample run:

$ f90 saxpy.f90
$ a.out
 1.0 2.0 3.0 4.0 5.0
 13.0 17.0 21.0 25.0 29.0

As an alternative, you could replace the second loop with the following
call to the saxpy routine in the BLAS library:

CALL saxpy(dim_num, b, x, inc_x, y, inc_y)

When you compile the revised program, you must add the -lblas option
to the end of the command line to link in the BLAS library. The following
show the command lines to compile and execute the revised program as
well as the output from a sample run:

$ f90 saxpy_blas.f90 -lblas
$ a.out
 1.0 2.0 3.0 4.0 5.0
 13.0 17.0 21.0 25.0 29.0

If you call a BLAS routine that is a function, be sure to declare the return
value of the routine in a data declaration statement and specify the
EXTERNAL attribute, as in the following:

REAL, EXTERNAL :: sdot

Fortran uses implicit typing by default. Unless a function is explicitly
declared as having a certain type, the type is determined by the first
character of the BLAS routine. If that character implies a type other
than that of the returned value, the result will be meaningless.

See the HP Fortran Programmer's Reference for information about the
BLAS library.

154 Chapter 6

Performance and optimization
Controlling code generation for performance

Controlling code generation for
performance
For optimum performance, the executable program should consist of code
that can take advantage of the hardware features of the machine on
which the program will run. If your program will run on the same
machine as you use to compile it, code generation is not an issue. By
default, the HP Fortran compiler generates code for the model of the
machine on which you are running the compiler.

However, if you are compiling on a different machine from the one on
which the program will run, you should use the +DAmodel option to
ensure that the compiler generates code based on the target architecture.
For information about using this option, see “Compiling for different PA-
RISC machines” on page 77.

155

7 Writing HP-UX applications

This chapter discusses how HP Fortran applications running on the HP-
UX operating system can use system resources to do the following:

• Accessing command-line arguments

• Calling HP-UX system and library routines

• Using HP-UX file I/O

156 Chapter 7

Writing HP-UX applications
Accessing command-line arguments

Accessing command-line arguments
When invoking an HP Fortran executable program, you can include one
or more arguments on the command line. The operating system will
make these available to your program. For example, the following
command line invokes the program fprog:

$ fprog arg1 "another arg" 222

and it also passes three character arguments to the program:

arg1
another arg
222

An HP Fortran program can access these arguments for internal use by
calling the IGETARG and IARGC intrinsics; IGETARG is available either
as a function or a subroutine. The IGETARG intrinsic gets the specified
command-line argument; IARGC returns the number of arguments on
the command line. You can also use the GETARG intrinsic to return
command-line arguments, as illustrated in the following example
program:

get_args.f90

PROGRAM get_args

INTEGER, PARAMETER :: arg_num = 1

! arg_str is the character array to be written to
! by IGETARG
CHARACTER(LEN=30) :: arg_str

! IGETARG returns number of characters read within
! the specified parameter
! arg_num is the position of the desired argument in the
! the command line (the name by which the program
! was invoked is 0)
! arg_str is the character array in which the argument
! will be written
! 30 is the number of characters to write to arg_str
PRINT *, IGETARG(arg_num, arg_str, 30)
PRINT *, arg_str

! IARGC returns the total number of arguments on the
! command line
PRINT *, IARGC()

END PROGRAM get_args

Chapter 7 157

Writing HP-UX applications
Accessing command-line arguments

When compiled and invoked with the following command lines:

$ f90 get_args.f90
$ a.out perambulation of a different sort

this program produces the following output:

13
perambulation
5

For more information about the IGETARG and IARGC intrinsics, see the
HP Fortran Programmer's Reference. GETARGC is also available as a
libU77 routine; see the HP Fortran Programmer's Reference.

158 Chapter 7

Writing HP-UX applications
Calling HP-UX system and library routines

Calling HP-UX system and library
routines
System calls provide low-level access to kernel-level resources, such as
the write system routine. or example, see “File handling” on page 181
for an example of a program that calls the write routine. For
information about system calls, refer to the HP-UX Reference.

HP-UX library routines provide many capabilities, such as getting
system information and file stream processing. Library routines are also
discussed in the HP-UX Reference.

You can access many HP-UX system calls and library routines from
HP Fortran programs using the BSD 3F library, libU77.a. Another
library provided with HP Fortran is the Basic Linear Algebra Subroutine
(BLAS) library, libblas.a. These subroutines perform low-level vector
and matrix operations, tuned for maximum performance. See “Additional
HP Fortran libraries” on page 69 for information about linking to these
libraries. For detailed information about the both libraries, see the
HP Fortran Programmer's Reference.

Chapter 7 159

Writing HP-UX applications
Using HP-UX file I/O

Using HP-UX file I/O
HP-UX file-processing routines can be used as an alternative to Fortran
file I/O routines. This section discusses HP-UX stream I/O routines and
I/O system calls.

Stream I/O using FSTREAM
The HP-UX operating system uses the term stream to refer to a file as a
contiguous set of bytes. There are a number of HP-UX subroutines for
performing stream I/O; see stdio(3S) in the HP-UX Reference.

Unlike Fortran I/O, which requires a logical unit number to access a file,
stream I/O routines require a stream pointer—an integer variable that
contains the address of a C-language structure of type FILE (as defined
in the C-language header file /usr/include/stdio.h.)

The following Fortran statement declares a variable for use as a stream
pointer in HP Fortran:

INTEGER(4) :: stream_ptr

To obtain a stream pointer, use the Fortran intrinsic FSTREAM, which
returns a stream pointer for an open file, given the file's Fortran logical
unit number:

stream-ptr = FSTREAM(logical-unit)

The logical-unit parameter must be the logical unit number obtained
from opening a Fortran file, and stream-ptr must be of type integer. If
stream-ptr is not of type integer, type conversion takes place with
unpredictable results. The stream-ptr should never be manipulated as
an integer.

Once you obtain stream-ptr, use the ALIAS directive to pass it by value to
stream I/O routines. (For an example of how to use the ALIAS directive,
see “File handling” on page 181.) All HP Fortran directives are described
in the HP Fortran Programmer's Reference.)

160 Chapter 7

Writing HP-UX applications
Using HP-UX file I/O

Performing I/O using HP-UX system calls
File I/O can also be performed with HP-UX system calls (for example,
open, read, write, and close), which provide low-level access to the
HP-UX kernel. These routines are discussed in the HP-UX Reference; see
also the online man pages for these routines. For an example program
that shows how to call the write routine, see “File handling” on
page 181.

Establishing a connection to a file
HP-UX I/O system calls require an HP-UX file descriptor, which
establishes a connection to the file being accessed. A file descriptor is an
integer whose function is similar to a Fortran logical unit number. For
example, the following open system call (called from a C-language
program) opens a file named DATA.DAT for reading and writing, and
returns the value of an HP-UX file descriptor:

#include <fcntl.h> /* definition of O_RDWR contained here */
 ...
fildes = open("DATA.DAT", O_RDWR)

Obtaining an HP-UX file descriptor
The Fortran intrinsic FNUM returns the HP-UX file descriptor for a given
logical unit. See the program in“File handling” on page 181 for an
example of how to call the FNUM intrinsic. For information about FNUM,
see the HP Fortran Programmer's Reference.

161

8 Calling C routines from
HP Fortran

This section describes language differences between C and HP Fortran
that affect calling C routines from an HP Fortran program. This
includes the following topics:

• Data types

• Argument-passing conventions

• Case sensitivity

• Arrays

• C strings

• File handling

• Sharing data

162 Chapter 8

Calling C routines from HP Fortran
Data types

Data types
Table 28 lists the corresponding data types for HP Fortran and C when
compiled as 32-bit applications.

Table 28 Data type correspondence for HP Fortran and C

Using the +DA2.0W option to compile HP Fortran programs in 64-bit
mode has no effect on Fortran data types; see “Compiling in 64-bit mode”
on page 85. However, it does change the sizes of some C data types. If
your program calls functions written in C and is compiled in 64-bit mode,
you should be aware of the size discrepancies and either promote
individual data items or recompile with the +autodbl option to promote
all default integer, real, and logical items to 64-bits.

HP Fortran C

CHARACTER char (array of)

Hollerith (synonymous with CHARACTER) char (array of)

BYTE, LOGICAL(KIND=1), INTEGER(KIND=1) char

LOGICAL(KIND=2) short

INTEGER(KIND=2) short

LOGICAL, LOGICAL(KIND=4) long or int

INTEGER, INTEGER(KIND=4) long or int

INTEGER(KIND=8) long long

REAL, REAL(KIND=4) float

DOUBLE PRECISION, REAL(KIND=8) double

REAL(KIND=16) long double

COMPLEX, COMPLEX(KIND=4) struct

DOUBLE COMPLEX, COMPLEX(KIND=8) struct

derived type struct

Chapter 8 163

Calling C routines from HP Fortran
Data types

Table 29 shows the differences between the corresponding data types in
HP Fortran and C when compiling in 32-bit mode and in 64-bit mode.
Table 30 shows the differences when the Fortran program is compiled
with the +autodbl option. Notice that Fortran data items that are
explicitly sized (for example, INTEGER*4) stay the same size regardless
of whether they are compiled in 32-bit mode, in 64-bit mode, or with the
+autodbl option.

Table 29 Size differences between HP Fortran and C data types

Table 30 Size differences after compiling with +autodbl

HP Fortran
data types

C data types Sizes
(in bits)32-bit mode 64-bit mode

INTEGER int or long int 32

INTEGER*4 int or long int 32

INTEGER*8 long long long or
long long

64

REAL float float 32

DOUBLE PRECISION double double 64

REAL*16 long double long double 128

HP Fortran
data types

C data types Sizes
(in bits)32-bit mode 64-bit mode

INTEGER long long long 64

INTEGER*4 int or long int 32

INTEGER*8 long long long 64

REAL float float 64

DOUBLE PRECISION long double long double 128

REAL*16 long double long double 128

164 Chapter 8

Calling C routines from HP Fortran
Data types

The following sections provide more detailed information about language
differences for the following data types:

• Unsigned integers

• Logicals

• Complex numbers

• Derived types

Unsigned integers
Unlike Fortran, C allows integer data types (char, int, short, and
long) to be declared as either signed or unsigned. If a Fortran program
passes a signed integer to a C function that expects an unsigned integer
argument, C will interpret the bit pattern as an unsigned value.

An unsigned integer in C can represent twice the number of positive
values as the same-sized integer in HP Fortran. If an HP Fortran
program calls a C function that returns an unsigned integer and the
return value is greater than can be represented in a signed integer,
HP Fortran will interpret the bit pattern as a negative number.

Logicals
C uses integers for logical types. In HP Fortran, a 2-byte LOGICAL is
equivalent to a C short, and a 4-byte LOGICAL is equivalent to a long
or int. In C and HP Fortran, zero is false and any nonzero value is true.
HP Fortran sets the value 1 for true.

Chapter 8 165

Calling C routines from HP Fortran
Data types

Complex numbers
C has no complex numbers, but they are easy to simulate. To illustrate
this, create a struct type containing two floating-point members of the
correct size — two floats for the complex type, and two doubles for the
double complex type. The following creates the typedef COMPLEX:

typedef struct
{
 float real;
 float imag;
} COMPLEX;

Consider a program that consists of two source files:

• The Fortran source file, which defines the main program unit

• The C source file, which defines a function sqr_complex, having the
following prototype declaration:

COMPLEX sqr_complex(COMPLEX cmx_val);

The main subprogram calls sqr_complex, passing in a complex number.
The C function squares the number and returns the result. There is no
complex data type in C, but this example uses C’s typedef feature to
create one.

The Fortran source file for such a scenario is shown below in the example
pass_complex.f90.

pass_complex.f90

PROGRAM main
! This program passes a complex number to a C function
! that squares it and returns the result. The C
! function has the following declaration prototype:
!
! complex sqr_complex(complex cmx_val);
!
! "complex" is not an intrinsic type for C but it
! creates a typedef for one, using a struct.

COMPLEX :: result, cmx_num = (2.5, 3.5)

! We have to declare the C function because we’re calling it
! as a function rather than a subroutine. If we didn’t
! declare it, Fortran would use the implicit typing rules
! by default and assume from the name, sqr_complex, that it
! returns a real.
COMPLEX sqr_complex

PRINT *, 'C will square this complex number: ', cmx_num

166 Chapter 8

Calling C routines from HP Fortran
Data types

! Use the %VAL built-in function to indicate that cmx_num
! is being passed by value, as C expects it to be, and
! and not by reference, as Fortran does by default
result = sqr_complex(%VAL(cmx_num))

PRINT *, 'The squared result is: ', result

END PROGRAM main

The following is the C source file.

sqr_complex.c

#include <stdio.h>

/* simulate Fortran’s complex number */
typedef struct
{

 float real;
 float imag;
}COMPLEX;

/* returns the square of the complex argument */
COMPLEX sqr_complex(COMPLEX cmx_val)
{
 COMPLEX result;
 float a, b;

 /* copy both parts of the complex number into locals */
 a = cmx_val.real;
 b = cmx_val.imag;

 /* square the complex number and store the results into
 * the return variable
 */
 result.imag = 2 * (a * b);
 a = a * a;
 b = b * b;
 result.real = a - b;

 return result;
}

Below are the command lines to compile, link, and execute the program,
followed by the output from a sample run.

$ cc -Aa -c sqr_complex.c
$ f90 pass_complex.f90 sqr_complex.o
$ a.out
 C will square this complex number: (2.5,3.5)
 The squared result is: (-6.0,17.5)

Chapter 8 167

Calling C routines from HP Fortran
Data types

Derived types
Although the syntax of Fortran's derived types differs from that of C's
structures, both languages have similar default packing and alignment
rules. HP Fortran uses the same packing rules and alignments when
laying out derived-type objects in memory that HP C uses for structures.

Pointers
Although the Fortran pointer differs in some respects from the C pointer,
a pointer passed by Fortran to a C function looks and acts the same as it
does in C. The only precaution is that, when the pointer is to an array
(which will almost always be the case), the two languages store and
access arrays differently; see “Arrays” on page 173.

Allocatable arrays may be passed from Fortran to C like any other array,
with the precaution about array differences between the two languages.
Strings (an array of characters in C) are a different matter; see “C
strings” on page 177 for information about passing strings from Fortran
to C.

168 Chapter 8

Calling C routines from HP Fortran
Argument-passing conventions

Argument-passing conventions
The important difference between the argument-passing conventions of
HP C and HP Fortran is that Fortran passes arguments by reference —
that is, it passes the address of the argument — whereas C passes non-
array and non-pointer arguments by value — that is, it passes a copy of
the argument. This difference affects calls not only to user-written
routines in C but also to all HP-UX system calls and subroutines, which
are accessed as C functions.

HP Fortran provides two built-in functions, %VAL and %REF, to override
Fortran’s default argument-passing conventions to conform to C. These
functions are applied to the actual arguments you want to pass, either in
the argument list of the routine you are calling or with the HP ALIAS
directive. The %REF function tells Fortran that its argument is to be
passed by reference (as when passing an array or pointer in C), and the
%VAL function tells Fortran that its argument is to be passed by value
(the default case in C).

Consider a C function having the following prototype declaration:

void foo(int *ptr, int iarray[100], int i);

In Fortran, the actual arguments to be passed to foo would be declared
as follows:

INTEGER :: ptr, i
INTEGER, DIMENSION(100) :: iarray

The call from Fortran to the C function (using the %VAL and %REF built-
in functions) would be as follows:

CALL foo(%REF(ptr), %REF(iarray), %VAL(i))

If the Fortran program were to make numerous calls to foo at different
call sites, you might find it more convenient to use the HP ALIAS
directive with the %VAL and %REF built-in functions. Using the HP
ALIAS directive allows you to establish the argument-passing modes for
each parameter in a particular routine once and for all, without having
to use %VAL and %REF at each call site. Here is the HP ALIAS directive
for the Fortran program that calls foo:

!HP ALIAS foo(%REF, %REF, %VAL)

Note that the functions are used here without arguments; their positions
in the argument list indicate the parameters to which each applies.

Chapter 8 169

Calling C routines from HP Fortran
Argument-passing conventions

You can also use the HP ALIAS directive to handle case-sensitivity
difference between C and HP Fortran; “Case sensitivity” on page 170,
which includes an example program that uses the HP ALIAS directive
and the %VAL and %REF built-in functions to call a C function. For other
examples, see “Complex numbers” on page 165 and “File handling” on
page 181. Note that the example Fortran program in “Arrays” on
page 173 does not require the built-in functions because both Fortran
and C pass arrays by reference.

For detailed information about the HP ALIAS directive and the %VAL
and %REF built-in functions, see the HP Fortran Programmer's Reference.

170 Chapter 8

Calling C routines from HP Fortran
Case sensitivity

Case sensitivity
Unlike HP Fortran, C is a case-sensitive language. HP Fortran converts
all external names to lowercase, and it disregards the case of internal
names. Thus, for example, the names foo and FOO are the same in
Fortran. C, however, is a case-sensitive language: foo and FOO are
different in C. If an HP Fortran program is linked to a C object file and
references a C function that uses uppercase characters in its name, the
linker will not be able to resolve the reference.

If case sensitivity is an issue when calling a C function from an
HP Fortran program, you have two choices:

• Compile the Fortran program with the +uppercase option, which
forces Fortran to use uppercase for external names.

• Use the HP ALIAS directive to specify the case that Fortran should
use when calling an external name.

It is unusual that all names in the C source file would be uppercase,
which would be the only case justifying the use of the +uppercase
option. Therefore, we recommend using the HP ALIAS directive. This
directive enables you to associate an external name with an external
name, even if the external name uses uppercase characters.

The HP ALIAS directive also has the advantage that you can use it
with the %REF and %VAL built-in functions to specify how the arguments
are to be passed without having to repeat them at every call site.

Chapter 8 171

Calling C routines from HP Fortran
Case sensitivity

Consider the following C source file, which contains a function to sort an
array of integers:

sort_em.c

#include <stdio.h>

void BubbleSort(int a[], int size)
{
 int i, j, temp;

 for (i = 0; i < size - 1; i++)
 for (j = i + 1; j < size; j++)
 if (a[i] > a[j])
 {
 temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }
}

Before a Fortran program can call this function correctly, it must resolve
two issues:

1 The name of the C function contains both uppercase and lowercase
letters.

2 The function expects its second argument (the size of the array) to be
passed by value.

The following HP ALIAS directive handles both issues:

!HP ALIAS bubblesort = 'BubbleSort'(%REF, %VAL)

The name bubblesort is the alias that Fortran will use to refer to the C
function, and the %REF and %VAL built-in functions change Fortran’s
argument-passing conventions to conform to how the C function expects
the arguments to be passed.

The following is an HP Fortran program that uses the HP ALIAS
directive to call the C function correctly.

test_sort.f90

PROGRAM main
! This program is linked with an object file that contains
! a C function with the following prototype declaration:
!
! void BubbleSort(int a[], int size);
!
! The ALIAS directive takes care of the differences
! between C and Fortran regarding case sensitivity
! and argument-passing conventions.

172 Chapter 8

Calling C routines from HP Fortran
Case sensitivity

!HP ALIAS bubblesort = 'BubbleSort'(%REF, %VAL)
INTEGER, PARAMETER :: n = 10
INTEGER, DIMENSION(n) :: num=(/5,4,7,8,1,0,9,3,2,6/)

PRINT *, 'Before sorting: ', num
CALL bubblesort(num, n)
PRINT *, 'After sorting: ', num

END PROGRAM main

Here are the command lines to compile, link, and execute the program,
followed by the output from a sample run:

$ cc -Aa -c sort_em.c
$ f90 test_sort.f90 sort_em.o
$ a.out
 Before sorting: 5 4 7 8 1 0 9 3 2 6
 After sorting: 0 1 2 3 4 5 6 7 8 9

If you use the HP ALIAS directive in many of the Fortran source files
in your program, you may find it convenient to define all of the directives
in one file and include that file in all of the Fortran source files with the
+pre_include=file option. This option takes one argument, file, which
is the name of the file you want to include. All text in file is prepended to
each of the source files specified on the command line, before being
passed to the compiler.

See “File handling” on page 181 for another example of a program that
uses the HP ALIAS directive. The HP Fortran Programmer's Reference
fully describes the %VAL and %REF built-in functions, the +uppercase
and +pre_include options. Th e HP ALIAS directive is discussed in
“HP ALIAS” on page 190.

Chapter 8 173

Calling C routines from HP Fortran
Arrays

Arrays
There are two differences between HP Fortran and C to consider when
passing arrays from Fortran to C:

• In HP Fortran, array subscripts start by default at 1, whereas in C
they always start at 0

• In HP Fortran, multi-dimensional arrays are laid out differently in
memory than they are in C.

The difference in subscript-numbering does not result in any size
discrepancies: an array of 10 elements in Fortran has 10 elements in C,
too. But the subscripts in Fortran will be numbered 1 - 10, whereas in
C they will be numbered 0 - 9. This difference should not require any
change to the normal coding practice for C or for Fortran.

The difference in the way multi-dimensional arrays are laid out is well-
known but more significant: Fortran lays out multi-dimensional arrays
in column-major order, so that the leftmost dimension varies fastest;
whereas C lays out multi-dimensional arrays in row-major order, so
that the rightmost dimension varies fastest.

Figure 3 shows the Fortran and C declarations for a two-dimensional
array of integers, each having the same number of rows and columns.
The boxes under each array declaration represents the memory locations
where each element of the array is stored. As shown, each language
represents the six elements in a different order: the value stored at the
first row and second column is not the same for Fortran as for C.

 Figure 3 Memory layout of a two-dimensional array in Fortran and C

int a[2][3];

INTEGER, DIMENSION(2,3) :: a

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2]

a(1,1) a(2,1) a(1,2) a(2,2) a(1,3) a(2,3)

174 Chapter 8

Calling C routines from HP Fortran
Arrays

To compensate for this difference, the dimensions of the array in either
the C or Fortran code should be declared in the reverse order of the other.
For example, if the array is declared in Fortran as follows:

INTEGER, DIMENSION(3,6) :: my_array

then the array should be declared in C as follows:

int my_array[6][3];

You can change the array declaration in either language, whichever is
more convenient. The important point is that, to be conformable, the
dimensions must be in reverse order.

Below is an example for a three-dimensional array, the first being for a
Fortran declaration.

REAL, DIMENSION(2,3,4) :: x

Below is the same declaration as declared in C.

int x[4][3][2];

pass_array.f90

 PROGRAM main
 ! This program initializes a multi-dimensional array,
 ! displays its contents, then passes it to a C function,
 ! which displays its contents. The C function has the
 ! following declaration prototype:
 !
 ! void get_array(int a[4][2]);
 !
 ! Note that the dimensions are declared in reverse order
 ! in C from the way they are declared in Fortran.
 INTEGER, DIMENSION(2,4) :: my_array = &
 RESHAPE(SOURCE = (/1,2,3,4,5,6,7,8/), SHAPE = (/2,4/))

 PRINT *, 'Here is how Fortran stores the array:'
 DO i = 1, 4
 DO j = 1, 2
 PRINT 10, j, i, my_array(j,i)
 END DO
 END DO

 ! There’s no need to use the %VAL or %REF built-in functions
 ! because both C and Fortran pass arrays by reference.
 CALL get_array(my_array)
10 FORMAT(‘my_array(', I1, ',', I1, ') =', I2)
 END PROGRAM main

Chapter 8 175

Calling C routines from HP Fortran
Arrays

Below is the source file for a HP Fortran program that calls a C function,
passing a two-dimensional array of integers.

The following is the source file for the C function.

get_array.c

#include <stdio.h>
/* get_array: displays the contents of the array argument */
void get_array(int a[4][2])
{
 int i, j;

 printf("\nHere is the same array as accessed from C:\n\n");
 for (i = 0; i < 4; i++)
 for (j = 0; j < 2; j++)
 printf(“a[%d][%d] = %d\n”, i, j, a[i][j]);
}

Here are the command lines to compile, link, and execute the program,
followed by the output from a sample run:

$ cc -Aa -c get_array.c
$ f90 pass_array.f90 get_array.o
$ a.out
 Here is how Fortran stores the array:
my_array(1,1) = 1
my_array(2,1) = 2
my_array(1,2) = 3
my_array(2,2) = 4
my_array(1,3) = 5
my_array(2,3) = 6
my_array(1,4) = 7
my_array(2,4) = 8

Here is the same array as accessed from C:

a[0][0] = 1
a[0][1] = 2
a[1][0] = 3
a[1][1] = 4
a[2][0] = 5
a[2][1] = 6
a[3][0] = 7
a[3][1] = 8

In this example, it is assumed that the C routine has the array size
information already coded into it. If that is not the case, then the
Fortran program must also pass the size as a separate argument, and the
C routine must be changed to accept a second argument.

176 Chapter 8

Calling C routines from HP Fortran
Arrays

For an example of a Fortran program that passes an array and its size as
arguments to a C function, see “Case sensitivity” on page 170. For an
example of a Fortran program that passes character array arguments to
C, see “Passing a string” on page 178.

Chapter 8 177

Calling C routines from HP Fortran
C strings

C strings
C strings differ from Fortran character variables in two important
respects:

• C expects strings to be null-terminated.

• For each character variable or character constant that Fortran passes
to a C routine, it also passes a hidden length argument.

The following sections discuss these differences and explain how to code
for them. The last section includes an example program.

C null-terminated string
Unlike HP Fortran programs written in C expect strings to be null-
terminated; that is, the last character of a string must be the null
character ('\0'). To pass a string from Fortran to C, you must do the
following:

• Declare the character variable that is large enough to include the null
character.

• Explicitly assign the null character to the final element of the
character array or use the concatenation operator, as in the following
example:

CALL csub ('a string'//CHAR(0))

If the Fortran program is going to use a string that has been passed back
to it from C, then either the C function or the Fortran subprogram should
strip off the null character before Fortran tries to use it. The example
program in “Passing a string” on page 178 shows how to do this in C.

178 Chapter 8

Calling C routines from HP Fortran
C strings

Fortran hidden length argument
For each CHARACTER*n argument passed to a Fortran subprogram, two
items are actually passed as arguments:

• The address of the character argument in memory (that is, a pointer
to the argument).

• The argument's length in bytes. This is the “hidden” length argument
that is available to the subprogram from the stack.

To pass a string argument from Fortran to C, you must explicitly prepare
the C function to receive the string address argument and the hidden
argument. The order of the address arguments in the argument list will
be the same in C as in Fortran. The hidden length arguments, however,
will come at the end of the list. If more than one string argument is
passed, the length arguments will follow the same order as the address
arguments, but at the end of the C’s argument list.

Note that both C and Fortran both pass strings by reference. This means
that, if Fortran passes only string arguments to C, you need not use the
%VAL and %REF built-in functions to indicate how the arguments are to
be passed. For information about these functions, see “Argument-passing
conventions” on page 168.

Passing a string
The example program in this section illustrates how to pass a string—
which, in Fortran, is a character variable or constant—to a C function. It
also illustrates how to process a C string so that it can be manipulated in
Fortran.

The program consists of two source files:

• The Fortran source file, which consists of a main program unit that
declares two initialized character variables and passes them to a C
function.

• The C source code, which consists of two functions:

– get_string: receives the two character array arguments from
Fortran and overwrites the strings in the arrays with new strings

Chapter 8 179

Calling C routines from HP Fortran
C strings

– fix_string_for_f90: processes the string in its character array
argument to replace the null-terminating character with a blank
character and to blank-fill the remaining characters. This
processing is necessary so that Fortran can manipulate the
character variable.

The get_string function has two additional arguments in its argument
list, which pick up the hidden string length arguments that Fortran
implicitly passes with each string argument.

The following are example C and Fortran programs.

pass_chars.f90

 PROGRAM main
 ! This program passes to character variables to a C routine,
 ! which overwrites them. This program displays the
 ! character variables before and after the call.

 ! Initialize the character variables and append null
 ! characters so that C can process them.
 CHARACTER(LEN=10) :: first_name = "Pete"//CHAR(0)
 CHARACTER(LEN=15) :: last_name = "Seeger"//CHAR(0)

 ! Note that character variables, like arrays, are passed by
 ! reference in both languages. There’s no need to use the
 ! %REF built-in function, so long as the C routine
 ! provides an extra argument for the "hidden" length
 ! parameter. To suppress passing that parameter, use %REF.
 CALL get_string(first_name, last_name)

 PRINT 20, first_name, last_name

20 FORMAT(/, 'The names passed back to Fortran: ', A, 1X, A)

 END PROGRAM main

get_string.c

#include <stdio.h>
#include <string.h>

void fix_string_for_f90(char s[], int len);

/* get_string: overwrites the string arguments fname and lname;
 * fname_len and lname_len are the hidden length arguments, which
 * are implicitly passed by Fortran with each string argument.
 */
void get_string(char fname[], char lname[], int fname_len,
 int lname_len)
{
 printf(“The names passed to C: %s %s\n", fname, lname);
 printf(“\nEnter the first and last names of a banjo player:

180 Chapter 8

Calling C routines from HP Fortran
C strings

");
 scanf(“%s%s”, fname, lname);

 fix_string_for_f90(fname, fname_len);
 fix_string_for_f90(lname, lname_len);
}

/* fix_string_for_f90: replaces the null at the end of the
string
 * in the character array and th a blank and blank fills the
 * remaining elements up to len; this processing is necessary if
 * the character variable is to be manipulated by Fortran
 */
void fix_string_for_f90(char s[], int len)
{
 int i;

 for (i = strlen(s); i < len; i++)
 s[i] = ' ';
}

Below are the command lines to compile, link, and execute the program,
followed by the output from a sample run.

$ cc -Aa -c get_string.c
$ f90 pass_chars.f90 get_string.o
$ a.out
The names passed to C: Pete Seeger

Enter the first and last names of a banjo player: Wade Ward

The names passed back to Fortran: Wade Ward

Chapter 8 181

Calling C routines from HP Fortran
File handling

File handling
A Fortran unit number cannot be passed to a C routine to perform I/O on
the associated file; nor can a C file pointer be used by a Fortran routine.
However, a file created by a program written in either language can be
used by a program in the other language if the file is declared and
opened within the program that uses it.

C accesses files using HP-UX I/O subroutines and intrinsics. This
method of file access can also be used from Fortran instead of Fortran I/
O.

You can pass file units and file pointers from Fortran to C with the FNUM
and FSTREAM intrinsics. FNUM returns the HP-UX file descriptor
corresponding to a Fortran unit, which must be supplied as an argument;
see “Establishing a connection to a file” on page 160 for information
about file descriptors. FSTREAM returns C's file pointer for a Fortran unit
number, which must also be supplied as an argument.

The following Fortran program calls the write system routine to
perform I/O on a file, passing in a file descriptor returned by FNUM.
(Because of the name conflict between the write system routine and the
Fortran WRITE statement, the program uses the ALIAS directive to avoid
the conflict by referring to write as IWRITE.)

fnum_test.f90

 PROGRAM fnum_test

! Use the ALIAS directive to rename the "write" system routine.
! The built-in functions %VAL and %REF indicate how the
! arguments are to be passed.

!HP ALIAS IWRITE = 'write' (%VAL, %REF, %VAL)

 CHARACTER*1 :: a(10)
 INTEGER :: i, fd, status

! fill the array with x's
 a = 'x'

! open the file for writing
 OPEN(1, FILE='file1', STATUS='UNKNOWN')

! pass in the unit number and get back a file descriptor
 fd = FNUM(1)

! call IWRITE (the alias for the "write" system routine),

182 Chapter 8

Calling C routines from HP Fortran
File handling

! passing in three arguments:
! fd = the file descriptor returned by FNUM
! a = the character array to write
! 10 = the number of elements (bytes) to write
! the return value, status, is the number of bytes actually
! written; if the write was successful, it should be 10
 status=IWRITE(fd, a, 10)

 CLOSE (1, STATUS=’KEEP’)

! open the file for reading; we want to see if the write was
! successful
 OPEN (1, FILE='file1', STATUS='UNKNOWN')

 READ (1, 4) (a(i), i = 1, 10)
4 FORMAT (10A1)
 CLOSE (1, STATUS='DELETE')

 DO i = 1, 10
 ! if we find anything other than x's, the write failed
 IF (a(i) .NE. 'x') STOP 'FNUM_TEST failed'
 END DO

! check write's return value; it should be 10
 IF (status .EQ. 10) PRINT *, 'FNUM_TEST passed'

 END

Below are the command lines to compile, link, and execute the program,
followed by the output from a sample run.

$ f90 fnum_test.f90
$ a.out
 FNUM_TEST passed

The HP Fortran Programmer's Reference describes the FNUM and FNUM
intrinsics and the ALIAS directive. For information about the write
system routine, see the write(2) man page.

Chapter 8 183

Calling C routines from HP Fortran
Sharing data

Sharing data
Fortran programmers have traditionally relied on the common block to
share large amounts of data among different program units. The
convenience offered by the common block is that it can give storage
access to program units that don’t otherwise communicate with each
other, even when they reside in separate files.1

Although C has no common blocks, it does provide external variables,
which can also be used to share data among different parts of a C
program. A variable becomes external when defined outside any
function. To become accessible to a function, the external variable must
be declared without being defined within the function that wants to
access it. (In C, a variable is defined when storage is allocated for it, and
declared when its name and type are stated without any storage
allocation.) To declare a variable in C without defining it, you use the
extern storage class specifier, which tells the linker to look elsewhere
for the definition.

For example, the following statement (assuming that it is made outside
any function) declares and defines the external variable some_data:

int some_data;

The next statement declares some_data without defining it, making it
available to the function in which the declaration is made:

extern int some_data;

Fortran’s common block and C’s extern statement can work together to
enable Fortran program units to share data with an HP C function. The
storage is actually allocated (or in C terminology, defined) in the Fortran
source file. The C source file declares but does not define the name of the
common block, using the extern specifier. The linker resolves the
reference at linktime.

1. However, overreliance on common blocks can make programs diffi-
cult to maintain. For a discussion of the advantages of the
Fortran module over the common block, refer to Chapter 3, “Con-
trolling data storage,” on page 89.

184 Chapter 8

Calling C routines from HP Fortran
Sharing data

Consider the following Fortran statements, which declare an array of
integers and place the array in a common block named globals:

INTEGER, DIMENSION(100) :: global_array
COMMON /globals/global_array

The next statement is the extern statement that references (in C
terminology, declares) the common block, making it available to a
function in the C object file:

extern int globals[100];

Note that the extern specifier references the name of the common block,
globals, not the name of the array. From C’s point of view, the common
block is treated as though it were the array.

The common block to be shared with a C function can contain more than
one data item. To do so, the C source file must declare a structure whose
members match the data items in common. Any C function needing
access to an item in common uses the extern statement to declare a
variable of the structure type. The name of the variable is that of the
common block. To access an individual data item, the function uses the
C notation for referencing members of a structure.

HP Fortran uses the same packing and alignment rules when laying out
common blocks in memory that HP C uses for structures. However, the
programmer must be sure to declare the number, types, and sizes of the
structure members in the same order as they appear in the common
block. Refer to Table 28 on page 162 for the data type correspondences
for both languages.

The following example program consists of two source files that contain
the Fortran main program unit and a C function called from Fortran.
The main program unit specifies a common block having two double-
precision variables. It writes to one of the variables and calls the C
function. The C function reads the variable written by Fortran and
writes to the other one. After the call returns, Fortran reads both
variables.

Chapter 8 185

Calling C routines from HP Fortran
Sharing data

The following are examples of Fortran and C source files.

shared_common.f90

 PROGRAM main
 ! This program uses the common block to share data with
 ! the C function get_nlog. C uses a structure type to
 ! declare the same items in common.

 REAL(KIND=8) :: num, nlog_of_num
 COMMON /globals/num, nlog_of_num

 ! a header for the table that is printed by the following
 ! DO loop
 PRINT *, 'Number Natural Log of Number'
 PRINT *, '-------+-----------------------'

 ! At each iteration, write a value to the common block
 ! variable num, call the C function get_nlog, and
 ! print the contents of both common block variables
 ! to the screen.
 DO num = 2.0, 10.0
 CALL get_nlog()
 PRINT 10, num, ‘|’, nlog_of_num
 END DO

10 FORMAT(3X, F3.0, 2X, A, 8X, F5.2)

 END PROGRAM main

shared_struct.c

#include <stdio.h>
#include <math.h>

/* declare a structure whose members match the data items
 * in the Fortran common block
 */
struct glob
{
 double num;
 double nlog_of_num;
} globals;

/* get_nlog: reads the value in globals.num, passes it
 * to log() in the math library, and writes the write the
 * return value to globals.nlog_of_num
 */
void get_nlog(void)
{
 /* declare the name of the common block defined in the
 * Fortran file
 */
 extern struct glob globals;
 globals.nlog_of_num = log(globals.num);
}

186 Chapter 8

Calling C routines from HP Fortran
Sharing data

Below are the command lines to compile, link, and execute the program,
followed by the output from a sample run. The -lm option at the end of
second command line tells the linker to look in the math library for the
log function:

$ cc -Aa -c shared_struct.c
$ f90 shared_common.f90 shared_struct.o -lm
$ a.out
 Number Natural Log of Number
 -------+-----------------------
 2. | 0.69
 3. | 1.10
 4. | 1.39
 5. | 1.61
 6. | 1.79
 7. | 1.95
 8. | 2.08
 9. | 2.20
 10. | 2.30

See the HP Fortran Programmer's Reference for a full description of the
COMMON statement.

187

9 Using Fortran directives

Compiler directives are commands within the source program that affect
how the program is compiled. They are similar in function to command-
line options, but generally provide more local control. The directives
provided by HP Fortran use a syntax that causes them to be treated as
comments (and so ignored) when ported to another processor or when
incorrectly formatted. The following sections describe the HP Fortran
directives.

HP Fortran also recognizes C Preprocessor (cpp) directives. If you
compile with the +cpp=yes option or if the name of the source ends in
the .F extension, the source files are first passed to the C preprocessor
for processing. For information about the C preprocessor, refer to cpp(1)..

188 Chapter 9

Using Fortran directives
Directive syntax

Directive syntax
The syntax for specifying directives in HP Fortran source files varies
according to the type of directive:

C preprocessor directives take the form:
#[line]cpp-directive
where cpp-directive is ANSI C-conforming except that
the line keyword is optional, making it compatible
with the HP C compiler.

HP Fortran compiler directives take the form:
comment-character HP directive-name
where comment-character is ! in free-source format or
C, !, or * in fixed-source format; and directive-name is
one of the directives described in this chapter.
There must be no space between comment-character
and HP. In fixed-source format, comment-character
must be in column 1.

Chapter 9 189

Using Fortran directives
Using HP Fortran directives

Using HP Fortran directives
HP Fortran provides a number of compiler directives that are useful for
controlling certain functions (for example, optimization) within the
source file. Table 31 lists and briefly describes these directives; they are
listed in the order in which they appear in the sections below.

Table 31 HP Fortran directives

In files that use free format, directives must start with the comment
character !. In fixed format, they must start with the comment
character C, *, or ! in column 1. Keywords and any arguments must be
delimited by at least one space character, as in the following:

!HP OPTIMIZE ON

Using the comment character as the directive prefix ensures that, unless
the compiler is specifically looking for the directive, it is otherwise
treated as a comment and ignored.

The following sections describe each of the HP Fortran directives.

Directive Function

HP ALIAS Associates the name of a subroutine,
function, entry, or common block with an
external name.

HP CHECK_OVERFLOW Generates code to trap integer overflows.

HP LIST Controls output of source lines in listing
file.

HP OPTIMIZE Controls optimization within the source
file.

190 Chapter 9

Using Fortran directives
Using HP Fortran directives

HP ALIAS
The ALIAS directive associates the name of a subroutine, function, entry,
or common block with an external name and specifies the parameter-
passing conventions of routines written in other languages.

Syntax !HP ALIAS name [= external-name] [(arg-pass-mode-list)]

name
is the name used by the program to refer to a
subroutine, function, or procedure entry point—but not
to an internal subroutine. If name is enclosed by
slashes, it is a common block name.

external-name
is a character constant that specifies a standard
symbolic name.

arg-pass-mode-list
is used only when name is that of a procedure that
takes arguments. The items in the list specify how the
corresponding actual argument are to be passed. The
items can be either of the following built-in functions:

• %VAL: pass the value of the actual argument

• %REF: pass the address of the actual argument

There must be as many items in the list as there are
arguments in the procedure, they must be separated by
commas, and they must correspond positionally to the
arguments.

Description and
restrictions

The HP ALIAS directive serves two purposes:

• It provides a way to associate the name used by your program when
referring to a subroutine, function, entry, or common block with a
distinct external name. This feature is especially useful when you
want to access a variety of different graphics device drivers from the
same source code so that different hardware configurations can be
supported.

• When used in conjunction with the %VAL and %REF built-in functions,
it provides a way to direct the compiler to use the appropriate
parameter passing conventions to communicate with routines written
in other high-level languages.

Chapter 9 191

Using Fortran directives
Using HP Fortran directives

external-name should never conflict with the name of an HP-UX system
routine (described in sections 2 and 3 of the HP-UX Reference) or with a
Fortran library routine (for example, OPEN, READ, or CLOSE). The
HP ALIAS directive applies to subroutines, entries, and functions that
are used externally. It does not apply to the main program unit.

%VAL is a built-in function that specifies that the value of the actual
argument is to be passed to the called procedure. You can use this
parameter with all types of arguments. However, when used with a
procedure name, it has no effect; a pointer to the procedure is still
passed.

%REF specifies that the address of the actual argument is to be passed to
the called procedure. For non-character arguments, this is the default.
For character arguments, %REF disables the passing of the hidden length
parameter.

When %VAL and %REF are used with the CALL statement, they override
the specification in the HP ALIAS directive. For detailed information
about these built-in functions and their use in the CALL statement, see
the HP Fortran Programmer’s Reference..

Note the following restrictions:

• Attempts to redefine HP ALIAS names generate warning
messages.

• The compiler always uses external-name exactly as it is entered. No
case transformations occur, and no underscore is appended. The
+ppu and +uppercase command-line options do not apply to
external names specified by the HP ALIAS directive.

Local and global usage The HP ALIAS directive can be used either locally or globally, as
follows:

• The HP ALIAS directive has local application only—that is, its
effect is limited to a particular program unit—if it appears within the
boundaries of that program unit. To have local application only, the
directive must appear after any PROGRAM, SUBROUTINE, or FUNCTION
statement and before the first occurrence of name in the target
program unit.

• The HP ALIAS directive has global application—that is, it applies
to all subsequent program units—if it appears outside and before the
boundaries of those program units to which it is to apply.

192 Chapter 9

Using Fortran directives
Using HP Fortran directives

Examples The HP ALIAS directive is especially useful when calling a routine in
a language that uses different conventions than Fortran. The following
examples illustrate how to use the HP ALIAS directive to resolve
differences with:

• Case sensitivity

• Argument-passing conventions

• Strings

Case sensitivity

Names in HP Fortran are not case sensitive; that is, the compiler
converts all names to lowercase. This means that if you reference a
routine in a language that is case sensitive and the routine name
contains uppercase letters, a call to that routine in HP Fortran will
result in an unresolved reference—unless you use the HP ALIAS
directive to redefine the name in all lowercase letters, as in the following
example:

!HP ALIAS printnames = 'PrintNames'

Argument-passing conventions

By default, HP Fortran assumes that all parameters in a subroutine or
function call are passed by reference; that is, the call passes the
addresses of the parameters, not their values. On the other hand, C code
assumes that parameters are passed by value; that is, the current value
of the actual parameter is passed to the called routine. Without the
HP ALIAS directive, it would be difficult to call a C routine from a
Fortran program.

For example, suppose you want to call the system routine calloc (see
the malloc(3C) man page) to obtain dynamic memory. The man page
describes the calling sequence as:

char *calloc(unsigned nelem, unsigned elsize);

Chapter 9 193

Using Fortran directives
Using HP Fortran directives

It would be difficult, using standard Fortran constructs, to provide actual
parameters corresponding to nelem and elsize because HP Fortran
always passes addresses. The HP ALIAS directive can solve this
problem by directing the compiler to generate call-by-value actual
parameters:

!HP ALIAS calloc(%VAL, %VAL)

Strings

Programs written in C expect strings to be terminated with the null
character ('\0'). But HP Fortran programs pass a hidden length
parameter to indicate the end of a string argument. Thus, if you want to
pass a string from HP Fortran to a C language function, you must
explicitly append the null to the string and suppress the hidden length
parameter. The HP ALIAS directive enables you to pass the string
from Fortran to C. For example, consider the following routine:

pr_str.c

void c_rout(char *s)
{
 printf(“%s\n”, s);
}

The ALIAS directive in the following program enables the string to be
passed to c_rout:

pass_str.f90

PROGRAM main
!HP ALIAS c_rout(%REF)
 CHARACTER(LEN=10) name
 name = 'Charlie'
! Append a null to the string so that C can handle it properly
 CALL c_rout(name//char(0))
END PROGRAM main

Here are the command lines to compile and link both files, and to execute
the program, along with the output from a sample run:

$ cc -Aa -c pr_str.c
$ f90 pass_str.f90 pr_str.o
$ a.out
Charlie

For more information For detailed information about the %REF and %VAL built-in functions, see
the HP Fortran Programmer’s Reference.

194 Chapter 9

Using Fortran directives
Using HP Fortran directives

HP CHECK_OVERFLOW
The HP CHECK_OVERFLOW directive generates code to trap when an
overflow occurs in integer arithmetic. By default, integer overflow is
ignored.

Syntax !HP CHECK_OVERFLOW INTEGER [ON | OFF]

ON. causes the compiler to generate code to trap integer
overflow exceptions.

OFF. causes the compiler not to generate code to trap integer
overflow exceptions.

Description and
restrictions

If you use HP CHECK_OVERFLOW with the ON statement, you can cause
your program to ignore the overflow, abort on the overflow, or branch to a
trap subroutine. If this directive is not used, the ON statement has no
effect on integer overflow errors.

This directive can appear anywhere in your program. It stays in effect
until a subsequent HP CHECK_OVERFLOW directive changes the status.

For more information For more information about the ON statement see the
HP Fortran Programmer’s Reference.

HP LIST
The HP LIST directive turns on or off the inclusion of subsequent
source lines in the listing output.

Syntax !HP LIST [ON | OFF]

ON. enables the inclusion of source lines in the listing file.

OFF. disables the inclusion of source lines in the listing file.

Description and
restrictions

The HP LIST directive controls which source lines are output to the
listing file. This directive is effective only when the source files are
compiled with the +list option. It may appear anywhere in the source
file.

If the HP LIST OFF directive occurs in a file that is compiled with the
+list option, the listing will contain everything in the source file up
through the directive. The HP LIST OFF directive applies to the rest
of the file, or until a HP LIST ON directive is encountered.

Chapter 9 195

Using Fortran directives
Using HP Fortran directives

Example The HP LIST directive is especially useful for disabling the listing of
include files, as in the following example:

!HP LIST OFF
INCLUDE ”/my_stuff/some_generic_declarations.h”
!HP LIST ON

For more information See “Incompatibilities with HP FORTRAN 77” on page 202 for
information about the +list option.

HP OPTIMIZE
The HP OPTIMIZE directive enables or disables the level of
optimization that was specified on the command line.

Syntax !HP OPTIMIZE [ON | OFF]

ON. enables the level of optimization specified on the
command line.

OFF. disables the level of optimization specified on the
command line.

This directive is effective for all program units that follow it in your
program. It should therefore be placed outside and before the program
units it is to affect. If you insert this directive inside a program unit, it
will have no effect on that program unit, only on those that follow.

Description and
restrictions

The HP OPTIMIZE directive allows you to determine which areas of
your program that the optimizer will process. Specifying
HP OPTIMIZE OFF causes the following source lines not to be
optimized. HP OPTIMIZE ON re-enables optimization for the
following source lines.

This directive is effective only if you have used either the -On or +On
option when you compiled the program. If you have not specified either
option, both HP OPTIMIZE ON and HP OPTIMIZE OFF will give
you level 0 optimization.

For more information For information about the -On and +On options HP OPTIMIZE
directive is also discussed in the HP Fortran Programmer’s Guide.

196 Chapter 9

Using Fortran directives
Compatibility directives

Compatibility directives
HP Fortran supports the compiler directives listed in Table 32. These
directives are provided for compatibility with programs developed on the
platforms listed in the table.

Table 32 Compatibility directives recognized by HP Fortran

In fixed format, each directive must be preceded by the comment
character C, !, or * and must begin in column 1 of the source file. In free
format, the directive must be preceded by the Fortran comment
character (!).

If an option or argument is included with the directive name, the
compiler ignores the directive.

The following sections describes these directives in detail.

Vendor Directive

Cray DIR$ NO SIDE EFFECTS

DIR$ [NO]CONCUR

DIR$ IVDEP

FPP$ NODEPCHK

KAP *$* [NO]CONCURRENTIZE

$ [NO]VECTORIZE

VAST VD$ NODEPCHK

Chapter 9 197

Using Fortran directives
Compatibility directives

Controlling vectorization
HP Fortran can vectorize eligible program loops that operate on vectors.
This optimization causes the compiler to replace the loops with calls to
selected routines in the Basic Linear Algebra Subroutine (BLAS) library.
You can use the *$* [NO]VECTORIZE directive to enable or disable
vectorization. The compiler considers the *$* VECTORIZE directive as a
request to vectorize a loop. If the compiler determines that it cannot
profitably or safely vectorize the loop, it ignores the directive.

To use the vectorization directive, you must compile and link with the
+Ovectorize option. The directive applies to the beginning of the next
loop and remains in effect for the rest of the program unit or until
superseded by a later directive. For more information about this option,
see the Parallel Programming Guide for HP-UX Systems.

Controlling parallelization
HP Fortran can parallelize eligible program loops by distributing
different iterations of the loop to different processors for parallel
execution on a multiprocessor machine. The following directives provide
local control over parallelization:

• *$* [NO]CONCURRENTIZE

• DIR$ [NO]CONCUR

These directives have both enable and disable versions:
$ CONCURRENTIZE and DIR$ CONCUR enable parallelization;
$ NOCONCURRENTIZE and DIR$ NOCONCUR disable parallelization.

The parallelization directives are effective only if you have compiled and
linked the program with the +Oparallel and the +O3 option. Each
directive applies to the beginning of the next loop and remains in effect
for the rest of the program unit or until superseded by a later directive.

The compiler considers the *$* CONCURRENTIZE and DIR$ CONCUR
directives as requests to parallelize a loop. If the compiler cannot
profitably or safely parallelize the loop, it ignores the directive. For
information about conditions that can inhibit parallelization, see the
Parallel Programming Guide for HP-UX Systems.

198 Chapter 9

Using Fortran directives
Compatibility directives

Controlling dependence checks
The compiler will not parallelize a loop where it detects a possible data
dependence, even if you use an option or directive that specifically
requests parallelization. However, if you know that there is no actual
data dependence in the loop in question, you can insert one of the
following directives just before the loop:

• DIR$ IVDEP

• FPP$ NODEPCHK

• VD$ NODEPCHK

The effect of these directives is to cause the compiler to ignore data
dependences within the next loop when determining whether to
parallelize. The DIR$ IVDEP directive differs from the other two in that
it causes the compiler to ignore only array-based dependences, but not
scalar-based. All three directives apply to the next loop only.

Using these directives to incorrectly assert that a loop has no data
dependences can result in the loop producing wrong answers.

Other conditions may limit the compiler's efforts to parallelize, such as
the presence of the VD$ NOCONCUR directive. Such conditions may
prevent parallelization even if you use a directive to disable dependence
checking.

Chapter 9 199

Using Fortran directives
Compatibility directives

Controlling checks for side effects
The compiler will not parallelize a loop with an embedded call to a
routine if the compiler finds that the routine has side effects. However, if
you know that a routine that is called inside of a loop does not have side
effects, you can insert the DIR$ NO SIDE EFFECTS directive in front of
the loop to force the compiler to ignore any side effects in the referenced
routine when it determines whether to parallelize the loop.

This directive affects only the immediately following loop.

NOTE Using this directive to incorrectly assert that a routine has no side effects can
result in wrong answers when a call to the routine is embedded in a loop.

Cray's implementation of this directive requires that it precede any
executable statement or statement function. HP Fortran does not
enforce this requirement.

200 Chapter 9

Using Fortran directives
Compatibility directives

201

10 Migrating to HP Fortran

A major feature of HP Fortran is its compatibility with standard-
conforming HP FORTRAN 77. Both source files and object files from
existing HP FORTRAN 77 applications can be migrated to
HP Fortran with comparatively little effort. However, some command-
line options and nonstandard extensions in HP FORTRAN 77 programs
may have to be changed to compile and execute correctly under
HP Fortran.

To smooth the migration path, HP Fortran includes a number of
extensions that are compatible with HP FORTRAN 77. HP Fortran also
includes extensions that are designed to ease the job of porting
applications from other vendors' Fortran dialects. For a summary list of
all HP Fortran extensions, see the HP Fortran Programmer's Reference.
For information about porting other vendors’ Fortran programs to
HP Fortran, see “Porting to HP Fortran” on page 219.

This chapter discusses the following topics:

• Incompatibilities with HP FORTRAN 77

• Migration issues

• Approaches to migration

202 Chapter 10

Migrating to HP Fortran
Incompatibilities with HP FORTRAN 77

Incompatibilities with HP FORTRAN 77
The following sections describe known incompatibilities between
HP Fortran and HP FORTRAN 77. These incompatibilities include both
source-level and object-code incompatibilities. A subset of these are
detected by the HP fid tool, which is described in “Fortran
incompatibilities detector” on page 216.

Command-line options not supported
The HP Fortran compiler does not accept the f77 command-line options
listed in Table 33, and the f77 options listed in Table 34 have been
renamed for f90. In addition, HP Fortran code may not link correctly
with HP FORTRAN 77 object files that were compiled with these
options; see “Object code issues” on page 213.

Table 33 f77 options not supported by f90

Table 34 f77 options replaced by f90 options

+800 +e +N

+A +I[2|4] +R

+A3 +L8 +U

+A8 +LA -w66

+apollo -lisam

+E +mr

f77 option f90 replacement

-A +langlvla

-a +langlvla

+autodblpad +autodbla

+B +escape

-D +dlines

Chapter 10 203

Migrating to HP Fortran
Incompatibilities with HP FORTRAN 77

Floating-point constants
The HP Fortran compiler differs from HP FORTRAN 77 in its handling
of floating-point constants. The HP Fortran compiler conforms to the
standard: a single-precision constant is treated as a single-precision data
item in all situations, regardless of how many digits were supplied when
specifying it. HP FORTRAN 77 actually scans and saves constants
internally in double precision. This behavior can produce slightly
different results.

In HP Fortran, the statement

DOUBLE PRECISION x = 3.1415926535

will initialize x to only 32 bits worth of the constant because it interprets
the constant as single precision. Under HP Fortran, a constant must
have a D exponent or a KIND suffix to be interpreted as double precision.

+es +extend_source

-F +cpp_keep

-L +list

-onetrip +onetrip

+Q +pre_include

+s +langlvla

+T +fp_exception

+ttyunbuf +nottybuf

-U +uppercase

-u +implicit_none

-V +lista

a. Does not fully replace.

f77 option f90 replacement

204 Chapter 10

Migrating to HP Fortran
Incompatibilities with HP FORTRAN 77

In programs that use double precision exclusively, you should consider
using the +real_constant=double option, which causes real constants
to default to double precision. For more information, refer to “Controlling
data storage” on page 89.

Intrinsic functions
The Fortran 90 standard has introduced new intrinsics that may collide
with function or subroutine names in FORTRAN 77 code. You can
resolve such collisions by declaring all procedures that you have
written—but especially those that have the same name as nonstandard
HP Fortran intrinsics—with the EXTERNAL statement. For a list of
nonstandard HP Fortran intrinsics, see Table 41 on page 224.

Also, HP FORTRAN 77 allows intrinsics to accept a wider variety of
argument types than HP Fortran does. For example, in
HP FORTRAN 77 the MAX and MIN intrinsics can take arguments of
different types, while HP Fortran follows the standard and requires all
arguments to be of the same type. The HP Fortran version of the TIME
intrinsic takes a CHARACTER* argument; it will not accept an integer.
Other intrinsics are similarly affected.

For a full description of all HP Fortran intrinsics, refer to the
HP Fortran Programmer's Reference.

Procedure calls and definitions
When defining a procedure or making a procedure call,
HP Fortran makes the following requirements, which HP FORTRAN 77
overlooks:

• Function references must include the parentheses for the argument
list, even when no arguments are supplied. For example, if foo is a
user-defined function returning CHARACTER*10, HP FORTRAN 77
permits LEN(foo) and returns 10. HP Fortran requires
LEN(foo()).

• The argument list must not contain any extraneous commas, which
HP FORTRAN 77 allows as “placeholders” for missing arguments.
For example, the following is acceptable to f77 but not f90:

call foo (a,)

To specify optional arguments in HP Fortran, use the OPTIONAL
statement.

Chapter 10 205

Migrating to HP Fortran
Incompatibilities with HP FORTRAN 77

• The SYSTEM INTRINSIC directive, by which HP FORTRAN 77
determines interfaces, is not supported by HP Fortran.

• In HP Fortran, recursive procedures must be so declared with the
RECURSIVE keyword; HP FORTRAN 77 allows recursive procedures
by default.

Data types and constants
The following HP FORTRAN 77 extensions for data types and constants
are not supported by HP Fortran:

• Double precision as the default storage for floating-point constants;
see “Floating-point constants” on page 203.

• I and J integer suffixes. To express the HP FORTRAN 77 constant
10I (or I*2) in HP Fortran, use 10_2; for 10J (or J*4), use 10_4.

• Use of the 8#n and 16#n for octal and hex constants, respectively. In
HP Fortran, use O"n" for octal constants and Z"n" for hexadecimal
constants.

• BOZ constants (that is, constants in binary, octal, or hexadecimal
format) in COMPLEX expressions.

• Non-integer array bounds and character length specifiers.

• Constant expressions that contain the ** (exponentiation) operator,
as in PARAMETER (RV=1**1.2).

• Use of the PARAMETER statement without parentheses, as in

PARAMETER i = 1

In free format, f90 treats this statement as an error. In fixed format,
f90 treats it as an assignment, identical to:

PARAMETERi = 1

In HP Fortran, use PARAMETER (i=1) instead.

• Use of the DATA statement to initialize integers with strings, as in:

DATA i /"abcd"/

206 Chapter 10

Migrating to HP Fortran
Incompatibilities with HP FORTRAN 77

• Use of COMPLEX(16) temporaries. For example, given the
declarations:

COMPLEX(KIND=8) :: foo
REAL(KIND=16) :: bar

the expression foo**bar is legal in HP FORTRAN 77 but not in
HP Fortran. (HP FORTRAN 77 coerces COMPLEX(16) entities to
COMPLEX(8) in order to continue the computation.)

Given the previous declarations, the following is acceptable in
HP Fortran:

foo**REAL(bar, 8) ! foo**bar

See the HP Fortran Programmer's Reference for information about
the REAL intrinsic.

Input/output
The following I/O specifiers are recognized by the OPEN statement and by
other I/O statements in HP FORTRAN 77 but are not supported in
HP Fortran:

• ACCESS=expr1, where expr1 is a constant expression other than
DIRECT or SEQUENTIAL.

• IOSTAT=

• KEY=

• NAME=

• READONLY

• STATUS=expr2, where expr2 is a constant expression other than OLD,
NEW, UNKNOWN, REPLACE, or SCRATCH.

• TYPE=

In general, HP FORTRAN 77 allows more specifiers (and more options to
specifiers) than does HP Fortran. There are additional differences
between the HP FORTRAN 77 version of the OPEN statement and the
HP Fortran version; compare the description of OPEN in the HP Fortran
Programmer's Reference with that in the HP FORTRAN/9000
Programmer's Reference.

Chapter 10 207

Migrating to HP Fortran
Incompatibilities with HP FORTRAN 77

In HP FORTRAN 77, namelist-directed output character strings are
always quote-delimited; how and whether such strings are delimited in
HP Fortran depends on the DELIM= specifier. Also, HP FORTRAN 77
allows the NAMELIST statement to appear after executable statements;
HP Fortran does not. For more information about the NAMELIST
statement, see the HP Fortran Programmer's Reference.

Directives
Only a small number of the compiler directives from HP FORTRAN 77
are supported under HP Fortran. These are:

• ALIAS

• CHECK_OVERFLOW

• LIST

• OPTIMIZE

• SHARED_COMMON

The syntax and functionality of individual directives has also changed;
for detailed information about the HP Fortran directives, see the
HP Fortran Programmer's Reference.

All unsupported directives should be deleted or replaced by HP Fortran
code that results in the same functionality (see Table 35 on page 210).

Miscellaneous
Following are miscellaneous incompatibilities between HP Fortran and
HP FORTRAN 77:

• The syntax and functionality of the HP Fortran version of the ON
statement is different from the HP FORTRAN 77 version. For
example, ON EXTERNAL and ON INTERNAL are not supported in
HP Fortran. For information about using the ON statement, see the
“Using the ON statement” on page 119.

• HP FORTRAN 77 accepts statement functions that convert
arguments; HP Fortran does not.

• HP FORTRAN 77 accepts the { character as comment syntax;
HP Fortran does not.

208 Chapter 10

Migrating to HP Fortran
Incompatibilities with HP FORTRAN 77

• HP FORTRAN 77 accepts a PROGRAM statement with no name;
HP Fortran requires the name.

• HP FORTRAN 77 extends the PROGRAM statement to enable access to
command-line arguments; HP Fortran does not. For information
about how to use intrinsics to access command-line arguments, see
“Accessing command-line arguments” on page 156.

• HP FORTRAN 77 supports arrays up to rank 20; HP Fortran
supports arrays up to rank 7.

• HP FORTRAN 77 accepts an expression like + -A, but HP Fortran
generates a syntax error. Use +(-A) instead.

• HP FORTRAN 77 does not print leading zeroes in floating-point
numbers; HP Fortran does. This behavior is equivalent to compiling
an HP FORTRAN 77 program with the +E4 option (note that this
option is not supported by f90).

• In HP FORTRAN 77, integers that overflow (through initialization or
constant folding) are replaced with the maximum value for that type.
If HP Fortran detects integer overflow, it treats it as an error; if it
does not detect it, the overflow value is truncated at runtime.

Chapter 10 209

Migrating to HP Fortran
Migration issues

Migration issues
Migration issues fall into four general categories:

• Source code issues

• Command-line option issues

• Object code issues

• Data file issues

Source code issues
For standard-conforming HP FORTRAN 77 code, migration to
HP Fortran can be as simple as recompiling with the f90 command. The
f90 command accepts source files with the extensions .f and .F (among
others).

However, source code is likely to be the main obstacle on the migration
path to HP Fortran. The reason is that HP FORTRAN 77 supports a
number of compiler directives and intrinsic functions, some of which are
supported by HP Fortran, but others of which are either unsupported or
have changed. The following sections discuss how to change directives
and intrinsics when migrating HP FORTRAN 77 source code to
HP Fortran.

NOTE HP FORTRAN 77 accepts (or forgives) a number of common but
nonstandard programming practices that HP Fortran does not. These
nonstandard practices as well as all known incompatibilities between
HP FORTRAN 77 and HP Fortran are listed in “Incompatibilities with
HP FORTRAN 77” on page 202.

Directives
HP FORTRAN 77 supports more than seventy directives; of these, only a
handful are supported by HP Fortran; see “Directives” on page 207, for
the directives that are supported and for the new directive syntax. Note
that, except for the LIST directive, the HP Fortran directives have more
limited functionality than their HP FORTRAN 77 counterparts; see the
HP Fortran Programmer's Reference.

210 Chapter 10

Migrating to HP Fortran
Migration issues

Although most of the HP FORTRAN 77 directives are not supported by
HP Fortran, some of their functionality is available through command-
line options; see Table 35.

Table 35 HP FORTRAN 77 directives supported by f90 options

HP FORTRAN 77
directive

HP Fortran
option Remarks

ANSI +langlvl=f90 Applies to Fortran 90 instead of
FORTRAN 77.

ASSEMBLY +asm

AUTODBL DBL +autodbl[4]

AUTODBL OFF +noautodbl

CONTINUATIONS not available Obsolete; the functionality enabled by
the directive is now the default.

DEBUG -g

IF/ELSE/ENDIF not available Use C preprocessor (cpp) directives.

GPROF (ON) +gprof

GPROF OFF +nogprof

HP_DESTINATION +DA or +DS

INCLUDE Use the Fortran 90 INCLUDE line.

INIT +Oinitcheck Option also saves all symbols.

LIST_CODE +asm

LONG +autodbl[4] Option also affects reals.

LOWERCASE +[no]uppercase Lowercase is default.

NLS +nls

ONETRIP +[no]onetrip

POSTPEND +[no]ppu

RANGE (ON) +check=all or -C

Chapter 10 211

Migrating to HP Fortran
Migration issues

Intrinsic functions
HP Fortran supports most of the intrinsics that HP FORTRAN 77 offers,
and more. In addition, most of these intrinsics are available in
HP Fortran without having to activate them with compiler directives or
command-line options (as with HP FORTRAN 77).

With the larger number of available intrinsics in HP Fortran, there is the
risk of name collisions with user-defined functions in existing
HP FORTRAN 77 source code. Use of the EXTERNAL statement can
prevent such collisions. Also, many HP FORTRAN 77 intrinsics accept
additional (nonstandard) argument types; HP Fortran is more standard-
conforming in this regard.

If the program you are migrating from HP FORTRAN 77 to HP Fortran
calls libU77 routines in the BSD 3f library, the names of some of those
routines may clash with names of HP Fortran intrinsics. Table 36 on
page 212 lists the names of libU77 routines and intrinsic procedures
that are the same. If your HP FORTRAN 77 program calls any of these
libU77 routines, you should declare the routine with the EXTERNAL
statement to get the libU77 routine; otherwise, the compiler will
attempt to select the corresponding intrinsic procedure. (The f90 option
that links in the library of libU77 routines is +U77.

RANGE OFF +check=none

SAVE_LOCALS (ON) +save

SAVE_LOCALS OFF +nosave

SET -D or -U Use the C preprocessor #define
directive.

STANDARD_LEVEL ANSI +langlvl=f90 Applies to Fortran 90 instead of
FORTRAN 77.

SYMDEBUG -g

UPPERCASE +[no]uppercase Lowercase is the default.

WARNINGS -w

HP FORTRAN 77
directive

HP Fortran
option Remarks

212 Chapter 10

Migrating to HP Fortran
Migration issues

Table 36 Conflicting intrinsics and libU77 routine names

Refer to the HP Fortran Programmer's Reference for information about
all of the HP Fortran intrinsics and the libU77 routines.

Command-line option issues
Command-line options can become a migration issue in two ways:

• When you compile a program with the HP Fortran compiler, using an
f77 command line. If the command line contains an unsupported
f77 option, f90 will flag the option with an error message.

Table 37 lists the f77 and f90 that have the same functionality but
different names. See Table 33 on page 202 for a list of f77 options
that are not supported by f90 and Table 34 on page 202 for a list of
f77 options that have been replaced by f90 options.

• When you execute a program that consists of a mix of object files that
have been created by f77 and f90. The problem here is that,
although the object files may have been successfully linked, they may
not be compatible. If they were incompatible, the resulting
executable could behave unexpectedly or produce wrong results.
Migration problems caused by incompatible object files are unusual
but more difficult to detect and are discussed in the next section.

FLUSH IARGC SYSTEM

FREE IDATE TIME

GETARG LOC

GETENV MALLOC

Chapter 10 213

Migrating to HP Fortran
Migration issues

Table 37 f77 options supported by f90

Object code issues
Some migration problems do not manifest themselves until runtime,
when the program behaves unexpectedly or produces incorrect results.
Such problems can occur when incompatible HP FORTRAN 77 object
files and HP Fortran object files are linked together.

Although the format of object files generated by f77 is compatible with
the format of object files generated by f90, individual data items within
the f77-generated file may not be. Problems with migration can occur if

f77
option f90 option function

-C +check=all Perform runtime subscript checking

-G +gprof Prepare for profiling with gprof

-K +save Use static storage for locals instead of stack

-N +noshared Mark linker output unshared

-n +shared Mark linker output shared

-p +prof Prepare for profiling with prof

-Q +nodemand_load Do not mark linker output demand load

-q +demand_load Mark linker output demand load

-R4 +real_constant=single Make single precision the default for all single-
precision constants

-R8 +real_constant=double Make double precision the default for all single-
precision constants

-S +asm Generate assembly listing

-s +strip Strip symbol table information from linker output

-Y +nls Enable Native Language Support

+Z +pic=long Generate position-independent code (large model)

+z +pic=short Generate position-independent code (small model)

214 Chapter 10

Migrating to HP Fortran
Migration issues

the HP FORTRAN 77 object files represent data in a nonstandard form.
For example, HP Fortran does not allow misaligned data or nonstandard
logical representations, whereas HP FORTRAN 77 does.

Procedure interfaces, on the other hand, usually do not present
problems, so long as the procedures are properly defined and called in
the HP FORTRAN 77 source code. That is, as long as the definition and
call match in argument types, return types, and alternate return
capability, the HP Fortran compiler can do the appropriate conversions,
copying, etc., to make the calls work.

To resolve object-code incompatibilities, you will need access both to the
source file and to the f77 command line that was used to generate the
HP FORTRAN 77 object file. Examine the source file for directives that
are not supported by HP Fortran, such as the $LOGICAL directive. See
“Directives” on page 207 for a list of the directives that are supported.
Also, look over the f77 command line for any of the unsupported options
that are listed in Table 33 on page 202.

If you find object-code incompatibilities, you should change the source
code and recompile with the f90 command.

Data file issues
In general, data files are the easiest files to migrate because the data
files produced by the two Fortrans are compatible. However, problems
can occur because of misaligned data and data types that are not
supported under HP Fortran. For example, HP FORTRAN 77 permits
misaligned data, especially when working with the structure extension.
Also, HP FORTRAN 77 accepts nonstandard representations of logicals.
Both examples can result in data files that are incompatible with
HP Fortran.

To resolve problems with incompatible data files, examine the source file
of the program that generated the data file as well as the command line
that was used to compile the source file, following the suggestions
discussed in “Object code issues” on page 213.

Chapter 10 215

Migrating to HP Fortran
Approaches to migration

Approaches to migration
The most direct (and painstaking) approach to migrating an
HP FORTRAN 77 program so that it will compile and execute correctly
under HP Fortran is to make a clean sweep through the original source
code, removing all extensions and rewriting all nonstandard
programming practices to conform to the Fortran 90 standard. The
result will be a highly portable program.

The disadvantage of the “clean-sweep” approach is that it may require a
considerable expense of time and work that may not even be necessary.
Many HP FORTRAN 77 extensions are also supported under
HP Fortran. The only changes that you must make to the source are to
remove or re-code the parts of the program that use unsupported or
incompatible language extensions.

Although the task of migrating an HP FORTRAN 77 program to
HP Fortran can be done manually, there are several utilities that can
help to automate the search for incompatibilities. These utilities
(including sources of information about migrating to Fortran 90) are
described in the following sections.

HP-supplied migration tools
The HP migration tools include the HP FORTRAN 77 and HP Fortran
compilers (f77 and f90), lintfor, and fid.

HP FORTRAN 77 compiler
You can use the f77 command to test source code for conformance to the
FORTRAN 77 standard. The -A option causes the compiler to issue
warnings when it encounters non-ANSI code.

If you use f77 for this purpose, the source code must conform to the
FORTRAN 77 grammar. In other words, f77 will flag both HP-specific
extensions as well as language features that are unique to Fortran 90. If
the source code contains any Fortran 90 features (some of which are
allowed in HP FORTRAN 77 but not in standard FORTRAN 77) or if you
introduce any Fortran 90 features during the migration process, the f77
command is no longer useful.

216 Chapter 10

Migrating to HP Fortran
Approaches to migration

HP Fortran compiler
The f90 command can be used similarly to the f77 command to detect
incompatibilities in HP FORTRAN 77 source files. The advantage of f90
over f77 is that you can use it on code that already contains Fortran 90
features or to which you are incrementally adding such features as part
of the migration process.

The main drawback of f90 as a migration tool is that a clean compilation
under f90 does not guarantee that all incompatibilities have been found;
some do not manifest themselves until runtime. Also, linking under f90
with f77-generated object files may yield unexpected behavior or
incorrect results; see “Object code issues” on page 213 and “Data file
issues” on page 214.

In addition, the f90 command sometimes reports incompatibilities —
especially in syntax—one at a time. Needless to say, fixing
incompatibilities one at a time and recompiling after each fix may not be
the most cost-effective approach to migrating a large FORTRAN 77
program to HP Fortran.

Lintfor
The lintfor tool can be used on HP FORTRAN 77 code to detect
semantic assumptions that may not be valid for HP Fortran code.
However, lintfor does not accept the Fortran 90 grammar and
therefore has the same drawbacks as the f77 command.

Fortran incompatibilities detector
The Fortran Incompatibilities Detector (fid) is an HP-supplied tool that
was developed specifically to help in migrating HP FORTRAN 77 code to
HP Fortran. It is located in:

/opt/fortran90/contrib/bin/fid

fid searches the target source-code file for various HP FORTRAN 77
extensions that are known to be incompatible with HP Fortran. It also
detects incompatible command-line options when given an f77 command
line. fid reports both source-code and object-code incompatibilities
between HP FORTRAN 77 and HP Fortran. Furthermore, if fid detects
an incompatible extension whose functionality is enabled by some other
means in HP Fortran, it will suggest a fix.

Chapter 10 217

Migrating to HP Fortran
Approaches to migration

fid works by searching the entire program and reporting all its findings
at once. Like the f77 command, it expects the target program to conform
to HP FORTRAN 77 syntax and will report syntax errors along with
incompatibilities it detects. Unlike f77, however, if fid encounters a
syntax error, it attempts to recover and continue parsing the rest of the
program. This recovery mechanism allows fid to accept programs that
contain HP Fortran language features.

Not all incompatibilities are on fid's detection list. Some cannot be
found by any automated means, and others require too much time to
compute for even medium-sized programs.

To invoke fid, supply the fid command with one or more FORTRAN 77
source files and any desired f77 options. If a file has been partially
migrated to HP Fortran, change its extension to .f for use with fid.
Following are example command lines:

$ fid +800 file.f
$ fid +es program.f

Following are examples of the warning messages fid issues when it
detects an incompatibility:

fid Warning: The command-line option, +800,
 is both source incompatible
 and .o incompatible with F90

fid Warning on line 8 of file.f: ON EXTERNAL
 not supported by F90

fid Warning on line 9 of file.f: Detected IOSTAT
 specifier in OPEN statement: Minor
 differences exist between F90 and F77
 IOSTAT error numbers

The incompatibilities currently detected by fid are:

• The I/O specifiers to the OPEN statement listed in “Input/output” on
page 206.

• The HP FORTRAN 77 forms of ON EXTERNAL and ON INTERNAL.

• LOGICAL types used as operands to the .EQ. and .NE. operators.

• All HP FORTRAN 77 compiler directives except those listed in
“Directives” on page 207.

218 Chapter 10

Migrating to HP Fortran
Approaches to migration

• Command-line options that are not supported (see “f77 options not
supported by f90” on page 202) or that have been replaced by f90
options (see Table 34 on page 202).

NOTE fid's list of incompatibilities will be periodically updated. For more
information about the fid command, see the fid(1) man page.

219

11 Porting to HP Fortran

The goal of portability is to make it possible to compile and execute a
program on different vendors’ platforms, regardless of the platform on
which it was written. A portable Fortran 90 program contains no
language elements except those mandated by the Standard and adheres
to generally accepted coding practices.

In practice, however, programming is rarely so simple. Many Fortran
programs have a long history and were originally coded at a time when
portability was not a concern because many programs were written to
execute on one platform only. Older Fortran programs—so-called dusty-
deck programs—are likely to have passed through different dialects of
Fortran, picking up features from each, even after those features have
become outmoded. Porting such a program may sometimes be as simple
as identifying and removing the nonportable features. But more often
than not, it involves finding ways to implement the functionality of the
nonportable features.

To make the task of porting easier, HP Fortran includes the following
features:

• Language extensions—statements, data types, directives, and
intrinsic functions—that are compatible with other Fortran
implementations.

• Compile-line options to help with the porting process.

The following sections describe these features.

• Compatibility extensions

• Using porting options

NOTE For information about migrating HP FORTRAN 77 programs to HP
Fortran, refer to “Migrating to HP Fortran” on page 201.

220 Chapter 11

Porting to HP Fortran
Compatibility extensions

Compatibility extensions
HP Fortran includes a variety of extensions to the Fortran 90 language.
Most of these are compatibility extensions—statements, intrinsic
routines, and compiler directives that are specific to nonstandard
implementations of Fortran 90. For example, if you are porting a
program that contains the ACCEPT statement, you do not have to edit the
part of the program that contains this nonstandard statement because it
is one of the compatibility extensions of HP Fortran.

The following sections describe the compatibility extensions. For a list of
all HP Fortran language extensions, see the HP Fortran Programmer’s
Reference.

Statements
Except for the ON statement (see “Using the ON statement” on page 119),
all of the nonstandard statements supported by HP Fortran are provided
for compatibility. These are listed by vendor in Table 38. Check the
description of each statement in the HP Fortran Programmer’s Reference
to confirm compatibility.

Table 38 Compatibility statements

Statement Implementation Description

ACCEPT DEC Reads from standard
input.

AUTOMATIC Sun Allocates storage on the
stack.

BYTE DEC Declares entities of type
integer.

DECODE Earlier versions
of Fortran

Inputs formatted data
from internal storage.

DOUBLE COMPLEX Earlier versions
of Fortran

Declares entities of type
double complex.

ENCODE Earlier versions
of Fortran

Outputs formatted data to
internal storage.

Chapter 11 221

Porting to HP Fortran
Compatibility extensions

Compiler directives
Compiler directives are coded lines in the source file that control the
compiler’s state. Many vendors use a directive syntax that enables the
compiler to treat the directive as a comment unless the compiler is
specifically looking for that directive. For example, all directives
recognized by HP Fortran begin with the character ! in free format or C,
*, or ! in fixed format (in fixed format, the directive must also start in
column 1).

A directive that uses the comment-like syntax will not cause the
compilation to fail. However, if the compiler does not recognize the
directive, then the functionality that the directive enables will be lost.

END (structure
definition)

DEC Terminates the definition
of a structure or union.

MAP DEC Defines a union within a
structure.

POINTER (Cray-
style)

Cray Declares Cray-style
pointers and their objects.

RECORD DEC Declares a record of a
previously defined
structure.

STATIC Sun Allocates storage in static
memory.

STRUCTURE DEC Defines a named structure.

TYPE (I/O) DEC Writes to standard output.

UNION DEC Defines a union within a
structure.

VIRTUAL DEC Declares an array.

VOLATILE DEC Allows data sharing
between asynchronous
processes.

Statement Implementation Description

222 Chapter 11

Porting to HP Fortran
Compatibility extensions

The directives listed in Table 39 are recognized by HP Fortran and are
compatible with those available on other implementations. These
directives are functionally compatible; that is, their effect on
HP Fortran is compatible with that on the original implementation.
Refer to the HP Fortran Programmer’s Reference for detailed
descriptions of the directives to check the level of compatibility. For usage
information about these directives, see “Controlling vectorization
locally” on page 150.

As noted in the table, some of the compatibility directives are effective
only if the source file is compiled with either the +Oparallel or the
+Ovectorize option; otherwise, the directive is treated as a comment
and ignored. For information about using these options, see “Using the
+Ovectorize option” on page 149.

Table 39 Compatibility directives

Vendor Directive Function Option
dependency

Cray DIR$ IVDEP Disables dependency
checks.

+Oparallel or
+Ovectorize

DIR$ NO SIDE EFFECTS Disables checks for side
effects.

+Oparallel or
+Ovectorize

DIR$ [NO]CONCUR Enables [disables] code
generation for parallel
execution.

+Oparallel

DIR$ [NO]VECTOR Enables [disables]
vectorization.

+Ovectorize

FPP$ NODEPCHK Disables dependency
checks

+Oparallel or
+Ovectorize

KAI *$* [NO]CONCURRENTIZE Enables [disables] code
generation for parallel
execution.

+Oparallel

Chapter 11 223

Porting to HP Fortran
Compatibility extensions

HP Fortran also recognizes several directive prefixes. A directive prefix
is a vendor-specific sequence of characters that follows the comment
character and precedes the directive name. The recognized prefixes are
listed by vendor in Table 40. If HP Fortran reads a directive that begins
with one of these prefixes but does not recognize the directive name, it
issues a warning and ignores the directive. A directive takes effect only if
the compiler recognizes both its prefix and name—that is, it must be
either one of HP’s own directives or one of those listed in Table 39.

Table 40 Directive prefixes recognized by HP Fortran

$ [NO]VECTORIZE Enables [disables]
vectorization.

+Ovectorize

VAST VD$ [NO]VECTOR Enables [disables]
vectorization.

+Ovectorize

VD$ NODEPCHK Disables dependency
checks.

+Oparallel or
+Ovectorize

Vendor Directive Function Option
dependency

Prefix Vendor

$ SGI

HP HP

$PAR X3H5

$ KAI

DIR$ Cray

FPP Cray

HPF$ High Performance Fortran

VD$ VAST

224 Chapter 11

Porting to HP Fortran
Compatibility extensions

Intrinsic procedures
In addition to the standard Fortran 90 intrinsics, HP Fortran provides a
number of nonstandard intrinsics. Many of these are compatible with
nonstandard intrinsics available on other implementations. Table 41
lists all HP Fortran nonstandard intrinsics by their generic names.
Where a specific intrinsic exists, it can be accessed by referencing its
generic name. See the HP Fortran Programmer’s Reference for
information about both specific and generic intrinsics.

Table 41 Nonstandard intrinsic procedures in HP Fortran

ABORT DREAL IDIM IXOR RSHFT

ACOSD EXIT IGETARG JNUM RSHIFT

ACOSH FLUSH IJINT LOC SECNDS

AND FNUM IMAG LSHFT SIND

ASIND FREE INT1 LSHIFT SIZEOF

ASINH FSET INT2 MALLOC SRAND

ATAN2D FSTREAM INT4 MCLOCK SYSTEM

ATAND GETARG INT8 OR TAND

ATANH GETENV INUM QEXT TIME

BADDRESS GRAN IOMSG QFLOAT XOR

COSD HFIX IQINT QNUM ZEXT

DATE IACHAR IRAND QPROD

DCMPLX IADDR IRANP RAN

DFLOAT IARGC ISIGN RAND

DNUM IDATE ISNAN RNUM

Chapter 11 225

Porting to HP Fortran
Compatibility extensions

HP Fortran also provides nonstandard specific intrinsics that derive
from standard generic intrinsics; these nonstandard specific intrinsics
are not listed in Table 41. They provide generic intrinsics with the ability
to operate on nonstandard data type sizes. For example, the generic
intrinsic ABS is defined by the Fortran 90 Standard to return the
absolute value of the standard data types. HP Fortran provides BABS and
ZABS as extensions, enabling ABS to operate on INTEGER(KIND=1) and
DOUBLE COMPLEX values—both of which are nonstandard. Many of the
nonstandard specific intrinsics (including BABS and ZABS) are
compatible with similarly named intrinsics available on other
implementations.

226 Chapter 11

Porting to HP Fortran
Using porting options

Using porting options
HP Fortran provides a number of compile-line options for porting
programs. The most important of these is the +langlvl=90 option.
Compiling your program with this option will cause the compiler to issue
warning messages for all nonstandard features.

In addition, HP Fortran includes options that provide compatibility by
changing the compiler’s assumptions about the program or by causing
the compiler to generate code that executes compatibly with the original
implementation. The advantage of using options when porting is that
they minimize having to edit and modify source code.

The following sections describe how options can help when porting
programs that contain:

• Initialized variables

• Data types that are larger than the default sizes of HP Fortran data
types

• Names that clash with HP-specific intrinsics

• Names that end in the underscore character (_)

• One-trip DO loops

• Different formats

• Escape sequences

Uninitialized variables
As noted in “Automatic and static variables” on page 91, the default
behavior of HP Fortran is to allocate storage for program variables from
the stack. However, older implementations of Fortran often allocate
static storage for variables. One of the differences between stack storage
and static storage is that static variables are initialized to 0s by the
compiler, whereas automatic variables (variables allocated from the
stack) must be explicitly initialized by the programmer.

Programs written for implementations of Fortran that allocate static
storage by default sometimes rely on the compiler to initialize variables.
Compiling and executing such programs on implementations that

Chapter 11 227

Porting to HP Fortran
Using porting options

allocate stack storage can have disastrous results. To make
HP Fortran compatible with implementations that allocate static
storage, compile with the +save option. This option causes the compiler
to act as though all local variables had the SAVE attribute.

As mentioned in “Automatic and static variables” on page 91, saving all
variables in static storage can degrade performance. If performance is an
issue, consider using the +Oinitcheck option. Unlike the +save option,
+Oinitcheck does not “save” variables—it does not move variables into
static storage. Instead, it causes the compiler to search for all local,
nonarray, nonstatic variables that have not been defined before being
used. Any that it finds are initialized to 0 on the stack each time the
procedure in which they are declared is invoked.

For detailed information about the +save and +Oinitcheck options, see
HP Fortran Programmer’s Reference.

Large word size
The word size of default integers, reals, and logicals in HP Fortran is 4
bytes. However, some implementations of Fortran 90—notably, Cray—
use an 8-byte word size. Programs written for these implementations
may rely on the increased precision and range in their computations.

You can double the sizes of default integer, real, and logicals by compiling
with the +autodbl option, making them compatible with
implementations that use the larger word size. This option also doubles
the sizes of items declared with the COMPLEX and DOUBLE PRECISION
statements, but not the BYTE and DOUBLE COMPLEX) statements.

Increasing the size of double-precision items can degrade the
performance of your program. If you do not need the extra precision for
items declared with the DOUBLE PRECISION statement, use the
+autodbl4 option, which increases single-precision items only.
Compiling with this option results in items declared as default real and
double precision real having the same precision—a violation of the
Standard.

For usage information about the +autodbl and +autodbl4 options, see
“Increasing default data sizes” on page 96). For detailed descriptions of
these options, refer to the HP Fortran Programmer’s Reference.

228 Chapter 11

Porting to HP Fortran
Using porting options

One-trip DO loops
If a DO loop is coded so that its initial loop count is greater than its final
loop count, standard Fortran 90 requires that the loop never execute.
However, under some implementations of FORTRAN 66, if a DO loop is
reached, it executes for at least one iteration, even if the DO variable is
initialized to a value greater than the final value. This is called a one-
trip DO loop.

To duplicate the behavior of a one-trip DO loop in an HP Fortran
program, compile with the +onetrip option. To see the effects of this
option, consider the following program:

PROGRAM main

 DO 10 i = 2, 1
 PRINT *, 'Should never happen in standard Fortran 90.'
10 CONTINUE
END PROGRAM main

When compiled with the command line:

$ f90 test_loop.f90

the PRINT statement will never execute because the initial loop count is
higher than the final loop count. To force the loop to execute at least
once, compile it with the command line:

$ f90 +onetrip test_loop.f90

When you run the program now, it produces the output:

$ a.out
 Should never happen in standard Fortran 90.

Name conflicts
A common problem in porting Fortran programs is name conflicts: a
user-written procedure may have the same name as an intrinsic
procedure on the implementation to which you are porting, and the
compiler selects the name of the intrinsic when you are expecting it to
call the user-written procedure. For example, HP Fortran provides the
nonstandard intrinsic FLUSH. If your program contains an external
procedure with the same name and the procedure is not declared with
the EXTERNAL statement, the HP Fortran compiler will assume that the
reference is to the intrinsic.

Chapter 11 229

Porting to HP Fortran
Using porting options

One way to identify user routines that have the same names as HP-
specific intrinsics is to compile the program with the +langlvl=90
option. This option causes the compiler to issue warnings for all HP
extensions in the source code, including nonstandard intrinsics. You can
then edit the source file to declare the procedure that the compiler
assumes is an intrinsic with the EXTERNAL statement.

The following are programs that illustrate the preceding concepts.

clash.f90

PROGRAM clash
 i = 4
 j = int1(i)
 PRINT *, 'j =', j
END PROGRAM clash

FUNCTION int1(i)
 int1 = i+1
END FUNCTION int1

If this is compiled as coded and without the +langlvl=90 option, the
compiler will assume that the reference is to the HP intrinsic named
INT1 and not to the external function. Executing the program will
produce unexpected results, as appears in the following sample run:

$ f90 clash.f90
clash.f90
 program CLASH
 external function INT1

11 Lines Compiled
$ a.out
 j = 4

If the program is recompiled with the +langlvl=90 option, the compiler
flags the name of what it assumes to be a nonstandard intrinsic as well
as the nonstandard source format:

$ f90 +langlvl=90 clash.f90
 program CLASH

 i = 4
^
Warning 4 at (3:clash.f90) : Tab characters are an extension to
standard Fortran-90
 j = int1(i)
 ^
Warning 39 at (5:clash.f90) : This intrinsic function is an
extension to standard Fortran-90
 external function INT1

 int1 = i+1

230 Chapter 11

Porting to HP Fortran
Using porting options

^
Warning 4 at (10:clash.f90) : Tab characters are an extension to
standard Fortran-90

11 Lines Compiled

Once you have identified the names of your routines that clash with
intrinsic names, you can edit the source code to declare each procedure
with the EXTERNAL statement, as follows:

EXTERNAL int1

Now when you compile and execute, you will get the expected behavior:

$ f90 clash.f90
clash.f90
 program CLASH
 external function INT1

11 Lines Compiled
$ a.out
 j = 5

NOTE The name-conflict problem can occur in Fortran programs that call routines
in the libU77.a library. Some implementations link libU77.a by default.
HP Fortran does not; to link in this library, you must compile your program
with the +U77 option. If you do not compile with this option and your
program references a libU77 routine with the same name as an
HP Fortran intrinsic, the compiler will wrongly (and sometimes disastrously)
assume that the reference is to an intrinsic.

If you are not sure if your program references libU77 routines, compile it
with the +langlvl=90 option, which will cause the compiler to issue
warnings for references to nonstandard routines. For problems that can
occur when migrating HP FORTRAN 77 programs that reference libU77
routines, see “Intrinsic functions” on page 204.

Chapter 11 231

Porting to HP Fortran
Using porting options

Names with appended underscores
In some implementations of Fortran (but not HP Fortran), the compiler
automatically appends underscores to external names. If you are porting
a mixed-language program from such an implementation (for example, a
program consisting of C and Fortran source files), the linker may not be
able to find the names in the C code because the names in the Fortran
code do not have the appended underscore. The reason is that the C code
has explicitly added underscores to match the names of the Fortran
procedures in the object code.

Using the +ppu option causes the HP Fortran compiler to append an
underscore to external names (including procedures and common blocks),
making them consistent with the name as it appears in the non-Fortran
source file. For example, if a Fortran source file contains the procedure
proc_array, and a C source file reference this procedure as
proc_array_, compiling the Fortran source file with the +ppu option
causes the compiler to use proc_array_ as the name of the procedure in
the Fortran object file.

For information about how to resolve other name conflicts in mixed-
language programs, see “Case sensitivity” on page 170.

Source formats
Standard Fortran 90 permits source code in either fixed or free form,
though not both in the same file. Furthermore, if the source is in fixed
form, the Standard requires statements not to extend beyond column 72.
Also, Standard Fortran 90 does not allow tab formatting.

HP Fortran’s scheme for handling the different formatting possibilities is
this:

• If the name of the source file ends with the .f90 extension, the file is
compiled as free form. The compiler accepts tab characters in the
source.

• If the name of the source file ends with the .f or .F extension, the file
is compiled as fixed form.

• If the file is compiled with the +langlvl=90 option, the interprets
the format as either fixed or free form, depending on the filename
extension (as described above). However, the compiler issues
warnings if it encounters tab characters.

232 Chapter 11

Porting to HP Fortran
Using porting options

• If the file is compiled with the +source=fixed option, the compiler
assumes fixed form, regardless of the extension. Tab characters are
allowed.

• If the file is compiled with the +source=free option, the compiler
assumes free form, regardless of the extension.

• If the file is compiled with the +extend_source option, the compiler
allows lines as long as 254 characters in either fixed or free form. The
default line length is 72 characters for fixed form and 132 characters
for free form.

See the HP Fortran Programmer’s Reference for detailed information
about the different source and the +langlvl=90, +source, and
+extend_source options.

Escape sequences
Some implementation of Fortran process certain characters preceded by
the backslash (\) as a C-like escape sequence. For example, if a program
containing the statement:

PRINT *, 'a\nb\nc'

were compiled under an implementation that recognized escape
sequences, the statement would output:

 a
b
c

When compiled in strict compliance with the Standard, the same
statement would output:

 a\nb\nc

Although HP Fortran does not recognize escape sequences by default,
you can use the +escape option to make the compiler to recognize them.
Refer to the HP Fortran Programmer’s Reference for more information
about escape sequences.

Glossary 233

Glossary

A-B

archive library A library of
routines that can be linked to an
executable program at link-time.
The names of archive libraries
have the .a extension.

See also shared library.

aliasing Referencing a variable
by more than one name. Examples
of aliasing include:

• Passing the same variable as
two or more actual arguments.

• Using the EQUIVALENCE
statement.

• Referencing an element of an
array declared in common with
an out-of-bounds subscript.

• Passing a common variable as
an actual argument.

In general, aliasing inhibits
optimization.

alignment The positioning of
data within memory. Except for
objects larger than 8 bytes,
HP Fortran 90 aligns data on a
byte boundary that is a multiple of
its size. Objects larger than 8 bytes
are aligned on 8-byte boundaries.

automatic variable A variable
that is allocated on the stack. By
default, program variables in
HP Fortran 90 are automatic. Two
characteristics of automatic
variables are of note:

• They are allocated at each
invocation of the procedure in
which they are declared and
deallocated upon return from
the procedure. This means that
automatic variables do not
retain their value between
invocations.

• They must be explicitly
initialized.

See also static variable.

back-end The component of the
compiler that optimizes and
generates object code.

See also front-end.

Basic Linear Algebra
Subroutine library A library of
de facto standard routines for
performing low-level vector and
matrix operations. To access
routines in this library, you must
compile with the -lblas option.

BLAS See Basic Linear Algebra
Subroutine library.

234 Glossary

BOZ constant An integer
constant that is used as an
initializer in a DATA statement and
is formatted in binary (B), octal (O),
or hexadecimal (Z) notation.

buffering, tty
See tty buffering.

built-in functions The two
HP Fortran 90 extensions, %VAL
and %REF. %VAL forces an
argument to be passed by value,
and %REF forces it to be passed by
reference.

C-D

cpp
See C preprocessor.

C preprocessor A C language
utility that removes or adds
statements in a program source
text, in accordance with directives
that have been inserted in the
source file. HP Fortran 90 can pass
source files to the C preprocessor
(cpp) for preprocessing and then
send the output to the compiler.

column-major order The
method of storing Fortran 90
arrays in memory. Column-major
order requires the columns of a
two-dimensional array to be in
contiguous memory locations. For
example, given the array a(3,4),
element a(1,1) would be stored in
the first location, a(2,1) in the
second, a(3,1) in the third, and
so on.

See also row-major order.

core dump A core image of an
executing program that is
deposited in a file after the

program aborted execution. The
core dump (also called a core file)
may contain information that is
useful in debugging the aborted
program.

data dependence The
relationship that can obtain
between the definition of data and
its use. The occurrence of a data
dependence in a loop can prevent
the optimizer from parallelizing
it.

dde The command for invoking
the HP Distributed Debugging
Environment, the source-level
debugger that is included with
HP Fortran 90.

debugger
See HP Distributed Debugging
Environment.

division by zero The floating-
point exception that occurs
whenever the system attempts to
divide a nonzero value by zero.

driver The component of the
compiler that retains control
throughout the entire compilation
process.

dusty-deck programs Older,
pre-FORTRAN 77 programs.
Dusty-deck programs are so called
because they were presumably
encoded and stored on punched
cards. Such programs are difficult
to port and optimize.

E-K

exception A condition occurring
during the execution of a program
that may require special handling
to make further execution

Glossary 235

meaningful. Some exceptions can
be trapped by the system and
handled within the program.

extension
See filename extension and
language extension.

fast underflow A hardware
feature for handling underflow by
substituting zero for the operation
that causes the underflow.

file descriptor An integer that
is returned by certain HP-UX
system I/O routines and then
passed to others to provide access
to a file. A file descriptor is similar
to Fortran’s logical unit number.
When the Fortran 90 intrinsic
FNUM is given a logical unit
number, it returns a file descriptor.

filename extension A sequence
of characters that begins with a
period (.) and is added to a
filename to indicate the function or
contents of the file.

See also language extension.

floating-point exception
See exception.

front-end The component of the
compiler that parses source code
and issues warning and error
messages.

See also back-end.

High-Level Optimizer One of
the optimizing components of
HP Fortran 90 that performs
optimizations across procedures
and files.

HLO See High-Level Optimizer.

HP DDE See HP Distributed
Debugging Environment.

HP Distributed
Debugging Environment. The
source-level debugger for
HP Fortran 90 programs.

See also dde.

integer overflow An
exception condition that occurs
when attempting to use an integer
to represent a value that falls
outside its range. The ON
statement can be used to trap
integer overflow.

invalid operation The floating-
point exception that occurs
whenever the system attempts to
perform an operation that has no
numerically meaningful
interpretation, such as a NaN.

L-N

language extension A feature
of a programming language that
has been added by a vendor and is
not defined in (or is in violation of)
the language standard. The ON
statement is an HP language
extension to the Fortran 90
Standard.

See also filename extension.

libU77 routines Routines in the
BSD 3f library (libU77.a) that
provide a Fortran 90 interface to
selected system calls in libc.a.
The libU77.a library is part of
HP Fortran 90 and is accessed
with the +U77 option.

236 Glossary

migrating In this document,
migrating refers to the processing
of moving a program written for
HP FORTRAN 77 to
HP Fortran 90.

See also porting.

memory fault
See segmentation violation.

millicode routines Millicode
versions of frequently called
intrinsics, having very low call
overhead and little error-handling.
One of the optimizations
performed by HP Fortran 90 is to
replace calls to eligible intrinsics
with millicode versions.

.mod file A file that is created
and read by the compiler when
processing Fortran 90 source files
that define or use modules.

module A type of Fortran 90
program unit that is used for
sharing data. Modules can also be
used to contain subprograms.

NaN Not-a-Number, the
condition that results from a
floating-point operation that has
no mathematical meaning, such as
infinity divided by infinity. The ON
statement can be used to trap
operations that result in NaN.

null The null character ('\0')
that is used in C programs to
terminate strings.

O-Q

one-trip DO loop A DO loop
that, if reached, executes for at
least one iteration. Programs

written for some implementations
of FORTRAN 66 rely on one-trip
DO loops.

optimization Code
transformations made by the
compiler to improve program
performance.

overflow An exception
condition that occurs when the
result of a floating-point operation
is greater than the largest
normalized number.

See also integer overflow.

parallel execution Program
execution on multiple processors at
the same time. One of the
optimizations performed by the
compiler is to transform eligible
program loops for parallel
execution.

parallelization An optimization
that transforms eligible program
loops for parallel execution on a
multiprocessor machine.

PIC
See position-independent code.

porting In this document,
porting refers to the process of
moving a program that was coded
for another vendor’s Fortran to
HP Fortran 90.

See also migrating.

position-independent code
Object code that contains no
absolute addresses. Position-
independent code (PIC) has
linkage tables that contain
pointers to code and data. This
table is filled in by the loader at

Glossary 237

runtime. Object code that consists
of PIC can be used to create
shared libraries.

precision The number of digits
to which floating-point numbers
are represented. Double-precision
numbers can have greater
precision than single-precision
numbers.

profilers Programming tools
that determine where a program
spends its execution time. Profilers
that come with HP Fortran 90
include prof, gprof, and CXperf.

R-S

roundoff error The loss of
precision that can occur as a result
of floating-point arithmetic.
Different orders of evaluating a
floating-point expression can
produce different accumulations of
roundoff errors, which in turn can
sometimes cause the expression to
yield significantly different results.

row-major order The method of
storing C-language arrays in
memory. (Fortran arrays are stored
in column-major order.) Row-
major order requires the rows of a
two-dimensional array to be in
contiguous memory locations. For
example, given the array a[3][4],
element a[0][0] would be stored
in the first location, a[0][1] in
the second, a[0][2] in the third,
and so on.

segmentation violation A type
of exception that occurs when an
executing program attempts to

access memory outside of its
allocated memory segment; also
called a memory fault.

serial execution Program
execution on only one processor at
a time.

See also parallel execution.

shared executable An
executable program whose text
segment (that is, its code) can be
shared by multiple processes.

shared library A library of
routines that can be linked to an
executable program at runtime
and shared by several programs
simultaneously. The names of
shared libraries have the .sl
extension.

See also archive library.

side effects A condition that
prevents the optimizer from
parallelizing a loop. A procedure
that is called within a loop has side
effects if it communicates with the
outside world other than through a
return value.

signal
See trap.

stack overflow An error
condition that occurs when the
runtime system attempts to
allocate more memory from the
stack than is available. This
condition can occur when
attempting to allocate very large
arrays or when a recursive
program is out of control.

238 Glossary

static variable Variables that
are allocated from static storage
(sometimes referred to as the
heap). Static variables have two
characteristics of note:

• They preserve their value for
the lifetime of the program.

• They are initialized when they
are allocated.

By default, program variables in
HP Fortran 90 are automatic.

stream I/O A type of I/O that is
based on the concept of a stream—
a flow of data to or from a file or I/
O device. Streams are managed by
the HP-UX operating system.
Access to a stream is provided by a
stream pointer, which is the
address of a C-like structure that
contains information about a
stream. When the Fortran 90
intrinsic FSTREAM is given a logical
unit number, it returns a stream
pointer, providing Fortran
programs with access to stream-
based system routines.

symbol table A table of names
of procedures and data, including
their offset addresses. The
compiler inserts a symbol table in
the object file for use by the
debugger and profiler.

T-Z

thread An independent flow of
control within a single process,
having its own register set and
program counter. The HP-UX
operating system supports
multiple-executing threads within
the same process.

Thread Trace Visualizer
See ttv.

trap A change in system state
that is caused by an exception
and that may be detected by the
executing program that took the
exception. Traps are hardware
features that may be enabled or
disabled. If traps are enabled, they
can change the flow of control in
the program that took the
exception. In response to a trap,
the system may generate a signal
(for example, SIGFPE), which the
program can detect. Such a
program can be designed to handle
traps. HP Fortran 90 provides the
ON statement to handle traps.

ttv A tool for analyzing parallel-
executing programs.

tty buffering A method for
efficiently processing data that is
directed to standard output by
capturing it in a buffer before
sending it to the screen.

underflow An exception
condition that occurs when the
result of a floating-point operation
is smaller than the smallest
normalized number. On systems
that support it, fast underflow is
an efficient method of handling
this exception.

vectorization An optimization
technique that replaces eligible
program loops that operate on
arrays with calls to specially tuned
routines that perform the same
operation.

wall-clock time Time spent by
an executing program that
includes system time as well as

Glossary 239

process time. In contrast, virtual
time takes into account process
time only. Profilers (such as
CXperf) that track both virtual
time and wall-clock time provide
information about when a program
is blocked as well as when it is
running.

240 Glossary

 241

Symbols
comment character, 81
#define directive (cpp), 82
#endif directive (cpp), 82
#ifdef directive (cpp), 82
#include directive, 37
HP ALIAS directive, 190
HP CHECK_OVERFLOW directive, 194
HP LIST directive, 194
HP OPTIMIZE directive, 195
%REF built-in function, 115, 171

ALIAS directive, 190
defined, 234

%VAL built-in function, 115, 171
ALIAS directive, 190
defined, 234

+asm option, 11, 24, 210, 212
+autodbl option, 6, 25, 96, 97, 99, 162, 163,

210, 227
+autodbl4 option, 6, 26, 96, 97, 99, 210, 227
+autodblpad option (f77), 202
+B option (f77), 202
+check option, 6, 27, 115, 127, 210, 212
+cpp option, 5, 27, 81

C preproceesor directives, 187
+cpp_keep option, 5, 28, 83, 202
+DA option, 11, 29, 77, 154, 162, 210

64-bit mode, 85
interaction with +DS, 31

+DC7200 option, 10, 30
+demand_load option, 13, 30, 84, 212
+dlines option, 6, 30, 117, 202
+DOosname option, 30
+DS option, 11, 31, 78, 210
+E4 option, 208
+es option (f77), 202
+escape option, 7, 31, 32, 202, 232
+extend_source option, 7, 32, 202, 232
+FP option, 13, 32, 111, 113

compared to +fp_exception, 113
+fp_exception option, 14, 34, 111, 113, 115,

129, 202
compared to +FP, 113

+gprof option, 12, 16, 35, 133, 210, 212
+hugecommon option, 36
+hugesize option, 36, 38, 40, 41
+implicit_none option, 7, 38, 90, 202
+k option, 12, 38
+L option (f77), 202
+langlvl option, 7, 39, 202, 210, 226, 229, 231
+list option, 7, 40, 202

LIST directive, 194

+loop_unroll_jam, 60
+moddir option, 7, 40, 76
+nls option, 7, 40, 210, 212
+O option, 41, 131, 135

OPTIMIZE directive, 195
+Oaggressive option, 53, 138, 142

+Oconservative option, 54
+Oall option, 53, 137, 138
+Ocache_pad_common option, 55, 139
+Oconservative option, 53, 138, 142

+Oaggressive option, 53
+Odataprefetch option, 55, 139, 150
+Oentrysched option, 56, 139

+Oaggressive option, 53
+Ofastaccess option, 56, 139
+Ofltacc option, 56, 139

+Oaggressive option, 53
+Oconservative option, 53

+Oinfo, 63
+Oinfo option, 10, 57, 139

vectorization, 150
+Oinitcheck option, 58, 91, 140, 210, 227

+Oaggressive option, 53
+save option, 45

+Oinline option, 58, 140
+Oinline_budget option, 58, 140
+Olibcalls option, 59, 140
+Olimit option, 54, 138

inlining, 59
+Oloop_block option, 60
+Oloop_transform, 60
+Oloop_unroll option, 60, 140
+Omoveflops option, 61, 140

+Oconservative option, 53
+Omultiprocessor, 60
+onetrip option, 8, 43, 202, 210, 228
+Onoloop_unroll_jam, 60
+Oopt_level option, 10
+Ooptimization option, 10, 137
+Oparallel, 61
+Oparallel option, 61, 100, 140

directives, 222, 223
+Oparmsoverlap option, 62, 140

+Oconservative option, 54
+Opipeline option, 62, 140
+Oprocelim option, 62, 141
+Oregreassoc option, 62, 141
+Oreport, 63
+Osize option, 54, 139

inlining, 59
+Ovectorize option, 43, 61, 63, 141, 149

+Oaggressive option, 53

Index

242

directives, 222, 223
+pa option, 43
+pal option, 44
+pic option, 12, 44, 79, 212
+ppu option, 8, 44, 210, 231

ALIAS directive, 191
+pre_include option, 3, 45, 172, 202
+prof option, 12, 16, 45, 134, 212
+Q option (f77), 202
+real_constant option, 8, 45, 94, 95, 96, 204,

212
+s option (f77), 202
+save option, 12, 45, 91, 210, 212, 226

+Oinitcheck option, 58
+shared option, 14, 47, 84, 212
+source option, 8, 47, 232
+strip option, 14, 47, 110, 212
+T option (f77), 202
+ttybuf option, 15, 48, 202
+ttyunbuf option (f77), 202
+U option (f77), 202
+U77 option, 15, 49, 69, 130, 211
+uppercase option, 8, 49, 170, 202, 210

ALIAS directive, 191
+usage option, 1, 4, 49
+version option, 4, 50
+Z option, 44, 51
+z option, 44, 51
+Z option (f77), 212
+z option (f77), 212
., 162
.F extension, 63, 83, 209, 231

processed by cpp, 81
.f extension, 63, 83, 209, 231
.f90 extension, 63, 83, 231
.i extension, 63

cpp output, 83
.i90 extension, 63

cpp output, 83
.mod extension, 64, 72
.mod extensions, 236
.mod files, 7

+moddir option, 40
.o extension, 63
.s extension, 63
.s extensions, 11
.sl extension, 69
// (concatenation operator), 177
/usr/include, 37
/usr/lib/sched.models, 29, 31
’0’ character, 177

Numerics
32-bit mode

and 64-bit mode, 85
data sizes, 163

64-bit mode
C and Fortran data types, 162
compiling, 85
data sizes, 163

A
-a linker option, 50
-A option (f77), 202, 215
-a option (f77), 202
-a option (ld), 70
a.out file, 43
a.out, default name, 20
ABORT clause, 122
ABORT procedure, 224
ACCEPT statement, 220
access to data, controlling, 106
ACCESS= specifier, 206
accessing command-line arguments, 156, 208
accuracy and optimization, 56
ACOSD intrinsic, 224
ACOSH intrinsic, 224
actions taken by ON statement, 122
aggressive optimizations, 53, 142
ALIAS directive, 159, 168, 170, 181, 190, 207

%REF function, 171
%VAL function, 171
example, 171

aliasing, 233
alignment

data, 89
defined, 233
packing, 184

allocatable arrays
passing to C, 167

allowing core dumps, 129
analyzing performance, 16
AND intrinsic, 224
ANSI directive (f77), 210
appending underscores

+ppu option, 44
architecture

generating code for, 11
performance, 154

archive libraries, 69
defined, 233
-l option, 39

argument lists, 204

Index

 243

argument passing
arrays, 173
C and Fortran, 167, 168
complex numbers, 165
conventions, 168
strings, 178

arguments
C vs. Fortran, 192
passing via ALIAS directive, 192

arguments, command line, 156
arrays

C language, 173
incompatibilities, 208
optimizing, 150

ASIND intrinsic, 224
ASINH intrinsic, 224
assembler output, 11

+asm option, 24
ASSEMBLY directive (f77), 210
ATAN2D intrinsic, 224
ATAND intrinsic, 224
ATANH intrinsic, 224
attributes

See also main entries for individual
attributes.

attributes, SAVE, 91, 226
AUTODBL directive (f77), 210
automatic

variables, 91, 233
vs. static storage, 226

AUTOMATIC statement, 93, 220
AUTOMATIC statement and attribute

+save option, 45

B
-b option (ld), 79
back end, 2

controlling, 9
defined, 233
options, 9

backslash character
+escape option, 31, 32

bad argument
exception, 116
signal, 111

BADDRESS intrinsic, 224
Basic Linear Algebra Subroutine library

See also BLAS library.
Basic Linear Algebra Subroutine library. See

BLAS library.
binary format for constants, 234

blanks
See also spaces and white space.

BLAS library, 69, 149
accessing, 158
calling, 152
defined, 233

bold monospace, xiv
bounds

+check option, 27
BOZ constants, 205, 234
brackets, xiv

curly, xiv
BSD 3F library, 49
BSD 3f library

See also libU77 library.
buffered output, 15, 238
buffering, tty

+ttybuf option, 48
built-in functions

%REF, 115, 169, 171
%VAL, 115, 169, 171
defined, 234
use with ALIAS directive, 190

bus error, 111, 112
core dumps, 129

BYTE statement, 96, 220

C
C language

argument passing conventions, 168
argument-passing rules, 192
arrays, 173
C preprocessor. See cpp.
calling from Fortran, 161
case sensitivity, 170, 192
common block, 183
complex numbers, 165
data types, 162
derived types, 167
escape sequences, 31, 32
extern specifier, 183
file handling, 181
hidden length argument, 178
logicals, 164
null-termination, 177
opening a file, 160
pointers, 167
See also C preprocessor.
sharing data, 183
stream I/O, 159

Index

244

strings, 177
structures, 167
subscripts, 173
unsigned integers, 164

-C option, 27
-c option, 3, 13, 27, 65, 80
-C option (f77), 212
C preprocessor

+cpp option, 27
+cpp_keep option, 28
-D option, 28
directives, 187
-I option, 37
-U option, 49

C preprocessor. See cpp.
cache optimizations, 55
CALL clause, 122
calling

BLAS routines, 152
C functions, 115
C routines, 161
libU77 routines, 158
system and library routines, 158, 160
trap procedures, 125

calloc system routine
ALIAS directive, 192

case sensitivity
+uppercase option, 8, 49, 170
ALIAS directive, 192
C and Fortran, 168, 170
controlling, 8

catching signals, 111
categories

compile-line options, 23
character data type, 162
CHARACTER statement, 96
characters

backslash, 31, 32
underscore (_), 44, 191

CHECK_OVERFLOW directive, 126, 127,
194, 207

checking for out-of-bounds references, 115
clauses

ABORT, 122
CALL, 122
IGNORE, 122, 123
ONLY, 106

cloning
+O3 option, 42

close system call, 160
code generation

+DA option, 154
controlling, 10
performance, 154

code generation, controlling, 29
code size and optimization, 53, 54
column-major order, 173, 234
command lines

accessing arguments, 156, 208
compiling Fortran 90 programs, 20
creating demand-loadable program, 84
creating shared executable, 84
creating shared library, 80
debugging optimized code, 135
getting model information, 78
gprof, 133
invoking cpp, 82
linking, 66, 70
modules, 75
optimizing, 131, 135
option incompatibilities, 212
packaged optimization options, 138
prof, 134
saving cpp output, 83
setting LPATH, 66
specifying libraries, 68
vectorization, 149

command syntax, xv
commands

cpp, 2, 5, 81, 117, 234
dde, 108
export, 66
f90, 1, 3, 13, 20
gprof, 16, 133
grep, 78
ipcs, 100, 101
ld, 2, 66, 79
prof, 16, 134
setenv, 67
strip, 110
stty, 128
uname, 78

comments
as extension, 81
compiler directives as, 187
directives as, 81, 221
incompatibilities, 207

common blocks
C, 183
C’s extern specifier, 183

Index

 245

placing in shared memory, 100
pros and cons, 105
sharing data, 100

COMMON statement, 91, 184
compatibility, 201

Cray, 196
KAP, 196
VAST, 196

compatibility directives, 196
compatibility features, 220

+autodbl option, 227
+autodbl4 option, 227
+escape option, 232
+extend_source option, 232
+langlvl=90, 231
+langlvl=90 option, 229
+onetrip option, 228
+ppu option, 231
+source option, 232
directives, 221
EXTERNAL statement, 229
intrinsics, 224
prefixesto directives, 223
statements, 220

compilation process, 2
compile time and optimization, 54
compile-line options

+asm, 11, 24, 210, 212
+autodbl, 6, 25, 96, 97, 99, 162, 163, 202,

210, 227
+autodbl4, 6, 26, 96, 97, 99, 210, 227
+check, 6, 27, 210, 212
+check option, 115, 127
+cpp, 5, 27
+cpp_keep, 5, 28, 202
+DA, 11, 29, 77, 85, 154, 210
+DA2.0W, 85, 162
+DC7200, 10, 30
+demand_load, 13, 30, 84, 212
+dlines, 6, 30, 117, 202
+DOosname, 30
+DS, 11, 31, 78, 210
+E4, 208
+escape, 7, 31, 32, 202, 232
+extend_source, 7, 32, 202, 232
+FP, 13, 32, 111, 113
+fp_exception, 14, 34, 111, 113, 115
+fp_exceptions, 202
+gprof, 12, 16, 35, 133, 210, 212

+hugecommon, 36
+hugesize, 36, 38, 40, 41
+implicit_none, 7, 38, 90, 202
+k, 12, 38
+langlvl, 7, 39, 202, 210, 226, 229, 231
+list, 7, 40, 202
+moddir, 7, 40, 76
+nls, 7, 40, 210, 212
+O, 41, 131
+Oaggressive, 53, 138, 142
+Oall, 53, 137, 138
+Ocache_pad_common, 55, 139
+Oconservative, 53, 138, 142
+Odataprefetch, 55, 139
+Oentrysched, 56, 139
+Ofastaccess, 56, 139
+Ofltacc, 56, 139
+Oinfo, 10, 57, 139
+Oinitcheck, 58, 91, 140, 210, 227
+Oinline, 58, 140
+Oinline_budget, 58, 140
+Olibcalls, 59, 140
+Olimit, 54, 138
+Oloop_block, 60
+Oloop_transform, 60
+Oloop_unroll, 60, 140
+Oloop_unroll_jam, 60
+Omoveflops, 61, 140
+Omultiprocessor, 60
+one_trip, 43
+onetrip, 8, 202, 210, 228
+Oopt_level, 10
+Ooptimization, 10, 137
+Oparallel, 61, 100, 140, 222
+Oparmsoverlap, 62, 140
+Opipeline, 62, 140
+Oprocelim, 62, 141
+Oregreassoc, 62, 141
+Oreport, 61, 63
+Osize, 54, 139
+Ovectorize, 43, 61, 63, 141, 149
+pa, 43
+pal, 44
+pic, 12, 44, 79, 212
+ppu, 8, 44, 210, 231
+pre_include, 3, 45, 172, 202
+prof, 12, 16, 45, 134, 212
+real_constant, 8, 45, 94, 95, 96, 212
+save, 12, 45, 91, 210, 212, 226

Index

246

+shared, 14, 47, 84, 212
+source, 8, 47, 232
+strip, 14, 47, 110, 212
+traceback, 129
+ttybuf, 15, 48, 202
+U77, 15, 49, 69, 130, 211
+uppercase, 8, 49, 170, 202, 210
+usage, 1, 4, 22, 49
+version, 4, 50
+Z, 44, 51
+z, 44, 51
+Z (f77), 212
+z (f77), 212
-A (f77), 215
arguments, 22
-C, 27
-c, 3, 13, 27, 65, 80
-C (f77), 212
classified, 23
commonly used, 22
-D, 5, 28, 82, 210
displaying options, 49
f77 options, 202, 212
format, 21
-G, 36
-g, 11, 35, 108, 110, 210
-G (f77), 212
-I, 5, 7, 37, 76
increasing default sizes, 25
-K, 46
-K (f77), 212
-L, 14, 39, 69, 71
-l, 14, 39, 68, 69
-lblas, 69, 152, 153
listing, 21
-N, 47
-n, 47
-N (f77), 212
-n (f77), 212
-O, 10, 38, 40, 41, 131
-o, 3, 14, 43, 75
optimization, 52
-p, 45
-p (f77), 212
-Q, 30
-q, 30
-q (f77), 212
-R4, 45
-R4 (f77), 212

-R8, 45
-R8 (f77), 212
replacing f77 options, 212
-S, 25
-s, 47
-S (f77), 212
-s (f77), 212
See also main entries for individual options.
setting with HP_F90OPTS, 87
support for f77 directives, 210
-t, 4, 47
-U, 5, 49, 210
unsupported, 202
use when porting, 226
-v, 4, 49, 65
-W, 4, 50
-w, 8, 50, 210
-Wl, 15, 67, 70
-Wl,-v, 68
-Y, 41
-Y (f77), 212

compiler
linking, 27
verbose output, 49
version information, 50

compiler components, 2
compiler directive

NOCONCUR, 198
compiler directives, 187, 209, 217

ALIAS, 159, 168, 170, 181, 190, 207
and comments, 189
C preprocessor, 187
CHECK_OVERFLOW, 126, 127, 194, 207
compatibility, 196, 221
CONCUR, 197, 222
CONCURRENTIZE, 197, 222
incompatibilities, 207
incompatible directives, 205
IVDEP, 148, 198
LIST, 194, 207
listed, 189
NO SIDE EFFECTS, 146, 199, 222
NO_SIDE_EFFECTS, 199
NODEPCHK, 148, 198, 222, 223
OPTIMIZE, 195, 207
recognized prefixes, 223
replaced by options, 210
See also main entries for individual

directives.

Index

 247

SHARED_COMMON, 100, 207
syntax, 188
VECTOR, 222, 223
VECTORIZE, 150, 197, 223

compiling
+strip option, 110
defaults, 1
for debugging and optimization, 135
for optimization, 131
Fortran 90 modules, 72
HP Fortran 90 programs, 19
PA-RISC model, 77
verbose mode, 65

complex
changing default size, 25, 26

COMPLEX data type
BOZ constants, 205
C and Fortran, 165
simulating in C, 165

complex data type, 162
concatenation operator (//), 177
CONCUR directive, 197, 222
CONCURRENTIZE, 197
CONCURRENTIZE directive, 197, 222
conflicts, names, 211
conservative optimizations, 142
constants, 205

+real_constant option, 45
binary format, 234
floating-point, 203
hexadecimal format, 234
increasing precision, 45
notation incompatibilities, 205
octal format, 234
precision, 94

CONTINUATIONS directive (f77), 210
Control-C interrupts, 120

CONTROLC keyword, 128
trapping, 128

controlling access to data, 106
controlling parallelization, 197
core dumps

+FP option, 113
allowing, 129
defined, 234
ON statement, 129
segmentation violation, 114
trap procedures, 129

core file, 234
COSD intrinsic, 224

cpp, 81
#define directive, 82
#endif directive, 82
#ifdef directive, 82
command, 2, 5, 81, 117
compiler environment, 2
controlling, 5
-D option, 82
defined, 234
directives, 81, 117
invoked by f90, 81
man page, 117
options, 5
saving output, 83
use as debugging tool, 117
vs. debugging lines, 117

Cray
pointers, 112, 114

Cray directives, 196
cross-language communication

ALIAS directive, 192
curly brackets, xiv
CXperf profiler, 132

symbol table, 110
using, 132

D
D exponent, 203
-D option, 5, 28, 82, 210
-D option (f77), 202
data

alignment, 89, 233
controlling access, 106
implicit typing, 90
initialization, 12
promotion, 6
shared, 100
storage, 89

data dependence
defined, 234

data files
migrating, 214

data prefetch instructions, 55
DATA statement

incompatibilities, 205
DATA statements, 91
data types, 205

C and Fortran, 162
COMPLEX, 165, 205, 206
derived types, 167

Index

248

LOGICAL, 164, 217
pointers, 167

DATE intrinsic, 224
daxpy routine, 149
DCMPLX intrinsic, 224
dde command, 108, 234
DDE. See debugger.
ddot routine, 149
DEBUG directive (f77), 210
debugger, 2, 16

defined, 235
-g option, 108
overview, 108
using, 108

debugging, 107
+dlines option, 30, 117
+FP option, 32
compile-line options, 23
cpp, 81, 117
debugging lines, 6, 81, 117
-g option, 11, 35
optimized code, 35, 108, 135
stripping debugging infomation, 110
symbol table, 110
WRITE statement, 117

declaring
arrays in C and Fortran, 174
return value of functions, 153

DECODE statement, 220
defaults

case sensitivity, 170
compiling, 1
data sizes, 96
libraries, 67
line length, 232
optimization, 136
typing, 90

define directive (cpp), 82
defining macros to cpp, 82
DELIM= specifier

incompatibilities, 207
demand-loadable

+demand_load option, 30
demand-loadable executables, 13, 84
denormalized values

+FP option, 33
dependence checks, controlling, 198
dependencies

modules, 75
derived type, 162
derived types and C, 167

description file for compiling modules, 76
DFLOAT intrinsic, 224
directives

See compiler directives and C preprocessor.
directives. See compiler directives and cpp

directives.
directory search

-I option, 37
-L option, 39

disabling
exceptions, 111
implicit typing, 90

divide by zero, trapping, 33
division by zero, 113

defined, 234
DNUM intrinsic, 224
DO loops

+Oloop_unroll option, 60
+onetrip option, 43
FORTRAN66-style, 43

DO loops, one-trip, 8, 228
DOUBLE COMPLEX statement, 96, 220
double precision

changing default size, 25, 26
constants, 94
data type, 162
DOUBLE PRECISION statement, 96

DREAL intrinsic, 224
driver. See f90 driver.
dusty-deck programs, 219

defined, 234

E
ecape characters, 7
eliminating procedures, 62
ellipses, vertical, xv
ELSE directive (f77), 210
enabling traps

+FP option, 32
ENCODE statement, 220
endif directive (cpp), 82
ENDIF directive (f77), 210
environment variables, 86

FTN_IO_BUFSIZ, 86
HP_F90OPTS, 86, 87
LPATH, 66, 86, 87
MP_NUMBER_OF_THREADS, 86, 88
TTYUNBUF, 86

EQUIVALENCE statement, 91
equivalencing, 105
ERR= specifier, 112

Index

 249

error handling
ON statement, 119

escape sequences, 232
establishing traps, 119
example programs

abort.f90, 123
allow_core.f90, 129
bye.f90, 80
call_fptrap.f90, 125
call_itrap.f90, 126
clash.f90, 229
code.f90, 74
cpp_direct.f90, 82
data.f90, 74
fnum_test.f90, 181
get_args.f90, 156
get_array.c, 175
get_string.c, 179
go_to_sleep.f90, 101
greet.f90, 80
hello.f90, 20
hi.f90, 80
ignore.f90, 123
main.f90, 73
makefile for program using modules, 76
pass_array.f90, 174
pass_chars.f90, 179
pass_complex.f90, 165
pass_str.f90, 193
pr_str.c, 193
precision.f90, 97, 98
recursive.f90, 92
saxpy.f90, 152
shared_common.f90, 185
shared_struct.c, 185
sort_em.c, 171
sqr_complex.c, 166
test_sort.f90, 171
wake_up.f90, 102

exceptions
+FP option, 32
+fp_exception option, 34
bad argument, 116
bus error, 112
defined, 234
disabling, 111
floating-point, 111, 113, 120
handling, 111, 119
illegal instruction, 114

ON statement, 119
overview, 111
segmentation violation, 114
signals, 111

executable program
naming, 43

executables
creating, 20
demand loadable, 13
shared, 14

execution, terminating, 122
EXIT intrinsic, 224
exiting a trap procedure, 126
exponent form, 94
export command, examples, 66, 87, 88
expression reordering

+Ofltacc option, 56
extending line length, 232
extending source lines

+extend_source option, 32
extension, filename

.mod, 64
extensions

warnings about, 39
extensions, filename, 5, 63

.F, 5, 63, 81, 83

.f, 63, 83

.f90, 63, 83

.i, 63, 83

.i90, 63, 83

.mod, 7, 72, 236

.o, 63

.s, 11, 63

.sl, 69
assembler code, 63
C preprocessor, 5
compatibility with f77, 209
cpp input file, 83
cpp output file, 83
defined, 235
fixed form, 63
free form, 63
object code, 63

extensions, language
+langlvl option, 219
compatibility, 201, 220
Cray pointers, 112
defined, 235
intrinsics, 224
migrating aids, 201

Index

250

ON statement, 113, 119
porting aids, 220
statements, 220
warnings about, 7, 219

extern storage class specifier (C), 183
external names

+uppercase option, 49
ALIAS directive, 191

external procedures
See also procedures.

EXTERNAL statement, 153, 211, 229
resolving name conflicts, 211
using with intrinsics, 204

external variables (C), 183

F
-F option (f77), 202
f77, migrating to f90, 201

constants, 203, 205
data file issues, 214
data types, 205
directives, 207, 209
I/O, 206
intrinsics, 204, 211
migration tools, 215
miscellaneous, 207
object code issues, 213
options, 212
procedure calls, 204
source code issues, 209

f90
compile-line options, 24
version information, 50

f90 command, 1, 3
compiling, 20
creating PIC, 79
invoking cpp, 81
linking, 13, 65
migration aid, 216
syntax, 21

f90 driver
compiler environment, 2
controlling, 3
defined, 234
options, 3

fast underflow, 113, 235
fid command, 216
file descriptor, 160, 181, 235
file pointers, 181
file processing

C, 181
f77, 206
HP-UX, 159

FILE structure, 159
filename extensions. See extensions,

filename.
fine-tuning optimization, 54
fixed form, 8, 117, 231

debugging lines, 117
filename extension, 63
line length, 232

fixed source form
+source option, 47

flat call graph profile, 133
floating-point

+Ofltacc option, 139
+Omoveflops option, 140
constants, 203, 205
exception handling, 13, 14, 111, 120
exceptions, 111, 113
IEEE standard, 113, 120
leading zeroes, 208
optimizations, 56, 61
overflow, 236
precision, 94, 237
trapping exceptions, 32

FLUSH
intrinsic, 211, 224
libU77 routine, 211

FMPY instructions and optimization, 56
FNUM intrinsic, 160, 181, 224

file descriptor, 160
format of source code, 8, 231

See also free form and fixed form.
format, source

See source format.
FORTRAN 66 DO loop, 43
Fortran Incompatibilities Detector, 216
fpsetdefaults routine, 32
fpsetmask routine, 32
FREE

intrinsic, 211, 224
libU77 routine, 211

free form, 8, 231
filename extension, 63
line length, 232

free source form
+source option, 47

front end
compiler environment, 2
controlling, 6

Index

 251

defined, 235
options, 6

FSET intrinsic, 224
FSTREAM intrinsic, 159, 181, 224
FTN_IO_BUFSIZ, 86
functions

built-in, 190
functions, built-in

%REF, 115, 169, 171
%VAL, 115, 169, 171
defined, 234

fusing and optimization, 56

G
-G option, 36
-g option, 11, 35

and optimization, 135
code size, 108
compatible with f77, 210
debugger, 108
optimized code, 41
symbol table, 110

-G option (f77), 212
generating code, controlling, 29
generating optimum code, 154
GETARG

intrinsic, 156, 211, 224
libU77 routine, 211

GETARGC routine, 157
GETENV

intrinsic, 211, 224
libU77 routine, 211

global data
+k option, 38

gmon.out profile file, 133
gprof, 35
GPROF directive (f77), 210
gprof profiler, 16

+gprof option, 12
using, 133

GRAN intrinsic, 224
grep command, 78

H
handling exceptions, 111, 120
hexadecimal format for constants, 205, 234
HFIX intrinsic, 224
hidden length argument, 177, 178
High-Level Optimizer, 9

compiler environment, 2

defined, 235
HLO. See High-Level Optimizer.
Hollerith data type, 162
horizontal ellipses, xv
HP, 196
HP DDE. See debugger.
HP Distributed Debugging Environment. See

debugger.
HP extensions. See extensions.
HP FORTRAN 77. See f77.
HP Fortran 90

compatibility directives, 196
HP Programmer’s Analysis Kit. See HP PAK.
HP/DDE debugger

-g option, 35
HP_DESTINATION directive (f77), 210
HP_F90OPTS, 86, 87
HP-UX

accessing resources, 155
file descriptors, 160
file processing, 159
system calls, 158

I
I and J suffixes, 205
-I option, 5, 7, 37, 76
I/O

incompatibilities, 206, 217
namelist, 207
See also input/output.
specifiers, 206
streams, 159
system calls, 159, 160

IACHAR intrinsic, 224
IADDR intrinsic, 224
IARGC

intrinsic, 156, 211, 224
libU77 routine, 211

IDATE
intrinsic, 211, 224
libU77 routine, 211

IDIM intrinsic, 224
IEEE floating-point standard, 113

exceptions, 120
IF directive (f77), 210
ifdef directive (cpp), 82
IGETARG intrinsic, 156, 224
IGNORE clause, 122, 123
ignoring errors, 122, 123
IJINT intrinsic, 224
illegal instruction exception, 111, 114

Index

252

IMAG intrinsic, 224
IMPLICIT NONE statement, 90
IMPLICIT statement

+implicit_none option, 38
implicit typing, 90

+implicit_none option, 38, 90
functions, 153
overriding, 7
rules, 90

INCLUDE line
-I option, 37

including source text
+pre_include option, 172
INCLUDE directive (f77), 210
INCLUDE line, 105, 210

incompatibilities, 202
ACCESS= specifier, 206
argument list, 204
arguments to intrinsics, 204
arrays, 205, 208
BOZ constants in complex, 205
character length specifiers, 205
command line, 212
comment character, 207
COMPLEX temporaries, 206
constant expressions, 205
constants, 205
data files, 214
DATA statement, 205
data types, 205
default precision, 205
detected by fid, 217
directives, 205, 207, 209, 217
exponentiation operator, 205
expression syntax, 208
finding, 217
floating-point constants, 203
function references, 204
hex constant notation, 205
I and J suffixes, 205
I/O, 206, 217
initialization, 203
intrinsics, 204, 211
IOSTAT= specifier, 206
KEY= specifier, 206
leading zeroes, 208
linking, 213
LOGICAL directive (f77), 214
logical operands, 217

misaligned data, 214
NAME= specifier, 206
namelist I/O, 207
nonstandard logicals, 214
object files, 213
octal constant notation, 205
ON, 217
ON statement, 207, 217
OPEN statement, 206, 217
optional arguments, 204
options, 212
PARAMETER statement, 205
procedure interface, 214
procedures, 204
PROGRAM statement, 208
READONLY= specifier, 206
recursive procedures, 205
runtime behavior, 213
See also migration issues.
specifiers, I/O, 206, 217
statement functions, 207
STATUS= specifier, 206
TYPE= specifier, 206

increasing
data sizes, 96
precision, 8, 94, 96

increasing data sizes
+autodbl option, 25
+autodbl4 option, 26

increasing precision
+real_constant option, 45

indeterminate loop counts and
parallelization, 146

inexact operation exception, 113
INIT directive (f77), 210
initialization

+Oinitcheck option, 58, 140
+save option, 45
incompatibilities, 203
porting issue, 226
variables, 12, 91

inlining
+O3 option, 42
+Oinline option, 58
+Oinline_budget option, 58

inlining options
+Oinline, 140
+Oinline_budget, 140
+Oprocelim, 141

inserting text in source

Index

 253

+pre_include option, 45
instruction scheduler, 11, 78
instruction scheduling, 56

+DS option, 31
INT1 intrinsic, 224
INT2 intrinsic, 224
INT4 intrinsic, 224
INT8 intrinsic, 224
integer

changing default size, 25, 26
overflow, 27, 194

integers
data type, 162
incompatibilities, 208
increasing size, 96
overflow, 126, 208, 235
unsigned, 164

internal procedures
See also procedures.

interrupt-handling
+FP option, 113
+fp_exception option, 113
ON statement, 119

intrinsic assignment. See assignment.
intrinsic procedures

ABORT, 224
ACOSD, 224
ACOSH, 224
AND, 224
arguments, 204
ASIND, 224
ASINH, 224
ATAN2D, 224
ATAND, 224
ATANH, 224
BADDRESS, 224
COSD, 224
DATE, 224
DCMPLX, 224
DFLOAT, 224
DNUM, 224
DREAL, 224
EXIT, 224
FLUSH, 211, 224
FNUM, 160, 181, 224
FREE, 211, 224
FSET, 224
FSTREAM, 159, 181, 224
GETARG, 156, 211, 224
GETENV, 211, 224

GRAN, 224
HFIX, 224
IACHAR, 224
IADDR, 224
IARGC, 156, 211, 224
IDATE, 211, 224
IDIM, 224
IGETARG, 156, 224
IJINT, 224
IMAG, 224
incompatibilities, 204, 211, 224
INT1, 224
INT2, 224
INT4, 224
INT8, 224
INUM, 224
IOMSG, 224
IQINT, 224
IRAND, 224
IRANP, 224
ISIGN, 224
ISNAN, 224
IXOR, 224
JNUM, 224
library, 67
LOC, 211, 224
LSHFT, 224
LSHIFT, 224
MALLOC, 211, 224
MAX, 204
MCLOCK, 224
millicode routines, 236
millicode versions, 59
MIN, 204
name conflicts, 211
optimized versions, 59
OR, 224
QEXT, 224
QFLOAT, 224
QNUM, 224
QPROD, 224
RAN, 224
RAND, 224
REAL, 206
RNUM, 224
RSHFT, 224
RSHIFT, 224
SECNDS, 224

Index

254

See also main entries for individual
intrinsics.

SIND, 224
SIZEOF, 224
SRAND, 224
SYSTEM, 211, 224
TAND, 224
TIME, 204, 211, 224
XOR, 224
ZEXT, 224

INUM intrinsic, 224
invalid floating-point operations, trapping,

33
invalid operation, 113

defined, 235
invoking

C preprocessor, 5, 81
compiler, 1, 20
linker, 65

IOMSG intrinsic, 224
IOSTAT= specifier, 112, 206
ipcs command, 100, 101
IQINT intrinsic, 224
IRAND intrinsic, 224
IRANP intrinsic, 224
ISAM stub library, 67
ISIGN intrinsic, 224
ISNAN intrinsic, 224
italic, xiv
IVDEP directive, 148, 198, 222
IXOR intrinsic, 224

J
J and I suffixes, 205
JNUM intrinsic, 224

K
-K option, 46
-K option (f77), 212
KAP directives, 196
kernel routines, 158
kernel threads library

+Oparallel option, 61
KEY= specifier, 206
keywords

for ON statement, 120
kind parameter, 96

precision, 94
KIND suffix, 203

L
-L option, 14, 39, 69, 71
-l option, 39, 68, 69
language differences. See C language.
language standard. See standard, Fortran 90.
layout of arrays in memory, 173
-lblas option, 69, 152, 153
ld command, 2

creating shared library, 79
linking, 65, 66

ld man page, 67
leading zeroes, 208
length of lines, 232
levels of optimization, 10, 41, 135
libblas library. See BLAS library.
libc library, 67
libcl library, 67
libF90 library, 67
libisamstub library, 67
libpthread library, 116
libraries

accessing, 158
archive, 233
compiler environment, 2
default, 67
intrinsics, 67
ISAM stubs, 67
kernel threads library, 61
-L option, 39
-l option, 14, 39
libblas. See BLAS library.
libpthread, 116
libU77. See libU77 library.
linking problems, 68
math, 154
optimizing calls to, 140
PA1.1 and floating-point traps, 32
runtime, 67
search path, 13, 70, 87
See also BLAS routines and libU77

routines.
shared, 69, 78, 237
system routines, 158
threads, 100
vectorization, 43, 61, 63, 149

libU77 library, 15, 69
accessing, 158
defined, 235
FLUSH routine, 211
FREE routine, 211

Index

 255

GETARG routine, 211
GETARGC routine, 157
GETENV routine, 211
IARGC routine, 211
IDATE routine, 211
LOC routine, 211
MALLOC routine, 211
name conflicts, 211
porting issues, 230
SIGNAL routine, 129
system calls, 158
SYSTEM routine, 211
TIME routine, 211

libU77 routines
+U77 option, 49

line length, 232
linker

+strip option, 110
-a option, 70
-b option, 79
compiler environment, 2
controlling, 13
ld command, 65, 66
-lm option, 186
options, 4, 13
passing arguments to, 15

linking
+shared option, 47
-a linker option, 50
-a option, 70
-c option, 27
debugging with -v, 68
default, 19
f90 command, 65
-g option, 108
-L option, 39
-l option, 39
ld command, 65, 66
libraries, 67
specifying libraries on command line, 68
suppressing, 13, 27
-W option, 50

lintfor, 216
LIST directive, 194, 207
LIST_CODE directive (f77), 210
listing source files

+list option, 40
LIST directive, 194

literal constants
See also constants.

-lm option, 186
loader. See linking.
LOC

intrinsic, 211, 224
libU77 routine, 211

log function, 186
logical

C vs. Fortran, 164
changing default size, 25, 26
data type, 162, 164, 217
operands, 217
unit numbers, 159

LOGICAL directive (f77), 214
LONG directive (f77), 210
loop

jamming, 60
unrolling, 60

loop blocking, 60
Loop Report, 63
loop transformation, 60
loop unroll and jam, 60
loop unrolling, 60
loops, vectorizing, 197
LOWERCASE directive (f77), 210
lowercase names, 49
low-level optimizer, 2, 9
low-level resources, accessing, 158
LPATH, 86, 87
LPATH environment variable, 66

search rules, 70
LSHFT intrinsic, 224
LSHIFT intrinsic, 224

M
macros, defining to cpp, 82
make utility

compiling modules, 75
MALLOC

intrinsic, 211, 224
libU77 routine, 211

man pages, xv
cpp, 2, 5, 117
CXperf, 16
dynamic memory, 192
f90, 1
gprof, 16
ld, 2, 67
malloc system routine, 192
prof, 16, 134
signal, 112
stdio, 159

Index

256

stty, 128
ttv, 16
write, 182

managing .mod files, 76
MAP statement, 221
math libraries

+DA option, 154
vectorization, 149

matrix operations and BLAS, 158
MAX intrinsic, 204
maxssiz parameter, 115
MCLOCK intrinsic, 224
memcpy routine

vectorization, 149
memmove routine

vectorization, 150
memory

arrays, 173
consumption during optimization, 54
fault, 111
hierarchy optimizations, 30
shared, 100

memset routine
vectorization, 150

messages
issued by fid, 217
-w option, 50

migrating to Fortran 90, 201
defined, 236
See also migration issues and migration

tools.
migration issues, 209

data files, 214
directives, 209
intrinsic procedures, 211
intrinsics, 211
libU77 routines, 211
name collisions, 211
name conflicts, 211
object code, 213
options, 212
See also incompatibilities.
source code, 209

migration tools
-A option (f77), 215
f77, 215
f90, 216
fid, 216
ISAM stub library, 67
lintfor, 216

millicode routines, 59, 140
defined, 236

MIN intrinsic, 204
missing arguments, 204
mixed-language programs, 161, 231
models (hardware) and performance, 154
module program unit, 105, 106

compiling, 72
defined, 236
example, 73
managing modules, 76

modules
+moddir option, 40

mon.out profile file, 134
monospace, xiv
MP_NUMBER_OF_THREADS, 86, 88
multidimensional arrays, 173, 174
multiple threads, 100
multiprocessor machine, 88
multiprocessor machines, 60

N
-N option (f77), 212
-n option (f77), 212
NAME= specifier, 206
namelist I/O, 207
NAMELIST statement

incompatibilities, 207
names

conflicts, 211, 230
differences, 231
external, 191
intrinsics, 211
-o option, 43
output file, 3, 14
resolving conflicts, 228
See also naming conflicts.

naming conflicts
resolving, 49

NaN, 123
defined, 236

Native Language Support, 40
Native Language Support, enabling, 7
NLS directive (f77), 210
NO CONCUR directive, 222
NO SIDE EFFECTS directive, 146, 199, 222
NO VECTOR directive, 222, 223
NO_SIDE_EFFECTS directive, 199
NOCONCUR directive, 198
NOCONCURRENTIZE directive, 223
NODEPCHK compiler directive, 148, 198

Index

 257

NODEPCHK directive, 198, 222, 223
nondefault libraries, 68
nonstandard features. See extensions,

language.
Not-a-Number, 236
notational conventions, xiv
ntrinsic procedures

millicode routines, 140
null character, defined, 236
null-terminated strings, 177
numeric precision, 94

defined, 237
increasing, 96

numeric types
changing default size, 25, 26
increasing precision, 45

O
-O option, 10, 38, 40, 41, 131

OPTIMIZE directive, 195
-o option, 3, 14, 43, 75
object code, migrating, 213
octal

BOZ format for constants, 234
constant notation, 205

ON statement, 119
+autodbl option, 25
ABORT, 122
CALL, 122
CHECK_OVERFLOW directive, 194
CONTROLC keyword, 128
IGNORE, 122, 123
incompatibilities, 207
integer overflow, 126
keywords, 120
optimization, 119
trapping exceptions, 113

ONETRIP directive (f77), 210
one-trip DO loops, 228, 236
-onetrip option (f77), 202
ONLY clause, 106
OPEN statement, 217

incompatibilities, 206
open system call, 160
operating system resources, 155
optimization, 131

+DA option, 29
+DC7200, 30
+DS option, 31
+O option, 41
+Oaggressive option, 53

+Oall option, 53
+Ocache_pad_common option, 55
+Oconservative option, 53
+Odataprefetch option, 55
+Oentrysched option, 56
+Ofastaccess option, 56
+Ofltacc option, 56
+Oinfo option, 57
+Oinitcheck option, 58
+Oinline option, 58
+Oinline_budget option, 58
+Olibcalls option, 59
+Olimit option, 54
+Oloop_unroll option, 60
+Omoveflops option, 61
+Oparallel option, 61
+Oparmsoverlap option, 62
+Opipeline, 62
+Oprocelim option, 62
+Oregreassoc option, 62
+Osize option, 54
+Ovectorize option, 43, 61, 63
accessing globals, 56
aggressive, 53, 142
arrays, 150
cache, 55
code generation, 154
code size, 54
compile time, 54
compile-line options, 23
conservative, 53, 142
data pretch instructions, 55
debugging, 35, 108, 135
default level, 135, 136
defined, 236
directives, 150
documentation, 135
eliminating inlined procedures, 62
feedback, 57
feedback option, 10
fine-tuning, 137
fine-tuning options, 54
floating-point traps, 61
Fortran 90 standard, 142
-g option, 35
initialization, 58
inlining, 58, 140
instruction scheduling, 56
intrinsic functions, 59

Index

258

invoking, 135
levels, 10, 41, 135
limiting, 54
loop unrolling, 60
maximum optimization, 53
memory consumption, 54
memory hierarchy, 30
millicode routines, 59
nonstandard-conforming programs, 53
-O option, 38, 40, 41
ON statement, 119
OPTIMIZE directive, 195
optimizing library calls, 140
options, 9, 52, 135, 137
overlapping arguments, 62
overview, 9
packaged options, 138
parallel execution, 61
parallelization, 88, 144, 197
pipelining, 62
profiling, 132
profiling options, 35, 45
register reassociation, 62
roundoff errors, 56
safe and unsafe, 142
See also main entries for individual

compile-line options.
types of, 137
vectorization, 43, 61, 63, 149, 150, 197

Optimization Report, 63
contents, 63

OPTIMIZE directive, 195, 207
optimizer

compiler environment, 2
optional arguments, 204
OPTIONAL statement, 204
options

See also compile-line options.
OR intrinsic, 224
order-sensitive options, 21

-L, 69
-l, 68

out-of-bounds checking, 27
out-of-bounds reference, 114, 115
output file, naming, 3, 14
overflow

exception, 113
floating-point, 236
integer, 208, 235
stack, 115

overflow, integer
+FP option, 33
CHECK_OVERFLOW directive, 194

overlapping parameters and optimization, 62
overwritten stack, 114

P
-p option, 45
-p option (f77), 212
PA2.0

fast underflow, 113
vectorization, 150

PA7200 processor, 10
packaged optimization options, 138
packing and alignment, 184
paging and demand load, 84
parallel execution, 61

defined, 236
parallelization, 88, 144, 197

+Oparallel option, 140
compiling, 144
conditions inhibiting, 145
data dependence, 147
data sharing, 100
defined, 236
indeterminate loop counts, 146
profiling, 145
side effects, 146

parallelization, controlling, 197
parameter overlapping and optimization, 62
PARAMETER statement

incompatibilities, 205
PA-RISC

code generation option, 29
compiling for a model, 77
enabling floating-point traps, 32
instruction scheduling option, 31
listing model information, 78
version numbers, 77, 154

passing
allocatable arrays to C, 167
arguments in C and Fortran, 115, 167, 168
arguments to subprocesses, 4
pointers to C, 167
strings to C, 177

passing arguments. See arguments.
PBO

compiler environment, 2
performance, 131

code generation, 154

Index

 259

optimization options, 52
options for increasing, 9
profilers, 132
profiling options, 35, 45
tools for analyzing, 16

performance issues
large word sizes, 227
names, 231
static storage, 227

PIC, 12
+pic option, 79
defined, 236
object code, 79
shared libraries, 79

PIC code, 44
pipelining, 62
pointers

Cray, 221
passing to C, 167
stream, 159

portable argument, 77, 154
porting

Cray, 196
KAP, 196
See also porting issues.
VAST, 196

porting issues, 219, 226
checking for portability, 219
defined, 236
DO loop, 228
escape sequences, 232
libU77 routines, 230
names, 228
source format, 231
static storage, 226
underscore added to name, 231
uninitilized variables, 226
word size, 227

porting options
+autodbl, 25, 99
+autodbl4, 26, 99
+Oinitcheck option, 58
+onetrip, 43
+save, 45

Position Independent Code, 44
position-independent code. See PIC.
POSTPEND directive (f77), 210
postpending underscores, 8
precision

changing default, 204

constants, 94
defined, 237
floating-point constants, 203
increasing, 8, 96
performance, 96

precision, increasing, 45
prefixes, directive, 223
preinitialized variables, 91
preprocessing by cpp, 27
PRIVATE statement, 106
Privatization Table, 63
procedure traceback, 112, 115

symbol table, 110
procedures

calls and definitions, 204
eliminating, 62
incompatibilities, 204
interface, 214
module, 106
recursive, 205

prof profiler, 16
+prof option, 12
compared to gprof, 134
how to use, 134
prof command, 134
prof man page, 134

profile files
gmon.out, 133
mon.out, 134

Profile-Based Optimization
compiler environment, 2

profilers
CXperf, 132
defined, 237
overview, 132
See also CXperf profiler, gprof profiler, and

prof profiler. and
symbol table, 132

profiling
compile-line options, 23

profiling options
+gprof option, 35
+prof option, 45

profiling parallel-executing programs, 145
program

listing source, 40, 194
See also program units.

program listing, 7
PROGRAM statement

incompatibilities, 208

Index

260

unsupported extensions, 208
programming examples. See example

programs.
promoting, 6

constants, 94
promoting data sizes

+autodbl option, 25
+autodbl4 option, 26

PUBLIC statement, 106

Q
-Q option, 30
-q option, 30
-q option (f77), 212
QEXT intrinsic, 224
QFLOAT intrinsic, 224
QNUM intrinsic, 224
QPROD intrinsic, 224
quad-precision variables, 96

R
-R4 option, 45
-R4 option (f77), 212
-R8 option, 45
-R8 option (f77), 212
RAN intrinsic, 224
RAND intrinsic, 224
range checking, 6

+check option, 27
RANGE directive (f77), 210
range of integers, increasing, 96
read system call, 160
READONLY= specifier, 206
real

changing default size, 25, 26
increasing precision, 45

real data type, 162
REAL intrinsic, 206
reals, increasing size, 96
RECORD statement, 221
RECURSIVE keyword, 205
recursive procedures, 91, 205
REF built-in function, 169

ALIAS directive, 190
referencing

shared data, 38
register

exploitation, 60
register reassociation and optimization, 62
renaming feature, 106
report_type, 63

result variables
See also return value.

return value
See also result variables.

return value of functions, declaring, 153
returning NaN, 123
RNUM intrinsic, 224
roundoff, 94, 237
roundoff and optimization, 56
row-major order, 173, 237
RSHFT intrinsic, 224
RSHIFT intrinsic, 224
rules for implicit typing, 90
runtime

errors, handling, 119
library, 67

runtime exceptions
+FP option, 32

S
-S option, 25
-s option, 47
-S option (f77), 212
-s option (f77), 212
safe optimizations, 142
sample programs. See example programs.
SAVE

attribute, 91, 226
statement, 91, 93

SAVE_LOCALS directive (f77), 210
saving cpp output, 83
saving variables, 12, 45
saxpy routine, 150
sched.models file, 78
scheduler, instruction, 11, 78
scope of this manual, xiii
sdot routine, 150
search path options, 7, 14, 70
search paths, 45

-I option, 37
-L option, 39
-l option, 39
math libraries, 29

SECNDS intrinsic, 224
segmentation violation, 111, 114

defined, 237
serial execution

defined, 237
SET directive (f77), 210
setenv command

HP_F90OPTS, 87
LPATH, 67, 88

Index

 261

MP_NUMBER_OF_THREADS, 88
shared data

+k option, 38
shared data items, 12
shared executables, 14

creating, 84
defined, 237

shared libraries
+pic option, 44
creating, 78
default, 67
defined, 237
-l option, 39
linking, 69
PIC code, 44

shared memory, 100
SHARED_COMMON directive, 100, 207
sharing data, C and Fortran, 183
short-displacement code, 38
side effects

defined, 237
side effects and data dependence, 147
side effects and parallelization, 146
side effects, routine, 199
signal handling

+fp_exception option, 34
SIGNAL routine, 129
signals

handling, 129
SIGBUS, 111
SIGFPE, 111
SIGILL, 111
SIGSEGV, 111, 114
SIGSYS, 111

signed and unsigned data types, 164
SIGSEGV signal, 114
SIND intrinsic, 224
single-precision

constants, 94
size

array, 175
data, increasing, 96

SIZEOF intrinsic, 224
software pipelining, 62
source code, migrating, 209
source files, listing

+list option, 40
LIST directive, 194

source format
+source option, 47
See also fixed form and free form.

source formats, 231
+extend_source option, 232
+source option, 232
filename extensions, 231
See also fixed form and free form.

source line, extending, 7
source lines

+extend_source option, 32
spaces

See also blanks and white space.
specifiers (I/O)

ERR=, 112
incompatibilities, 206
IOSTAT=, 112

speeding up data access, 56
SRAND intrinsic, 224
stack overflow, 115

defined, 237
stack-related exceptions, 114
standard Fortran 90

optimization and, 53
standard, Fortran 90, 201
STANDARD_LEVEL directive (f77), 210
standards and optimization, 53
statement functions, incompatibilities, 207
statements

ACCEPT, 220
AUTOMATIC, 93, 220
BYTE, 96, 220
CHARACTER, 96
COMMON, 91, 184
DATA, 91, 205
DECODE, 220
DOUBLE COMPLEX, 96, 220
DOUBLE PRECISION, 96
ENCODE, 220
EQUIVALENCE, 91
EXTERNAL, 153, 204, 211, 229
IMPLICIT NONE, 90
INCLUDE, 105
MAP, 221
NAMELIST, 207
ON, 113, 119, 126, 207
OPEN, 206, 217
OPTIONAL, 204
PARAMETER, 205
POINTER (Cray-style), 221
PRIVATE, 106
PROGRAM, 208
PUBLIC, 106

Index

262

RECORD, 221
SAVE, 91, 93
See also main entries for individual

statements.
STATIC, 91, 93, 221
STRUCTURE, 221
TYPE (I/O), 221
UNION, 221
USE, 74, 106
VIRTUAL, 221
VOLATILE, 221
WRITE, 181

static memory, 91
STATIC statement, 91, 93, 221
static storage

+save option, 45
static variables, 91

defined, 238
optimization, 91
performance, 91
recursion, 91
vs. automatic variables, 226

STATUS= specifier, 206
stdio man page, 159
storage alignment, 233
storing data, 89
stream I/O, 159
streams

defined, 238
I/O, 159
pointers, 159

strings
ALIAS directive, 193

strings, C and Fortran, 177
strip command, 110
stripping debugging information, 14, 110
stripping symbol table

+strip option, 47
structs

common blocks, 184
complex numbers, 165
data sharing, 183
derived types, 167

STRUCTURE statement, 221
structures, Fortran 90

See derived types.
stty command, 128
subprocesses

-t option, 47
-W option, 50

subprocesses, substituting, 4

subprograms
See also functions, procedures, and

subroutines.
subscripts

+check option, 27
subscripts, checking, 6
substituting subprocesses, 4
substrings

+check option, 27
sudden underflow

+FP option, 33
suppressing

linking, 27
warnings, 50

suppressing linking, 3, 13, 80
symbol table, 14, 110, 132

defined, 238
symbol table, stripping, 47
symbols, defining to cpp, 5
SYMDEBUG directive (f77), 210
syntax

compiler directives, 187
directives, 188
optimization options, 52
See also main entries for individual

statements.
syntax incompatibilities, finding, 217
syntax, command, xv
SYSTEM

intrinsic, 211, 224
libU77 routine, 211

system calls
I/O, 160

SYSTEM INTRINSIC directive (f77), 205
system resources, 155
system routines, 158

ALIAS directive, 192
calling, 158
case sensitivity, 192
write routine, 181

T
-t option, 4, 47
tab formatting, 231
Table 9-3, 210
TAND intrinsic, 224
temporary files, 86
terminating execution, 122
thread trace visualizer. See ttv.
threads

defined, 238

Index

 263

library, 100
multiple, 100

threads library
+Oparallel option, 61

TIME
intrinsic, 204, 211, 224
libU77 routine, 211

TMPDIR, 86
tools

debugger, 16
migration, 215
performance analysis, 16

traceback, 110, 112, 115
traceback, requesting, 34
transferring control

to trap procedure, 122
trap handling

+FP option, 32
+fp_exception option, 34

traps, 122
arithmetic errors, 125
Control-C interrupts, 128
core dumps, 129
defined, 238
examples, 128, 129
floating-point exceptions, 13, 14
integer overflow, 126
ON statement, 119
procedures for handling, 125
trap procedures, 125

ttv
defined, 238

tty buffering, 49
+ttybuf option, 15, 48, 202
defined, 238
environment variable, 86

TTYUNBUF, 86
TTYUNBUF environment variable, 48
TYPE (I/O) statement, 221
type declaration statement, 91
TYPE= specifier, 206
typedef (C), 165
types, data

See also main entries for individual data
types.

typing rules
+implicit_none option, 38
overriding, 38

typing, implicit. See implicit typing.

U
-U option, 5, 49, 210
-u option (f77), 202
unaligned data reference, 112
uname command, 29, 78
unary operators

incompatibilities, 208
unbuffered output, 15
underflow

+FP option, 33
underflow exception, 113

defined, 238
underscore (_) character

+ppu option, 44
ALIAS directive, 191
external names, 191
in option names, 52

underscore, appending to names, 8, 231
uninitialized variables, 226
UNION statement, 221
unit numbers, 159

C's file pointer, 181
unresolved references, 68
unroll and jam

automatic, 60
directive-specified, 60

unrolling loops, 60
unsigned integers, C and Fortran, 164
UPPERCASE directive (f77), 210
uppercase, forcing, 49
USE statement, 74, 106

ONLY clause, 106
renaming feature, 106

V
-v option, 49

compiler option, 4, 65
linker option, 68

-V option (f77), 202
VAL built-in function, 169

ALIAS directive, 190
variables

automatic, 91
saving, 45
static, 91

VAST directives, 196
V-Class systems, 132

profiling code on, 132
vec_damax routine, 150
vec_dmult_add routine, 150
vec_dsum routine, 150

Index

264

VECTOR directive, 222, 223
vector operations and BLAS, 158
vectorization, 149, 150, 197

+Ovectorize option, 43, 61, 63, 141
calling BLAS routines, 152
defined, 238
directives, 150
local control, 150

vectorization, controlling, 197
VECTORIZE directive, 150, 197, 223
verbose mode

compiling, 65
linking, 68
-v option, 4, 68

verbose mode, enabling, 49
version information, 4, 50
vertical ellipses, xv
VIRTUAL statement, 221
VOLATILE statement, 221

W
-W option, 4, 50
-w option, 8, 50, 210
wall-clock time profiling

defined, 238
warnings

about extensions, 7, 39
suppressing, 8
-w option, 50

WARNINGS directive (f77), 210
white space

See also blanks and spaces.
-Wl option, 15, 68, 70

passing options to ld, 67
word size differences, 227
WRITE statement, 181

debugging tool, 117
write system routine, 160, 181

calling, 181
man page, 182

X
XOR intrinsic, 224

Y
-Y option, 41
-Y option (f77), 212

Z
zeroes, leading, 208
ZEXT intrinsic, 224

