Edition: Seventh

Document Numbers: B6061-96027 and B6061-96028
Remarks: Released December 2004 with HP MLIB software version 9.0.
User's Guide split into two volumes with this release.

Edition: Sixth

Document Number: B6061-96023
Remarks: Released September 2003 with HP MLIB software version 8.50.

Edition: Fifth

Document Number: B6061-96020

Edition: Fourth

Document Number: B6061-96017

Edition: Third

Document Number: B6061-96015
Remarks: Released September 2001 with HP MLIB software version 8.10.

Edition: Second

Document Number: B6061-96012
Remarks: Released June 2001 with HP MLIB software version 8.00.

Edition: First

Document Number: B6061-96010
Notice

© Copyright 1979-2004 Hewlett-Packard Development Company. All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material.
Table of Contents

Preface ... xv
 VECLIB ... xv
 LAPACK ... xvi
 ScaLAPACK .. xvi
 SuperLU ... xvii
 SOLVERS ... xvii
 VMATH ... xviii
 Purpose and audience .. xix
 Organization ... xx
 Notational conventions .. xxii
 Documentation resources ... xxiii

Part 1

1 **Introduction to VECLIB** ... 1
 Overview ... 1
 Chapter objectives .. 2
 Standardization .. 3
 Accessing VECLIB .. 3
 Compiling and linking (VECLIB) 5
 Problem with ++pu compatibility and duplicated symbols 14
 Optimization .. 17
 Parallel processing ... 17
 Linking for parallel or non parallel processing 18
 Controlling VECLIB parallelism at runtime 18
 Performance benefits .. 19
 OpenMP-based nested parallelism 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message passing-based nested parallelism</td>
<td>21</td>
</tr>
<tr>
<td>Default CPS library stack is too small for MLIB</td>
<td>22</td>
</tr>
<tr>
<td>Default Pthread library stack is too small for MLIB</td>
<td>22</td>
</tr>
<tr>
<td>Roundoff effects</td>
<td>23</td>
</tr>
<tr>
<td>Data types and precision</td>
<td>23</td>
</tr>
<tr>
<td>VECLIB naming convention</td>
<td>24</td>
</tr>
<tr>
<td>Data type and byte length</td>
<td>25</td>
</tr>
<tr>
<td>Operator arguments</td>
<td>25</td>
</tr>
<tr>
<td>Error handling</td>
<td>28</td>
</tr>
<tr>
<td>Low-level subprograms</td>
<td>28</td>
</tr>
<tr>
<td>High-level subprograms</td>
<td>28</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>29</td>
</tr>
<tr>
<td>HP MLIB man pages</td>
<td>30</td>
</tr>
<tr>
<td>2 Basic Vector Operations</td>
<td></td>
</tr>
<tr>
<td>Overview</td>
<td>31</td>
</tr>
<tr>
<td>Chapter objectives</td>
<td>32</td>
</tr>
<tr>
<td>Associated documentation</td>
<td>32</td>
</tr>
<tr>
<td>What you need to know to use vector subprograms</td>
<td>33</td>
</tr>
<tr>
<td>BLAS storage conventions</td>
<td>33</td>
</tr>
<tr>
<td>BLAS indexing conventions</td>
<td>35</td>
</tr>
<tr>
<td>Operator arguments in the BLAS Standard</td>
<td>36</td>
</tr>
<tr>
<td>Representation of a permutation matrix</td>
<td>37</td>
</tr>
<tr>
<td>Representation of a Householder matrix</td>
<td>38</td>
</tr>
<tr>
<td>Subprograms for basic vector operations</td>
<td>39</td>
</tr>
<tr>
<td>ISAMAX/IDMAX/Iamax/ICAMAX/IZAMAX Index of maximum of magnitudes</td>
<td>40</td>
</tr>
<tr>
<td>ISAMIN/IDMIN/Iamin/ICAMIN/IZAMIN Index of minimum of magnitudes</td>
<td>43</td>
</tr>
<tr>
<td>ISCTxx/IDCTxx/IICTxx/ICCTxx/IZCTxx Count selected vector elements</td>
<td>36</td>
</tr>
<tr>
<td>ISMAX/IDMAX/Iimax Index of maximum element of vector</td>
<td>49</td>
</tr>
<tr>
<td>ISMIN/IDMIN/Iimin Index of minimum element of vector</td>
<td>51</td>
</tr>
<tr>
<td>ISSVxx/IDSVxx/IISVxx/ICSVxx/IZSVxx Search vector for element</td>
<td>53</td>
</tr>
<tr>
<td>SAMAX/DAMAX/Iamx/SCMAX/DZAMAX Maximum of magnitudes</td>
<td>56</td>
</tr>
<tr>
<td>SAMIN/DAMIN/Iamin/SCAMIN/DZAMIN Minimum of magnitudes</td>
<td>59</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>SASUM/DASUM/IASUM/SCASUM/DZASUM</td>
<td>Sum of magnitudes</td>
</tr>
<tr>
<td>SXAXPY/DAXPY/CAXPY/CAXPYC/ZAXPY/ZAXPYC</td>
<td>Elementary vector operation</td>
</tr>
<tr>
<td>SXAXPYI/DAXPYI/CAXPYI/ZAXPYI</td>
<td>Sparse elementary vector operation</td>
</tr>
<tr>
<td>SCLIP/DCLIP/ICLIP</td>
<td>Two sided vector clip</td>
</tr>
<tr>
<td>SCLIPL/DCLIPL/ICLIPL</td>
<td>Left sided vector clip</td>
</tr>
<tr>
<td>SCLIPR/DCLIPR/ICLIPR</td>
<td>Right sided vector clip</td>
</tr>
<tr>
<td>SCOPY/DCOPY/ICOPY/CCOPY/CCOPYC/ZCOPY/ZCOPYC</td>
<td>Copy vector</td>
</tr>
<tr>
<td>SDOT/DDOT/CDOTC/CDOTU/ZDOTC/ZDOTU</td>
<td>Dot product</td>
</tr>
<tr>
<td>SDOTI/DDOTI/CDOTCI/CDOTUI/ZDOTCI/ZDOTUI</td>
<td>Sparse dot product</td>
</tr>
<tr>
<td>SFRAC/DFRAC</td>
<td>Extract fractional parts</td>
</tr>
<tr>
<td>SGTHR/DGTHR/IGTHR/CGTHR/ZGTHR</td>
<td>Gather sparse vector</td>
</tr>
<tr>
<td>SGTHRZ/DGTHRZ/IGTHRZ/CGTHRZ/ZGTHRZ</td>
<td>Gather and zero sparse vector</td>
</tr>
<tr>
<td>SLS'Txx/DLSTxx/ILSTxx/CLSTxx/ZLSTxx</td>
<td>List selected vector elements</td>
</tr>
<tr>
<td>SMAX/DMAX/IMAX</td>
<td>Maximum of vector</td>
</tr>
<tr>
<td>SMIN/DMIN/IMIN</td>
<td>Minimum of vector</td>
</tr>
<tr>
<td>SNRM2/DNRM2/SCNRM2/DZNR2M2</td>
<td>Euclidean norm</td>
</tr>
<tr>
<td>SNRSQ/DNRSQ/SCNRSQ/DZNR2SQ</td>
<td>Euclidean norm squared</td>
</tr>
<tr>
<td>SRAMP/DRAMP/IRAMP</td>
<td>Generate linear ramp</td>
</tr>
<tr>
<td>SROT/DROT/CROT/CSROT/ZROT/ZDROT</td>
<td>Apply Givens rotation</td>
</tr>
<tr>
<td>SROTI/DROTI</td>
<td>Apply sparse Givens rotation</td>
</tr>
<tr>
<td>SROTM/DROTM</td>
<td>Apply modified Givens rotation</td>
</tr>
<tr>
<td>SROTMG/DROTMG</td>
<td>Construct modified Givens rotation</td>
</tr>
<tr>
<td>SRSCL/DRSCL/CRSCL/CSRSCL/ZRSCL/ZDRC2SL</td>
<td>Scale vector</td>
</tr>
<tr>
<td>SSCAL/DSCAL/CSCAL/CSSCAL/CSCALC/ZSCCAL/ZDSCAL/ZSCALC</td>
<td>Scale vector</td>
</tr>
<tr>
<td>SSCTR/DSCTR/ISCTR/CSCTR/ZSCTR</td>
<td>Scatter sparse vector</td>
</tr>
<tr>
<td>SSUM/DSUM/ISUM/CSU/MSUM</td>
<td>Vector sum</td>
</tr>
<tr>
<td>SSWAP/DSWAP/ISWAP/CSWAP/ZSWAP</td>
<td>Swap two vectors</td>
</tr>
<tr>
<td>SWDOT/DWDOT/CWDOTC/CWDOTU/ZWDOTU/ZWDOTU</td>
<td>Weighted dot product</td>
</tr>
<tr>
<td>SZERO/DZERO/IZERO/CZERO/ZZERO</td>
<td>Clear vector</td>
</tr>
<tr>
<td>F_SAMAX_VAL/F_DAMAX_VAL/F_CAMAX_VAL/F_ZAMAX_VAL</td>
<td>Maximum absolute value and location</td>
</tr>
<tr>
<td>F_SAMIN_VAL/F_DAMIN_VAL/F_CAMIN_VAL/F_ZAMIN_VAL</td>
<td>Minimum absolute value and location</td>
</tr>
</tbody>
</table>
| F_SAPPLY_GROT/F_DAPPLY_GROT/F_CAPPLY_GROT/F_ZAPPLY_GROT | Apply Givens rotation |...
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_SAXPBY/F_DAXPBY/F_CAXPBY/F_ZAXPBY</td>
<td>Scaled vector accumulation</td>
<td>158</td>
</tr>
<tr>
<td>F_SAXPY_DOT/F_DAXPY_DOT/F_CAXPY_DOT/F_ZAXPY_DOT</td>
<td>Combine AXPY and DOT routines</td>
<td>164</td>
</tr>
<tr>
<td>F_SCOPY/F_DCOPY/F_CCOPY/F_ZCOPY</td>
<td>Copy vector.</td>
<td>167</td>
</tr>
<tr>
<td>F_SDOT/F_DDOT/F_CDOT/F_ZDOT</td>
<td>Add scaled dot product.</td>
<td>169</td>
</tr>
<tr>
<td>F_SFPINFO/F_DFPINFO</td>
<td>Environmental inquiry.</td>
<td>172</td>
</tr>
<tr>
<td>F_SGEN_GROT/F_DGEN_GROT/F_CGEN_GROT/F_ZGEN_GROT</td>
<td>Generate Givens rotation</td>
<td>174</td>
</tr>
<tr>
<td>F_SGEN_HOUSE/F_DGEN_HOUSE/F_CGEN_HOUSE/F_ZGEN_HOUSE</td>
<td>Generate Householder transform</td>
<td>175</td>
</tr>
<tr>
<td>F_SGEN_JROT/F_DGEN_JROT/F_CGEN_JROT/F_ZGEN_JROT</td>
<td>Generate Jacobi rotation</td>
<td>178</td>
</tr>
<tr>
<td>F_SMAX_VAL/F_DMAX_VAL</td>
<td>Maximum value and location.</td>
<td>181</td>
</tr>
<tr>
<td>F_SMIN_VAL/F_DMIN_VAL</td>
<td>Minimum value and location.</td>
<td>183</td>
</tr>
<tr>
<td>F_SNORM/F_DNORM</td>
<td>Norm of a vector.</td>
<td>185</td>
</tr>
<tr>
<td>F_SPERMUTE/F_DPERMUTE/F_CPERMUTE/F_ZPERMUTE</td>
<td>Permute vector</td>
<td>187</td>
</tr>
<tr>
<td>F_SRSACLE/F_DRSACLE/F_CRSACLE/F_ZRSACLE</td>
<td>Reciprocal Scale</td>
<td>190</td>
</tr>
<tr>
<td>F_SSORT/F_DSORT</td>
<td>Sort vector entries.</td>
<td>192</td>
</tr>
<tr>
<td>F_SSORTV/F_DSORTV</td>
<td>Sort vector and return index vector.</td>
<td>193</td>
</tr>
<tr>
<td>F_SSUM/F_DSUM/F_CSUM/F_ZSUM</td>
<td>Sum of entries of a vector.</td>
<td>195</td>
</tr>
<tr>
<td>F_SSUMSQ/F_DSUMSQ/F_CSUMSQ/F_ZSUMSQ</td>
<td>Sum of squares.</td>
<td>197</td>
</tr>
<tr>
<td>F_SSWAP/F_DSWAP/F_CSWAP/F_ZSWAP</td>
<td>Interchange vectors.</td>
<td>200</td>
</tr>
<tr>
<td>F_SWAXPBY/F_DWAXPBY/F_CWAXPBY/F_ZWAXPBY</td>
<td>Scaled vector addition.</td>
<td>202</td>
</tr>
</tbody>
</table>

3 Basic Matrix Operations ... 205

Overview .. 205

Chapter objectives .. 206

Associated documentation .. 206

What you need to know to use these subprograms 207

Subroutine naming convention 207

Operator arguments in the BLAS Standard 209

Subprograms for basic matrix operations 210

SGBMV/DGBMV/CGBMV/ZGBMV | Matrix-vector multiply. | 212

SGECPY/DGECPY/CGECPY/ZGECPY | Copy general matrix. | 219

SGEMM/DGEMM/CGEMM/ZGEMM | Matrix-matrix multiply | 222
DGEMMS/ZGEMMS Strassen matrix-matrix multiply.......................... 227
SGEMV/DGEMV/CGEMV/ZGEMV Matrix-vector multiply 232
SGER/DGER/CGERC/ZGERU/ZGERC/ZGERU Rank-1 update 237
SGETRA/DGETRA/CGETRA/ZGETRA In-place transpose of a general square matrix
 241
SSBMV/DSBMV/CHBMV/ZHBMV Matrix-vector multiply 244
SSPMV/DSPMV/CHPMV/ZHPMV Matrix-vector multiply 249
SSPR/DSPR/CHPR/ZHPR Rank-1 update 254
SSPR2/DSPR2/CHPR2/ZHPR2 Rank-2 update 259
SSYMM/DSYMM/CHEMM/CYMM/ZHEMM/ZSYMM Matrix-matrix multiply 265
SSYMV/DSYMV/CHEMV/ZHEMV Matrix-vector multiply 270
SSYR/DSYR/CHER/ZHER Rank-1 update 275
SSYR2/DSYR2/CHER2/ZHER2 Rank-2 update 279
SSYR2K/DSYR2K/CHER2K/CYSR2K/ZHER2K/ZYSR2K Rank-2k update 284
SSYRK/DSYRK/CHERK/CYSRK/ZHERK/ZYSRK Rank-k update 289
STBMV/DTBMV/CTBMV/ZTBMV Matrix-vector multiply 294
STBSV/DTBSV/CTBSV/ZTBSV Solve triangular band system................ 301
STPMV/DTPMV/CTPMV/ZTPMV Matrix-vector multiply 308
STPSV/DTPSV/CTPSV/ZTPSV Solve triangular system 313
STRMM/DTRMM/CTRMM/ZTRMM Triangular matrix-matrix multiply 318
STRMV/DTRMV/CTRVM/ZTRMV Matrix-vector multiply 323
STRSV/DTRSV/CTRVS/ZTRSV Solve triangular systems 327
XERBLA Error handler .. 337
F_CHBMV/F_ZHBMV Hermitian banded matrix-vector multiply 340
F_CHEMV/F_ZHEMV Hermitian matrix-vector multiply 342
F_CHER/F_ZHER Hermitian rank-1 update 344
F_CHER2/F_ZHER2 Hermitian rank-2 update 346
F_CHPMV/F_ZHPMV Hermitian packed matrix-vector multiply 348
F_CHPR/F_ZHPR Hermitian rank-1 update 350
F_CHPR2/F_ZHPR2 Hermitian rank-2 update 352
F_SFPINFO/F_DFPINFO Environmental inquiry 354
F_SGBMV/F_DGBMV/F_CGBMV/F_ZGBMV General band matrix-vector multiply . 355
F_SGE_COPY/F_DGE_COPY/F_CGE_COPY/F_ZGE_COPY Matrix copy 358
F_SGE_TRANS/F_DGE_TRANS/F_CGE_TRANS/F_ZGE_TRANS Matrix
 transposition .. 360
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_SGEMM/F_DGEMM/F_CGEMM/F_ZGEMM</td>
<td>General matrix-matrix multiply</td>
<td>362</td>
</tr>
<tr>
<td>F_SGEMV/F_DGEMV/F_CGEMV/F_ZGEMV</td>
<td>General matrix-vector multiply</td>
<td>365</td>
</tr>
<tr>
<td>F_SGEMVER/F_DGEMVER/F_CGEMVER/F_ZGEMVER</td>
<td>Multiple matrix-vector multiply, rank 2 update.</td>
<td>368</td>
</tr>
<tr>
<td>F_SGEMVT/F_DGEMVT/F_CGEMVT/F_ZGEMVT</td>
<td>Multiple matrix-vector multiply</td>
<td>372</td>
</tr>
<tr>
<td>F_SGER/F_DGER/F_CGER/F_ZGER</td>
<td>General rank-1 update</td>
<td>375</td>
</tr>
<tr>
<td>F_SSPMV/F_DSPMV/F_CSPMV/F_ZSPMV</td>
<td>Symmetric packed matrix-vector multiply</td>
<td>381</td>
</tr>
<tr>
<td>F_SSPR/F_DSPR/F_CSPR/F_ZSPR</td>
<td>Symmetric packed rank-1 update</td>
<td>384</td>
</tr>
<tr>
<td>F_SSPR2/F_DSPR2/F_CSPR2/F_ZSPR2</td>
<td>Symmetric rank-2 update</td>
<td>386</td>
</tr>
<tr>
<td>F_SSYMV/F_DSYMV/F_CSYMV/F_ZSYMV</td>
<td>Symmetric matrix-vector multiply</td>
<td>389</td>
</tr>
<tr>
<td>F_SSYR/F_DSYR/F_CSYR/F_ZSYR</td>
<td>Symmetric rank-1 update</td>
<td>392</td>
</tr>
<tr>
<td>F_SSYR2/F_DSYR2/F_CSYR2/F_ZSYR2</td>
<td>Symmetric rank-2 update</td>
<td>394</td>
</tr>
<tr>
<td>F_STBMV/F_DTBMV/F_CTBMV/F_ZTBMV</td>
<td>Triangular banded matrix-vector multiply</td>
<td>397</td>
</tr>
<tr>
<td>F_STBSV/F_DTBSV/F_CTBSV/F_ZTBSV</td>
<td>Triangular banded solve</td>
<td>400</td>
</tr>
<tr>
<td>F_STPMV/F_DTPMV/F_CTPMV/F_ZTPMV</td>
<td>Triangular packed matrix-vector multiply</td>
<td>403</td>
</tr>
<tr>
<td>F_STPSV/F_DTPSV/F_CTPSV/F_ZTPSV</td>
<td>Triangular packed solve</td>
<td>406</td>
</tr>
<tr>
<td>F_STRMV/F_DTRMV/F_CTRMV/F_ZTRMV</td>
<td>Triangular matrix-vector multiply</td>
<td>408</td>
</tr>
<tr>
<td>F_STRMVT/F_DTRMVT/F_CTMV/F_ZTRMVT</td>
<td>Multiple triangular matrix-vector multiply</td>
<td>411</td>
</tr>
<tr>
<td>F_STRSM/F_DTRSM/F_CTRSM/F_ZTRSM</td>
<td>Triangular solve</td>
<td>414</td>
</tr>
<tr>
<td>F_STRSV/F_DTRS/F_CTRS/F_ZTRSV</td>
<td>Triangular solve</td>
<td>417</td>
</tr>
</tbody>
</table>

4 Sparse BLAS Operations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>421</td>
</tr>
<tr>
<td>Chapter objectives</td>
<td>421</td>
</tr>
<tr>
<td>Associated documentation</td>
<td>422</td>
</tr>
<tr>
<td>What you need to know to use these subprograms</td>
<td>423</td>
</tr>
<tr>
<td>Subroutine naming convention</td>
<td>423</td>
</tr>
<tr>
<td>Sparse matrix storage formats</td>
<td>424</td>
</tr>
<tr>
<td>Operator arguments in the Sparse BLAS</td>
<td>437</td>
</tr>
<tr>
<td>Arguments</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>Common arguments</td>
<td>438</td>
</tr>
<tr>
<td>SM arguments</td>
<td>440</td>
</tr>
<tr>
<td>Order of arguments for args(A)</td>
<td>440</td>
</tr>
<tr>
<td>SBCOMM/DBCOMM/CBCOMM/ZBCOMM</td>
<td>Block coordinate matrix-matrix multiply</td>
</tr>
<tr>
<td>SBDIMM/DBDIMM/CBDIMM/ZBDIMM</td>
<td>Block diagonal matrix-matrix multiply</td>
</tr>
<tr>
<td>SBDISM/DBDISM/CBDISM/ZBDISM</td>
<td>Block diagonal format triangular solve</td>
</tr>
<tr>
<td>SBELMM/DBELMM/CBELMM/ZBELMM</td>
<td>Block Ellpack matrix-matrix multiply</td>
</tr>
<tr>
<td>SBEELSM/DBEELSM/CBEELSM/ZBEELSM</td>
<td>Block Ellpack format triangular solve</td>
</tr>
<tr>
<td>SBSCMM/DBSCMM/CBSCMM/ZBSCMM</td>
<td>Block sparse column matrix-matrix multiply</td>
</tr>
<tr>
<td>SBSCSM/DBSCSM/CBSCSM/ZBSCSM</td>
<td>Block sparse column format triangular solve</td>
</tr>
<tr>
<td>SBSRMM/DBSRMM/CBSRMM/ZBSRMM</td>
<td>Block sparse row matrix-matrix multiply</td>
</tr>
<tr>
<td>SBSRSM/DBSRSM/CBSRSM/ZBSRSM</td>
<td>Block sparse row format triangular solve</td>
</tr>
<tr>
<td>SCOOMM/DCOOMM/CCOOMM/ZCOOMM</td>
<td>Coordinate matrix-matrix multiply</td>
</tr>
<tr>
<td>SCSCMM/DCSCMM/CCSCMM/ZCSCMM</td>
<td>Compressed sparse column matrix-matrix multiply</td>
</tr>
<tr>
<td>SCSCSM/DCSCSM/CCSCSM/ZCSCSM</td>
<td>Compressed sparse column format triangular solve</td>
</tr>
<tr>
<td>SCSRMM/DCSRMM/CCSRMM/ZCSRMM</td>
<td>Compressed sparse row matrix-matrix multiply</td>
</tr>
<tr>
<td>SCSRSM/DCSRSM/CCSRSM/ZCSRSM</td>
<td>Compressed sparse row format triangular solve</td>
</tr>
<tr>
<td>SDIAMM/DDIAMM/CDIAMM/ZDIAMM</td>
<td>Diagonal matrix-matrix multiply</td>
</tr>
<tr>
<td>SDIASM/DDIASM/CDIASM/ZDIASM</td>
<td>Diagonal format triangular solve</td>
</tr>
<tr>
<td>SELLMM/DELLMM/CELLMM/ZELLMM</td>
<td>Ellpack matrix-matrix multiply</td>
</tr>
<tr>
<td>SELLSM/DELLSM/CELLSM/ZELLSM</td>
<td>Ellpack format triangular solve</td>
</tr>
<tr>
<td>SJADMM/DJADMM/CJADMM/ZJADMM</td>
<td>Jagged diagonal matrix-matrix multiply</td>
</tr>
<tr>
<td>SJADSM/DJADSM/CJADSM/ZJADSM</td>
<td>Jagged diagonal format triangular solve</td>
</tr>
<tr>
<td>SSKYMM/DSKYMM/CSKYMM/ZSKYMM</td>
<td>Skyline matrix-matrix multiply</td>
</tr>
<tr>
<td>SSKYSM/DSKYSM/CSKYSM/ZSKYSM</td>
<td>Skyline format triangular solve</td>
</tr>
<tr>
<td>SVBRMM/DVBRMM/CVBRMM/ZVBRMM</td>
<td>Variable block row matrix-matrix multiply</td>
</tr>
</tbody>
</table>
SVBRSM/DVBRSM/CVBRSM/ZVBRSM Variable block row format triangular solve
533
Figures
Tables

Table 1-1	VECLIB and VECLIB8 Libraries	4
Table 1-2	Compiler Defaults	14
Table 1-3	VECLIB Naming Convention—Data Type	24
Table 1-4	BLAS Standard Operator Arguments	27
Table 2-1	FPINFO return values	173
Table 3-1	Extended BLAS Naming Convention—Data Type	207
Table 3-2	Extended BLAS Naming Convention—Matrix Form	208
Table 3-3	Extended BLAS Naming Convention—Computation	208
Table 3-4	Extended BLAS Naming Convention—Subprogram Names	209
Table 4-1	Sparse BLAS Naming Convention—Data Type	423
Table 4-2	Sparse BLAS Naming Convention—Matrix Form	424
Table 4-3	4 x 5 Matrix	425
Table 4-4	COO Format Matrix	425
Table 4-5	CSC Format Matrix	426
Table 4-6	MSC Format Matrix	426
Table 4-7	CSR Format Matrix	427
Table 4-8	MSR Format Matrix	428
Table 4-9	5 x 4 Matrix	429
Table 4-10	DIA Format Matrix	429
Table 4-11	ELL Format Matrix	430
Table 4-12	JAD Format Matrix	431
Table 4-13	JAD Row-Permuted Matrix	431
Table 4-14	5 x 5 Matrix	431
Table 4-15	SKY Format Matrix	432
Table 4-16	4 x 6 Matrix	432
Table 4-17	BCO Format Matrix	433
Table 4-18	BSC Format Matrix	434
Table 4-19 BSR Format Matrix .. 435
Table 4-20 6 x 6 Matrix ... 437
Table 4-21 VBR Format Matrix .. 437
Preface

Hewlett-Packard's high-performance math libraries (HP MLIB) help you speed development of applications and shorten execution time of long-running technical applications.

HP MLIB is a collection of subprograms optimized for use on HP servers and workstations, providing mathematical software and computational kernels for engineering and scientific applications. HP MLIB can be used on systems ranging from single-processor workstations to multiprocessor high-end servers. HP MLIB is optimized for HP PA-RISC 2.0, Itanium™ 2, and Opteron processors. HP MLIB has six components; VECLIB, LAPACK, ScaLAPACK, SuperLU, SOLVERS, and VMATH.

VECLIB

HP VECLIB contains robust callable subprograms. Together with a subset of the BLAS Standard subroutines, HP MLIB supports the legacy BLAS, a collection of routines for the solution of sparse symmetric systems of equations, a collection of commonly used Fast Fourier Transforms (FFTs), and convolutions. Although VECLIB was designed for use with Fortran programs, C programs can call VECLIB subprograms, as described in Appendix A. Refer to Part 1 of this manual for HP VECLIB information.

Throughout this document there are references to legacy BLAS and BLAS Standard routines. Legacy BLAS routines include Basic Linear Algebra Subprograms (BLAS), that is the level 1, 2, and 3 BLAS, as well as the Sparse BLAS.

HP Linear Algebra Package (LAPACK) is a collection of subprograms that provide mathematical software for applications involving linear equations, least squares, eigenvalue problems, and the singular value decomposition. LAPACK is designed to supersede the linear equation and eigenvalue packages, LINPACK and EISPACK. The National Science Foundation, the Defense Advanced Research Projects Agency, and the Department of Energy supported the development of the public-domain version of LAPACK, from which the HP version was derived.

HP LAPACK fully conforms with public domain version 3.0 of LAPACK in all user-visible usage conventions. Refer to Part 2 of this manual for information specific to HP LAPACK. To supplement the HP specific information provided in Part 2 of this document, refer to the standard LAPACK Users' Guide. You can access the latest edition of the LAPACK Users' Guide at the Netlib repository at the following URL:

http://www.netlib.org/lapack/lug/index..html

ScaLAPACK

ScaLAPACK is a library of high-performance linear algebra routines capable of solving systems of linear equations, linear least squares problems, eigenvalue problems, and singular value problems. ScaLAPACK can also handle many associated computations such as matrix factorizations or estimating condition numbers.

ScaLAPACK is a public domain software that was developed by Oak Ridge National Laboratory. It is designed for distributed computing and uses the Message Passing Interface (MPI) for parallelism. This implementation provides a version of ScaLAPACK tuned on HP servers and built with HP’s MPI. The ScaLAPACK library routines are written in Fortran 77 and are callable from Fortran 90 and C routines. Unlike other MLIB libraries, there is not a version of ScaLAPACK that assumes all integers are 8 bytes in length.
SuperLU

This implementation provides the Distributed SuperLU library designed for distributed memory parallel computers. It was based on the public-domain SuperLU_DIST, which was developed at the Lawrence Berkeley National Lab and the University of California at Berkeley.

The library contains a set of subroutines to solve a sparse linear system. The library is implemented in ANSI C, using HP Message Passing Interface (MPI) for communication. The library includes routines to handle both real and complex matrices using double precision. The parallel routine names for the double-precision real version start with the letters “pd” (e.g. pdgstrf). The parallel routine names for the double-precision complex version start with letters “pz” (e.g. pzgstrf). Unlike other MLIB libraries, there is not a version of SuperLU that assumes all integers are 8 bytes in length.

The routines can be called directly from C applications. They may also be called from Fortran applications, however, “bridge” routines (in C) must be supplied. For details about creating bridge routines, please refer to Section 2.9.2 in the SuperLU User’s Guide available at:

http://www.nersc.gov/~xiaoye/SuperLU

SOLVERS

Solvers is a collection of direct sparse linear system solvers and graph partitioning routines. Symmetric systems can be solved using SMP parallelism and structurally-symmetric systems can be solved using out-of-core functionality. These routines have been optimized for use on Hewlett-Packard servers. Features are:
VMATH

- Sparse symmetric and structurally-symmetric linear equation solutions.
- Sparse symmetric ordinary and generalized eigensystem solutions.
- Out-of-core symmetric and structurally-symmetric linear equation and eigensystems solutions.
- Full METIS functionality

This implementation provides the METIS Version 4.0.1 library. It is based on the public-domain METIS, which was developed at the University of Minnesota, Department of Computer Science, and the Army HPC Research Center. The library contains a set of subroutines for graph partitioning, mesh partitioning, and sparse matrix reordering, as well as auxiliary routines. HP MLIB contains the full METIS functionality as that in the public domain METIS, however, the routine names are different. HP MLIB METIS routine names have been prepended with mlib_ to avoid name conflict on applications and libraries that contain their own local version of METIS.

For more information about METIS, please refer to:

VMATH

VMATH is a library of vector math routines corresponding to many of the widely used scalar math routines available with C, C++, and Fortran90. VMATH is intended for computationally intensive mathematical applications amenable to a vector programming style.

VMATH provides two libraries: VMATH, whose interface uses 4-byte integers; and VMATH8, whose interface uses 8-byte integers and is otherwise equivalent to VMATH. VMATH routines come with both Fortran and C interfaces.

For more detailed information on VMATH as well as subprogram specifications, please refer to the VMATH chapter in Part 5 of this book. The VMATH man pages provide a man page for each subprogram.
Purpose and audience

This guide describes the MLIB software library and shows how to use it. This library provides mathematical software and computational kernels for applications.

The *HP MLIB User's Guide* addresses experienced programmers who:

- Convert, develop, or optimize programs for use on HP servers and workstations
- Optimize existing software to improve performance and increase productivity
Organization

To learn fundamental information necessary for using the VECLIB library, read Chapter 1 and the introductory sections of the other chapters. These sections of background information will help you efficiently use the library subprograms.

To learn more about the subject of any chapter, refer to the literature cited in the “Associated documentation” section of each chapter.

Part 1 of this document is organized as follows:

- Chapter 1 introduces general concepts about VECLIB
- Chapter 2 describes basic vector operations included in VECLIB
- Chapter 3 describes basic matrix operations included in VECLIB
- Chapter 4 describes sparse BLAS operations
- Chapter 5 describes the discrete Fourier transforms in VECLIB
- Chapter 6 describes subprograms to compute convolutions and correlations of data sets
- Chapter 7 describes miscellaneous subprograms to produce random numbers, sort the elements of a vector in ascending or descending order, measure time, allocate dynamic memory, and report errors

Part 2 of this document is organized as follows:

- Chapter 8 describes information specific to Hewlett-Packard’s implementation of LAPACK
- Chapter 9 describes selected LAPACK auxiliary subprograms

Part 3 of this document is organized as follows:

- Chapter 10 describes ScaLAPACK functionality

Part 4 of this document is organized as follows:

- Chapter 11 describes Distributed SuperLU functionality

Part 5 of this document is organized as follows:

- Chapter 12 describes VMATH functionality
Part 6 of this document is organized as follows:

- Chapter 13 explains sparse symmetric linear equation subprograms
- Chapter 14 describes METIS subprograms
- Chapter 15 describes sparse symmetric eigenvalue subprograms
- Chapter 16 describes BCSLIB-EXT functionality

Supplemental material is provided as follows:

- Appendix A describes how to call VECLIB and LAPACK subprograms from within C programs
- Appendix B describes LINPACK subprograms available in HP MLIB
- Appendix C lists parallelized subprograms in VECLIB and LAPACK
- An index is included at the back of the manual

Supplemental information for Part 2 of this *HP MLIB User's Guide*, is found in the *LAPACK Users' Guide*.

The *LAPACK Users' Guide* is a publication from the Society for Industrial and Applied Mathematics that provides an introduction to the design of LAPACK as well as complete specifications for all the driver and computational routines. You can access the latest edition of the *LAPACK Users' Guide* at the Netlib repository at the following URL:

http://www.netlib.org/lapack/lug

Supplemental information for Part 3 of this *HP MLIB User's Guide*, is found in the *ScaLAPACK User's Guide*.

The *ScaLAPACK Users' Guide* is a publication from the Society for Industrial and Applied Mathematics that provides an informal introduction to the design of ScaLAPACK as well as a detailed description of its contents and a reference manual. You can access the latest edition of the *ScaLAPACK Users' Guide* at the Netlib repository at the following URL:

http://www.netlib.org/scalapack/slug

Supplemental information for Part 4 of this *HP MLIB User's Guide*, is found in the *SuperLU User's Guide*, which is only available online at:

http://www.nersc.gov/~xiaoye/SuperLU
Notational conventions

The following conventions are used in this manual:

Italics within text indicate mathematical entities used or manipulated by the program: for example, solve the \(n \)-by-\(n \) system of linear equations \(Ax = b \).

Italics within command lines indicate generic commands, file names, or subprogram names. Substitute actual commands, file names, or subprograms for the *italicized* words. For example, the command line

```
f90 prog_name.o
```

instructs you to type the command *f90*, followed by the name of a program or subprogram object file.

UPPERCASE BOLDFACE within text and in prototype Fortran statements indicates Fortran keywords and subprogram names that must be typed just as they appear. For example, *CALL DAXPY*.

lowercase boldface within text indicates Fortran generic variable or array names. You should substitute actual variable or array names. The *italicized* mathematical entities and the **lowercase boldface** variable and array names usually correspond. For example, \(A \) is a matrix and \(a \) is the Fortran array containing the matrix:

```
CALL DAXPY (n, a, x, incx, y, incy)
```

lowercase boldface within command lines indicates ASCII characters that must be typed just as they appear. For example, the command line

```
f90 prog_name.o
```

instructs you to type the command *f90*, followed by the name of a program or subprogram object file.
Documentation resources

The HP MLIB User's Guide, the LAPACK Users' Guide, and the ScaLAPACK Users' Guide are available in hardcopy and online formats.

For the HP MLIB User's Guide, refer to:
http://www.hp.com/go/mlib

For the latest edition of the LAPACK Users' Guide, refer to:
http://www.netlib.org/lapack/lug

For the latest edition of the ScaLAPACK User's Guide, refer to:
http://www.netlib.org/scalapack/slug

For the latest edition of the SuperLU User's Guide, refer to:
http://www.nersc.gov/~xiaoye/SuperLU

The following documents provide supplemental information:

- ScaLAPACK Users' Guide Philadelphia, PA: Society for Industrial and Applied Mathematics. This guide provides information on the subprograms provided with the ScaLAPACK library.

- Fortran 9000 Programmer's Guide. Describes features and requirements in terms of the tasks a programmer might perform. These tasks include how to compile, link, run, debug, and optimize programs.
Documentation resources

- **HP-UX Floating-Point Guide.** Describes how floating-point arithmetic is implemented on HP 9000 systems and discusses how floating-point behavior affects the programmer.

- **HP Fortran 90 Programmer’s Guide.** Provides extensive usage information (including how to compile and link), suggestions and tools for migrating to HP Fortran 90, and how to call C and HP-UX routines for HP Fortran 90.

- **HP C Programming Guide.** Contains detailed discussions of selected C topics.

- **HP C/HP-UX Reference Manual.** Presents reference information on the C programming language as implemented by HP.

- **HP aC++ Online Programmer’s Guide.** Presents reference and tutorial information on aC++. (This manual is accessed by specifying aCC with the +help command-line option.)

- **HP MPI User’s Guide.** Describes how to use HP MPI (Message Passing Interface), a library of C- and Fortran-callable routines used for message-passing programming.

- **Software Optimization for High Performance Computing: Creating Faster Applications.** Provides state-of-the-art solutions for every key aspect of software performance; both code-based and algorithm-based.

- **HP-UX Assembly Language Reference Manual.** Describes the HP-UX assembler for the PA-RISC processor.

- **HP PA-RISC 2.0 Architecture Reference.** Describes the architecture of the PA-RISC 2.0 processor.

- **PA-RISC Procedure Calling Conventions Reference.** Describes the conventions for creating PA-RISC assembly language procedure calls.

- **IA-64 and Elementary Functions.** Describes the architecture of the IA-64 processor and how to implement elementary functions.

- METIS documentation is available online at http://www-users.cs.umn.edu/~karypis/metis/metis/index.html.

- OpenMP documentation is available online at http://www.openmp.org.
Part 1

HP VECLIB
1 Introduction to VECLIB

Overview

VECLIB, a component of HP MLIB, is a collection of subprograms optimized for use on Hewlett-Packard servers and workstations, providing mathematical software and computational kernels for engineering and scientific applications. This library contains subprograms for:

- Dense vector operations, including the Level 1 BLAS
- Sparse vector and matrix operations, including the Sparse BLAS
 - BLAS 3 routine DGEMM is highly tuned
- Matrix operations, including the Level 2 and Level 3 BLAS
- CXML Blas extensions
 Compaq Extended Math Library (CXML) is a collection of routines that performs numerically intensive operations that occur frequently in engineering and scientific computing, such as linear algebra and signal processing.
 HP MLIB adds support for the unique CXML extensions to the legacy BLAS and for the array math functions in CXML. However, the additional support of XCML is not exhaustive. For more information about CXML see the CXML Reference Manual part number AA-PV6VE-TE.

- Discrete Fourier transforms
- Convolution and correlation
- Miscellaneous tasks, such as sorting and generating random numbers

VECLIB provides two sets of libraries: VECLIB and VECLIB8. To determine if a subprogram is included in VECLIB8, refer to the VECLIB8 section under each subprogram specification in the following chapters.

Although VECLIB was designed for use with Fortran programs, C programs can call VECLIB subprograms. Refer to Appendix A, “Calling MLIB routines from C,” for details. Examples are in Fortran, unless otherwise indicated.

Except for subprograms described in Appendix B, “LINPACK Subprograms,” LINPACK, EISPACK, and SKYLINE subprograms are not included in the
Chapter objectives

Hewlett-Packard scientific libraries. Refer to the Appendix, “Converting from LINPACK or EISPACK” in the LAPACK Users' Guide, for assistance converting programs that currently call LINPACK or EISPACK routines to call LAPACK or VECLIB routines instead.

This chapter provides information necessary for efficient use of VECLIB and includes discussions of:

- Standardization
- Accessing VECLIB
- Optimization
- Parallel processing
- Roundoff effects
- Data types and precision
- VECLIB naming convention
- Data type and byte length
- Operator arguments
- Error handling
- HP MLIB man pages
- Troubleshooting

Chapter objectives

After reading this chapter you will:

- Know how to access VECLIB library subprograms
- Understand how VECLIB works in a parallel computing environment
- Understand VECLIB naming conventions
- Understand roundoff effects
- Understand how VECLIB handles errors
- Know how to access the online HP MLIB man pages
- Know what to do if you experience trouble using VECLIB subprograms
Standardization

VECLIB conforms to a variety of existing standards. For example, it includes Basic Linear Algebra Subprograms (BLAS), levels 1, 2, and 3, and Sparse BLAS.

These products are available with standardized user interfaces on computers ranging from microcomputers to supercomputers. Because VECLIB conforms to these standards, it is a software bridge from other computers to Hewlett-Packard servers and workstations. However, even though the user interface is standardized, internal workings of HP VECLIB subprograms have been specialized for supported computers.

Accessing VECLIB

The VECLIB and VECLIB8 libraries are available as archive and shared libraries. They consist of compiled subprograms ready for you to incorporate into your programs with the linker. Include the appropriate declarations and CALL statements in your Fortran source program and specify that VECLIB or VECLIB8 be used as an object library at link time. Refer to the LAPACK chapter for details about accessing the LAPACK library, The ScaLAPACK chapter for details about accessing the ScaLAPACK library, and the Distributed SuperLU chapter for details about accessing the Distributed SuperLU library.

MLIB libraries are installed in the /opt/mlib/ directory. The entire path depends on your system type, as follows:
Table 1-1 VECLIB and VECLIB8 Libraries

<table>
<thead>
<tr>
<th>Processor Type</th>
<th>OS Version</th>
<th>Address Width</th>
<th>Installation Directory</th>
<th>Libraries</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA 2.0</td>
<td>HP-UX 11i or later</td>
<td>32-bit</td>
<td>/opt/mlib/lib/pa2.0</td>
<td>libveclib.a libveclib.sl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64-bit</td>
<td>/opt/mlib/lib/pa20_64</td>
<td>libveclib.a libveclib.sl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itanium 2</td>
<td>HP-UX 11i V1.6 or later</td>
<td>32-bit</td>
<td>/opt/mlib/lib/hpux32</td>
<td>libveclib.a libveclib.so</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64-bit</td>
<td>/opt/mlib/lib/hpux64</td>
<td>libveclib.a libveclib.so</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itanium 2</td>
<td>Red Hat Linux Enterprise 3 Intel V8.0 Compiler</td>
<td>64-bit</td>
<td>/opt/mlib/intel_8.0/hpmpi_2.1/lib/64</td>
<td>libveclib.a libveclib.so libveclib8.a libveclib8.so</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itanium 2</td>
<td>Red Hat Linux Enterprise 3 Intel IA-32 V8.0 Compiler</td>
<td>32-bit</td>
<td>/opt/mlib/intel_8.0/hpmpi_2.1/lib/32</td>
<td>libveclib.a libveclib.so libveclib8.a libveclib8.so</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itanium 2</td>
<td>HP XC6000 Intel V8.0 Compiler</td>
<td>64-bit</td>
<td>/opt/mlib/intel_8.0/hpmpi_2.1/lib/64</td>
<td>libveclib.a libveclib.so libveclib8.a libveclib8.so</td>
</tr>
</tbody>
</table>
Accessing VECLIB

Only 64-bit addressing is supported in the VECLIB8 library.

The file name of the archive VECLIB and VECLIB8 libraries are libveclib.a and libveclib8.a respectively. The VECLIB shared library for PA is libveclib.sl and is libveclib.so for all other operating systems.

Performance of your applications is better when you use archive libraries. However, if you need to keep executable files to a minimum size, you can use shared libraries. See “Linking with libisamstub.a” on page 8 if your application calls Fortran77 routines from C language code, and you are linking with the VECLIB archive library.

The HP VECLIB library contains parallelized subprograms. Refer to Appendix C, “Parallelized Subprograms,” for details. If your program is run on an HP-UX system with multiple processors, see “Parallel processing” on page 17 for additional information about linking your program.

<table>
<thead>
<tr>
<th>Processor Type</th>
<th>OS Version</th>
<th>Address Width</th>
<th>Installation Directory</th>
<th>Libraries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itanium 2</td>
<td>HP XC6000 Intel V7.1 Compiler</td>
<td>64-bit</td>
<td>/opt/mlib/intel_7.1/hpmpi_2.1/lib/64</td>
<td>libveclib.a libveclib8.a libveclib8.so</td>
</tr>
<tr>
<td>Itanium 2</td>
<td>HP XC4000 PGI V5.1 Compiler</td>
<td>64-bit</td>
<td>/opt/mlib/intel_5.1/hpmpi_2.1/lib/64</td>
<td>libveclib.a libveclib8.a libveclib8.so</td>
</tr>
<tr>
<td>Itanium 2</td>
<td>Opteron PGI V5.1 Compiler</td>
<td>64-bit</td>
<td>/opt/mlib/intel_5.1/hpmpi_2.1/lib/64</td>
<td>libveclib.a libveclib8.a libveclib8.so</td>
</tr>
</tbody>
</table>

Only 64-bit addressing is supported in the VECLIB8 library.

The file name of the archive VECLIB and VECLIB8 libraries are libveclib.a and libveclib8.a respectively. The VECLIB shared library for PA is libveclib.sl and is libveclib.so for all other operating systems.

Performance of your applications is better when you use archive libraries. However, if you need to keep executable files to a minimum size, you can use shared libraries. See “Linking with libisamstub.a” on page 8 if your application calls Fortran77 routines from C language code, and you are linking with the VECLIB archive library.

The HP VECLIB library contains parallelized subprograms. Refer to Appendix C, “Parallelized Subprograms,” for details. If your program is run on an HP-UX system with multiple processors, see “Parallel processing” on page 17 for additional information about linking your program.

Compiling and linking (VECLIB)

There are several ways to link your program with the version of VECLIB tuned for the machine on which the program runs. By default, the -lveclib option on the f90, cc, or c89 command line that links your program selects the library that corresponds to 32-bit addressing on the machine on which you link.

cc is the HP C compiler and c89 is the HP POSIX-conforming C compiler. The remainder of this book refers to the cc and f90 compilers. cc and f90 examples also apply to c89.
Accessing VECLIB

When you use the `--archive_shared` flag on your compiler command line for HP-UX, it ensures that the compiler links the archive library. If the archive library is not available, then it links the shared library. If you omit `--archive_shared` and `--shared_archive`, the linker defaults to linking the shared library. Link with `–Bstatic` on Linux systems.

If your program uses subprograms from VECLIB, LAPACK, ScaLAPACK, Distributed SuperLU, SOLVERS and VMath, specify `–llapack`, `–lveclib`, `–lscalapack`, `–lsuperlu_dist`, `–lsolvers`, and `–lvmath` or `–llapack8`, `–lveclib8`, `–lscalapack8`, `–lsuperlu_dist8`, `–lsolvers8` and `–lvmath8` on the compiler command line.

NOTE
Do not mix subprograms from the two types of 64-bit address libraries (those with 32-bit integers and those with 64-bit integers) in the same program.

Each of the VECLIB and LAPACK library files is complete in itself, meaning that you do not need to link one library because you have called subprograms from another. This is because various subprograms are included in both libraries. For example, VECLIB subroutine SGEMV is called by several LAPACK subprograms, and therefore, is included in the LAPACK library. Thus, in general, you have to link only the library or libraries you need.

For PA-Based Systems

1. To link a program that uses VECLIB for use on the same machine, use one of the following commands:
   ```
   f90 [options] file ... –Wl,–aarchive_shared –lveclib
   cc [options] file ... –Wl,–aarchive_shared –lveclib –lcl –lm
   aCC [options] file ... –Wl,–aarchive_shared –lveclib –lcl –lm
   ```
2. Specify the entire path of the library file on the compiler command line that links your program. For example, to link your program with VECLIB for use with 32- or 64-bit addressing on a PA-based system, use one of the following:
   ```
   f90 [options] file ... /opt/mlib/lib/[pa2.0|pa20_64]/libveclib.a
   cc [options] file ... /opt/mlib/lib/[pa2.0|pa20_64]/libveclib.a –lcl –lm
   aCC [options] file ... /opt/mlib/lib/[pa2.0|pa20_64]/libveclib.a –lcl –lm
   ```
 Replace `libveclib.a` with `libveclib.sl` on your compiler command line if you want to link the shared library on a PA-based system.
3. Use the `–lveclib` option on the compiler command line that links your program, preceded by:
   ```
   –Wl,–aarchive_shared,–L/opt/mlib/lib/[pa2.0|pa20_64]
   ```
Accessing VECLIB

For example, the command lines in Method 2 for PA could be written:

```
f90 [options] file ... -Wl,-aarchive_shared,-L/opt/mlib/[pa2.0|pa20_64] -lveclib
cc [options] file ... -Wl,-aarchive_shared,-L/opt/mlib/[pa2.0|pa20_64] -lveclib -lcl -lm
aCC [options] file ... -Wl,-aarchive_shared,-L/opt/mlib/[pa2.0|pa20_64] -lveclib -lcl -lm
```

4. Set the LDOPTS environment variable to include:

```
-aarchive_shared,-L/opt/mlib/[pa2.0|pa20_64]
```

For example:

```
setenv LDOPTS "-aarchive_shared,-L/opt/mlib/pa2.0"
```

Then use the `-lveclib` option on the compiler command line that links your program:

```
f90 [options] file ... -lveclib
cc [options] file ... -lveclib -lcl -lm
aCC [options] file ... -lveclib -lcl -lm
```

NOTE

An LDOPTS specification takes precedence over using `-Wl` on the compiler command line. That is, if you use the LDOPTS environment variable to specify a library path, you cannot override that specification with a `-Wl` option on your compiler command line.

5. To link with the VECLIB8 libraries on a PA-based system, use the `+DA2.0W` option to specify memory addresses are 64-bit.

Compile Fortran applications with the `+i8`, `+autodbl`, or `+autodbl4` option where:

- `+i8` promotes 4-byte integer of logical constants, intrinsics, and user variables (declared as integer or logical) to 8-byte quantities.
- `+autodbl` promotes all integer, logical, and real items to 8 bytes, and all double-precision and complex items to 16 bytes.
- `+autodbl4` promotes all integer logical, and real items to 8 bytes, and complex items to 16 bytes. The `+autodbl4` option does not promote the size of double-precision and double-complex items.

```
f90 +DA2.0W +i8 [options] file ... -Wl,-aarchive_shared -lveclib8
cc +DA2.0W [options] file ... -Wl,-aarchive_shared -lveclib8 -lcl -lm
aCC +DA2.0W [options] file ... -Wl,-aarchive_shared -lveclib8 -lcl -lm
```
Accessing VECLIB

Linking with libisamstub.a

C language codes that call Fortran77 routines from the BLAS Standard, the sparse linear equation system, or the sparse eigenvalue system, must explicitly link the ISAM (Indexed Sequential Access Method) stubs library into the program. For example,

```plaintext
cc [options] file ... -Wl,-aarchive_shared,-L/opt/fortran/lib/libisamstub.a
-lveclib -lcl -lm
```

This only applies if you are linking with the VECLIB archive library.

This option is only valid for 32-bit PA systems.

For Itanium-Based HP-UX Systems

1. To link a program that uses VECLIB for use on the same machine, use one of the following commands:

   ```plaintext
   f90 [options] file ... -Wl,-aarchive_shared -lveclib
   cc [options] file ... -Wl,-aarchive_shared -lveclib -lcl -lm
   aCC [options] file ... -Wl,-aarchive_shared -lveclib -lcl -lm
   ```

2. Specify the entire path of the library file on the compiler command line that links your program. To link your program with VECLIB for use with 32- or 64-bit addressing on an HP-UX system, use one of the following:

   ```plaintext
   f90 [options] file ... /opt/mlib/lib/[hpux32|hpux64]/libveclib.a
   cc [options] file ... /opt/mlib/lib/[hpux32|hpux64]/libveclib.a -lcl -lm
   aCC [options] file ... /opt/mlib/lib/[hpux32|hpux64]/libveclib.a -lcl -lm
   ```

 Replace `libveclib.a` with `libveclib.so` on your compiler command line if you want to link the shared library on an Itanium-based system.

3. Use the `-lveclib` option on the compiler command line that links your program, preceded by:

   ```plaintext
   -Wl,-aarchive_shared,-L/opt/mlib/lib/[hpux32|hpux64]
   ```

 For example, the command lines in Method 2 for HP-UX could be written:

   ```plaintext
   f90 [+DD32 | +DD64] [options] file...-Wl,-aarchive_shared,-L/opt/mlib/lib/
   [hpux32|hpux64] -lveclib
   cc [+DD32 | +DD64] [options] file ... -Wl,-aarchive_shared,-L/opt/mlib/lib/
   [hpux32|hpux64] -lveclib -lcl -lm
   aCC [+DD32 | +DD64] [options] file ... -Wl,-aarchive_shared,-L/opt/mlib/lib/
   [hpux32|hpux64] -lveclib -lcl -lm
   ```

4. Set the LDOPTS environment variable to include:

8 HP MLIB User's Guide
Accessing VECLIB

-aarchive_shared, -L/opt/mlib/lib/[hpux32|hpux64]

For example:

setenv LDOPTS “aarchive_shared, -L/opt/mlib/lib/hpux32”

Then use the -lveclib option on the compiler command line that links your program:

f90 [options] file ... -lveclib
cc [options] file ... -lveclib -lcl -lm
aCC [options] file ... -lveclib -lcl -lm

NOTE
An LDOPTS specification takes precedence over using -Wl on the compiler command line. That is, if you use the LDOPTS environment variable to specify a library path, you cannot override that specification with a -Wl option on your compiler command line.

5. To link with the VECLIB8 libraries on an HP-UX system, use the +DD64 option to specify memory addresses are 64-bit.

Compile Fortran applications with the +i8, +autodbl, or +autodbl4 option where:

• +i8 promotes 4-byte integer of logical constants, intrinsics, and user variables (declared as integer or logical) to 8-byte quantities.
• +autodbl promotes all integer, logical, and real items to 8 bytes, and all double-precision and complex items to 16 bytes.
• +autodbl4 promotes all integer logical, and real items to 8 bytes, and complex items to 16 bytes. The +autodbl4 option does not promote the size of double-precision and double-complex items.

f90 +DD64 +i8 [options] file ... -Wl, aarchive_shared -lveclib8
cc +DD64 [options] file ... -Wl, aarchive_shared -lveclib8 -lcl -lm
aCC +DD64 [options] file ... -Wl, aarchive_shared -lveclib8 -lcl -lm

For Itanium-Based Red Hat Linux Systems

1. To link a program that uses VECLIB for use on the same machine, use one of the following commands:

ifort [options] file ... -Wl, -Bstatic -lveclib -openmp
icc [options] file ... -Wl, -Bstatic -lveclib -openmp

Link with -Bdynamic if you want the archive library on a linux system.
Accessing VECLIB

NOTE When you use the Intel V8.0 C compiler to link the SOLVERS library, you may require one or more of `-lifcore`, `-lifport`, or `-ldl`.

2. Specify the entire path of the library file on the compiler command line that links your program. For example, to link your program with VECLIB for use with 32- or 64-bit addressing on a Linux system, use one of the following:

 ifort [options] file ... /opt/mlib/intel_8.0/hpmpi_2.1/lib/[32|64]/libveclib.a -openmp
 icc [options] file ... /opt/mlib/intel_8.0/hpmpi_2.1/lib/[32|64]/libveclib.a -openmp

 Replace `libveclib.a` with `libveclib.so` on your compiler command line if you want to link the shared library on a Linux system.

 When you use the C compiler for linking, you may require one or more of `-1CEPCF90`, `-1F90`, `-1IEPCF90`, `-1PEPCF90`, or `-1POSF90`.

3. Use the `-lveclib` option on the compiler command line that links your program, preceded by:

 `-Wl,-Bstatic,-L/opt/mlib/intel_8.0/hpmpi_2.1/lib/[32|64]

 For example, the command lines in Method 2 for Linux could be written:

 ifort [options] file ... -Wl,-Bstatic,-L/opt/mlib/intel_8.0/hpmpi_2.1/lib/[32|64] -lveclib -openmp
 icc [options] file ... -Wl,-Bstatic,-L/opt/mlib/intel_8.0/hpmpi_2.1/lib/[32|64] -lveclib -openmp

 When you use the C compiler for linking, you may require one or more of `-1CEPCF90`, `-1F90`, `-1IEPCF90`, `-1PEPCF90`, or `-1POSF90`.

4. Set the LDOPTS environment variable to include:

 `-Bstatic,-L/opt/mlib/intel_8.0/hpmpi_2.1/lib/[32|64]

 For example:

 setenv LDOPTS “-Bstatic,-L/opt/mlib/lib/linux”

 Then use the `-lveclib` option on the compiler command line that links your program:

 ifort [options] file ... -lveclib -openmp
 icc [options] file ... -lveclib -openmp

NOTE An LDOPTS specification takes precedence over using `-Wl` on the compiler command line. That is, if you use the LDOPTS environment
variable to specify a library path, you cannot override that specification with a `-Wl` option on your compiler command line.

5. Use the following commands to link your programs for use with the VECLIB8 library on a Red Hat Linux system.

   ```
   ifort -i8 [options] file ... -L/opt/mlib/intel_8.0/hpmpi_2.1/lib/[32|64]/lveclib8
   -openmp
   icc [options] file ... -L/opt/mlib/intel_8.0/hpmpi_2.1/lib/[32|64]/lveclib8
   -openmp
   ```

 When you use the C compiler for linking, you may require one or more of `-1CEPCF90`, `-1F90`, `-1IEPCF90`, `-1PEPCF90`, or `-1POSF90`.

For XC6000 Systems with the Intel V8.0 Compiler

1. Use one of the following compile line commands to link VECLIB:

   ```
   ifort [options] file ... -L/opt/mlib/intel_8.0/hpmpi_2.1/lib/64 -lveclib -openmp
   icc [options] file ... -L/opt/mlib/intel_8.0/hpmpi_2.1/lib/64 -lveclib -openmp
   ```

2. Specify the entire path of the library file on the compiler command line that links your program. For example, to link your program with VECLIB for use with 64-bit addressing on an XC6000 system with the Intel V8.0 compiler, use one of the following:

   ```
   ifort [options] file ... /opt/mlib/lib/intel_8.0/hpmpi_2.1/lib/64/libveclib.a
   -openmp
   icc [options] file ... /opt/mlib/lib/intel_8.0/hpmpi_2.1/lib/64/libveclib.a
   -openmp
   ```

 Replace `libveclib.a` with `libveclib.so` on your compiler command line if you want to link the shared library on an XC6000 system.

3. Use the `–lveclib` option on the compiler command line that links your program, preceded by:

   ```
   -Wl,-Bstatic,-L/opt/mlib/intel_8.0/hpmpi_2.1/lib/64
   ```

 For example, the command lines in Method 2 for XC6000 could be written:

   ```
   ifort [options] file...-Wl,-Bstatic,-L/opt/mlib/lib/intel_8.0/hpmpi_2.1/lib/64
   -lveclib -openmp
   icc [options] file ... -Wl,-Bstatic,-L/opt/mlib/lib/intel_8.0/hpmpi_2.1/lib/64
   -lveclib -openmp
   ```

4. Set the LDOPTS environment variable to include:

   ```
   -Bstatic,-L/opt/mlib/lib/intel_8.0/hpmpi_2.1/lib/64
   ```
Accessing VECLIB

For example:

```
setenv LDOPTS "–static,–L/opt/mlib/lib/intel_8.0/hpmpi_2.1/lib/64"
```

Then use the `–lveclib` option on the compiler command line that links your program:

```
ifort [options] file ... –lveclib –openmp
icc [options] file ... –lveclib –openmp
```

NOTE

An LDOPTS specification takes precedence over using `–Wl` on the compiler command line. That is, if you use the LDOPTS environment variable to specify a library path, you cannot override that specification with a `–Wl` option on your compiler command line.

For XC6000 Systems with the Intel V7.1 Compiler

1. Use one of the following compile line commands to link VECLIB:

 - `efc [options] file ... -L/opt/mlib/intel_7.1/hpmpi_2.1/lib/64 –lveclib –openmp`
 - `icc [options] file ... -L/opt/mlib/intel_7.1/hpmpi_2.1/lib/64 –lveclib –openmp`

2. Specify the entire path of the library file on the compiler command line that links your program. For example, to link your program with VECLIB for use with 64-bit addressing on an XC6000 system with the Intel V7.1 compiler, use one of the following:

 - `efc [options] file ... /opt/mlib/lib/intel_7.1/hpmpi_2.1/lib/64/libveclib.a –openmp`
 - `icc [options] file ... /opt/mlib/lib/intel_7.1/hpmpi_2.1/lib/64/libveclib.a –openmp`

 Replace `libveclib.a` with `libveclib.so` on your compiler command line if you want to link the shared library on an XC6000 system.

3. Use the `–lveclib` option on the compiler command line that links your program, preceded by:

 - `–Wl,–static,–L/opt/mlib/lib/intel_7.1/hpmpi_2.1/lib/64`

 For example, the command lines in Method 2 for XC6000 could be written:

 - `efc [options] file ... –Wl,–static,–L/opt/mlib/lib/intel_7.1/hpmpi_2.1/lib/64 –lveclib –openmp`
 - `icc [options] file ... –Wl,–static,–L/opt/mlib/lib/intel_7.1/hpmpi_2.1/lib/64 –lveclib –openmp`

4. Set the LDOPTS environment variable to include:
Accessing VECLIB

-Bstatic,-L/opt/mlib/lib/intel_7.1/hpmpi_2.1/lib/64

For example:

setenv LDOPTS “-Bstatic,-L/opt/mlib/lib/intel_7.1/hpmpi_2.1/lib/64”

Then use the -lveclib option on the compiler command line that links your program:

efc [options] file ... –lveclib –openmp

ice [options] file ... –lveclib –openmp

NOTE
An LDOPTS specification takes precedence over using -Wl on the compiler command line. That is, if you use the LDOPTS environment variable to specify a library path, you cannot override that specification with a -Wl option on your compiler command line.

For XC4000 Systems with the PGI V5.1 Compiler

1. Use one of the following compile line commands to link VECLIB:

pgf90 [options] file ... -L/opt/mlib/pgi_5.1/hpmpi_2.1/lib/64 –lveclib –mp

pgcc [options] file ... -L/opt/mlib/pgi_5.1/hpmpi_2.1/lib/64 –lveclib –mp

-lpgf90 -lpgf90_rpml -lpgf902 -lpgf90rtl -lpgftnrtl

2. Specify the entire path of the library file on the compiler command line that links your program. For example, to link your program with VECLIB for use with 64-bit addressing on an XC4000 system with the PGI V5.1 compiler, use one of the following:

pgf90 [options] file ... /opt/mlib/lib/pgi_5.1/hpmpi_2.1/lib/64/libveclib.a –mp

pgcc [options] file ... /opt/mlib/lib/pgi_5.1/hpmpi_2.1/lib/64/libveclib.a –mp

-lpgf90 -lpgf90_rpml -lpgf902 -lpgf90rtl -lpgftnrtl

Replace libveclib.a with libveclib.so on your compiler command line if you want to link the shared library on an XC4000 system.

3. Use the -lveclib option on the compiler command line that links your program, preceded by:

-Wl,-Bstatic,-L/opt/mlib/lib/pgi_5.1/hpmpi_2.1/lib/64

For example, the command lines in Method 2 for XC4000 could be written:

pgf90 [options] file ...-Wl,-Bstatic,-L/opt/mlib/lib/pgi_5.1/hpmpi_2.1/lib/64

-lveclib –mp

pgcc [options] file ...-Wl,-Bstatic,-L/opt/mlib/lib/pgi_5.1/hpmpi_2.1/lib/64

Chapter 1 Introduction to VECLIB 13
Accessing VECLIB

4. Set the LDOPTS environment variable to include:

 `-Bstatic, -L/opt/mlib/lib/pgi_5.1/hpmpi_2.1/lib/64`

 For example:

   ```
   setenv LDOPTS "-Bstatic, -L/opt/mlib/lib/pgi5.1/hpmpi_2.1/lib/64"
   ```

 Then use the `-lveclib` option on the compiler command line that links your program:

   ```
   pgf90 [options] file ... -lveclib -mp
   ```

   ```
   pgcc [options] file ... -lveclib -mp -lpgf90 -lpgf90_rpml -lpgf902 -lpgf90rtl -lpftnrtl
   ```

NOTE

An LDOPTS specification takes precedence over using `-Wl` on the compiler command line. That is, if you use the LDOPTS environment variable to specify a library path, you cannot override that specification with a `-Wl` option on your compiler command line.

Problem with `+ppu` compatibility and duplicated symbols

All MLIB subprograms documented in the HP MLIB User's Guide have two entry points: one is compatible with the Fortran compiler option `+noppu` (no postpend underbar) and the second is compatible with the Fortran compiler option `+ppu` (postpend underbar). For example, the MLIB BLAS error handler XERBLA has entry points xerbla and xerbla_. Table 1-1 shows the Fortran 90 compiler defaults.

Table 1-2 Compiler Defaults

<table>
<thead>
<tr>
<th></th>
<th>32-bit Addressing</th>
<th>64-bit Addressing</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA-RISC</td>
<td><code>+noppu</code></td>
<td><code>+ppu</code></td>
</tr>
<tr>
<td>Itanium</td>
<td><code>+ppu</code></td>
<td><code>+ppu</code></td>
</tr>
</tbody>
</table>

Different compiler defaults can cause duplicate symbol definitions at link time as the following examples illustrate.

PA-RISC processors

Suppose you write your own Fortran version of the XERBLA subroutine. You compile on PA-RISC with `+DA2 .0W` and the compiler turns on `+ppu` (See Table 1-1), so your xerbla.o object file has an entry point xerbla_. However, the PA-RISC MLIB libraries were compiled with `+noppu` and the entry points with underbars were added as synonyms to the entry points without underbars. Hence, the various MLIB subprograms that call XERBLA reference them as xerbla (without the postpend underbar). Therefore, your xerbla_ does not satisfy their CALL XERBLA, so the linker accesses xerbla.o from the library.
This file includes both entry points xerbla and xerbla_, and xerbla_ conflicts with your XERBLA subroutine.

Use one of the following workarounds on PA-RISC if you are compiling your own Fortran version of XERBLA:

- Compile your XERBLA with +noppu. This implies that you also compile any of your program that calls XERBLA with +noppu, and that you apply this rule recursively.
- Use f90 ALIAS directives:

  ```
  !$HP$ ALIAS xerbla='xerbla'
  ```

 This prevents the compiler from postpending the underbar onto the entry point and external references for XERBLA.

This problem is not confined to the XERBLA subroutine. It occurs on PA-RISC when the following conditions are met:

- Any subprogram with the same name as a user-visible MLIB subprogram is compiled in your program with +ppu
- Another MLIB subprogram used by your program also calls that subprogram

Furthermore, the reverse can occur in the PA-RISC 32-bit libraries if you compile with the +ppu compiler option.

Itanium processors

If you compile on Itanium using the compiler option +noppu your xerbla.o object has an entry point xerbla (without the postpended underbar). However the Itanium MLIB libraries were compiled with +ppu option (following the default behavior described in Table 1-1) and the entry points without underbars were added as synonyms to the entry points with underbars. Hence the various MLIB Fortran source subprograms that call XERBLA reference them as xerbla_. Therefore, your xerbla (without the postpended underbar) does not satisfy the Fortran calls to XERBLA, so the linker accesses xerbla.o from the library. This file contains both entry points xerbla and xerbla_, and xerbla conflicts with your XERBLA subroutine.

Moreover, the various MLIB C source subprograms that call XERBLA still reference them as xerbla (without the postpended underbar). It means that both xerbla and xerbla_ entry points must be provided in your xerbla.o.

Use one of the following workarounds on Itanium if you are compiling your own Fortran version of XERBLA:

- Compile your Fortran source for XERBLA with +noppu and provide both xerbla and xerbla_ entry points:
Accessing VECLIB

SUBROUTINE XERBLA(SRNAME, INFO)
ENTRY XERBLA_SRNAME, INFO
...

• Use f90 ALIAS directives and provide both xerbla and xerbla_ entry points:

 !HP ALIAS xerbla='xerbla'
 !HP ALIAS xerbla_='xerbla_'
 SUBROUTINE XERBLA(SRNAME, INFO)
 ENTRY XERBLA_(SRNAME, INFO)
 ...

The ALIAS directives prevent the compiler from postpending the underbar onto the entry points and external references to XERBLA.

Use the following workaround on Itanium if you are compiling your own C version of XERBLA:

• Undefine any previous aliasing from include files and provide both xerbla and xerbla_ entry points explicitly:

 #undef xerbla
 #undef xerbla_

 void xerbla (char*name, int*iarg, size_t len_name){
 ...
 }

 void xerbla_ (char*name, int*iarg, size_t len_name){
 xerbla (name, iarg, len_name);
 }

This problem is not confined to the XERBLA subroutine. It occurs on Itanium when the following conditions are met:

• Any subprogram with the same name as a user-visible MLIB subprogram is compiled in your program with
 +noppu
• Another MLIB subprogram used by your program also calls that subprogram

PA-RISC and Itanium processors

Also note that all the workarounds listed for Itanium are more generic and can also be used for PA-RISC. Therefore, if you are coding your own version of a MLIB routine called "mlib_routine" on PA-RISC or Itanium, a Fortran version might be implemented as:

 !HP ALIAS mlib_routine='mlib_routine'
 !HP ALIAS mlib_routine_='mlib_routine_'
The key computational kernels in VECLIB have been optimized to take full advantage of both PA-RISC and Itanium tightly integrated architectures. Optimizations include:

- Instruction scheduling to maximize the number of machine instructions executed per clock cycle
- Algorithm restructuring to increase the number of computations per memory access
- Cache management to decrease the number of data cache misses

Refer to “Accessing VECLIB” on page 3 for instructions on linking the desired library with your program.

Parallel processing

Parallel processing is available on multi-processor HP platforms running the HP-UX 11i or greater operating system and Linux. These systems can divide a single computational process into small streams of execution, called threads. The result is that you can have more than one processor executing on behalf of the same process. Also, refer to Appendix C, “Parallelized Subprograms,” for a list of HP VECLIB parallelized subprograms.
Parallel processing

You can enable or disable parallel processing at link time or at runtime. A program does not use parallelism in VECLIB unless parallel processing is enabled at both link time and at runtime.

Linking for parallel or non parallel processing

To enable parallel processing at link time, your link step must produce a multithreaded executable. On HP-UX systems, use the +O3 and +Openmp compiler options to get a multithreaded executable when you link with the HP Fortran compiler; use +O3 and +Openmp when you link with the HP C compiler; and use +Openmp when you link with the HP aC++ compiler:

```
f90 options including +O3 +Openmp] file ... -Wl,-aarchive_shared -lveclib
cc [options including +O3 +Openmp] file ... -Wl,-aarchive_shared -lveclib -lc -lm
aCC [options including +Openmp] file ... -Wl,-aarchive_shared -lveclib -lc -lm
```

To disable VECLIB's automatic parallelism at link time, omit the +Openmp options:

```
f90 [options] file ... -Wl,-aarchive_shared -lveclib
cc [options] file ... -Wl,-aarchive_shared -lveclib -lc -lm
aCC [options] file ... -Wl,-aarchive_shared -lveclib -lc -lm
```

VECLIB for Linux is always multithreaded enabled.

Controlling VECLIB parallelism at runtime

When you enable parallelism at link time, three methods are available at runtime to specify the extent of parallel processing in MLIB.

- Use MLIB_NUMBER_OF_THREADS, a shell environment variable that allows you to enable parallelism within MLIB subprograms and to specify the maximum number of threads that can be used in parallel regions.

Not setting MLIB_NUMBER_OF_THREADS has the same result as setting it to 1; that is, parallel processing is disabled within MLIB subroutines. Setting MLIB_NUMBER_OF_THREADS to the number of CPUs in the system, or greater, allows parallelized MLIB subprograms to use as many CPUs as are available to the process.

The following command lines show the C shell syntax and Korn shell syntax to use when setting the variable to eight processors:

For C shell:

```
setenv MLIB_NUMBER_OF_THREADS 8
```
For Korn shell:

```sh
export MLIB_NUMBER_OF_THREADS=8
```

MLIB_NUMBER_OF_THREADS is examined on the first call to a parallelized VECLIB subprogram to establish the default parallel action within VECLIB.

Use the subroutine MLIB_SETNUMTHREADS to restore VECLIB parallel processing to its run-time default that was specified by MLIB_NUMBER_OF_THREADS. Refer to the mlib_setnumthreads(3m) man page for usage information.

- Use the subroutine MLIB_SETNUMTHREADS.

You can call this subroutine at any time to set the maximum number of parallel threads used in subsequent VECLIB or LAPACK calls. The specified value overrides the absence of the MLIB_NUMBER_OF_THREADS environment variable or any value assigned to it.

- To modify the effect of the MLIB_NUMBER_OF_THREADS and MLIB_SETNUMTHREADS, you can also use MP_NUMBER_OF_THREADS at runtime. When MP_NUMBER_OF_THREADS is set to a value smaller than MLIB_NUMBER_OF_THREADS and MLIB_SETNUMTHREADS, the value of MP_NUMBER_OF_THREADS takes precedence and limits the amount of parallelism to MP_NUMBER_OF_THREADS.

These controls set the maximum amount of SMP parallelism that your program can use, and the VECLIB-specific mechanisms offer finer control within that maximum. Refer to “Performance benefits” below for more information.

Performance benefits

If VECLIB parallelism is enabled, each parallelized VECLIB subprogram determines at runtime if multiple processors are available. If multiple processors are available, VECLIB detects whether the program is already using multiple threads. If the application calling VECLIB is not running multiple threads, VECLIB will attempt to use all available threads (limited by MLIB_NUMBER_THREADS). If the application calling VECLIB is already running multiple threads, VECLIB will attempt to use the remaining threads without over-subscribing. This is a form of nested parallelism.

If you are using an HP server with multiple processors, you can realize the performance benefits of parallel processing in three ways:

- Call any parallelized VECLIB subprogram. Let it use parallelism internally if it determines that it is appropriate to do so based on such factors as problem size, system configuration, and user environment.
Parallel processing

- Call VECLIB subprograms in a parallelized loop or region. VECLIB supports nested parallelism where the outer parallelism is implemented through OpenMP while the inner parallelism is implemented with VECLIB SMP parallelism. To use this mechanism, you must be familiar with the techniques of parallel processing. Refer to the Parallel Programming Guide for HP-UX Systems for details.

- Use the Message Passing Interface (MPI) explicit parallel model. Refer to the HP MPI User's Guide or the MPI(1) man page for details.

VECLIB subprograms are reentrant, meaning that they may be called several times in parallel to do independent computations without one call interfering with another. You can use this feature to call VECLIB subprograms in a parallelized loop or region.

The compiler does not automatically parallelize loops containing a function reference or subroutine call. You can force it to parallelize such a loop by defining OpenMP parallel regions.

For example, the following Fortran code makes parallel calls to subprogram DAXPY:

```
NTHREADS = 4
C$OMP PARALLEL DO NUM_THREADS(NTHREADS)
DO J=1, N
   CALL DAXPY (N-I,A(I,J),A(I+1,I),1,A(I+1,J),1)
ENDO
C$OMP END PARALLEL DO
```

While optimizing a parallel program, you may want to make parallel calls to a VECLIB subprogram to execute independent operations where the call statements are not in a loop. OpenMP supports the PARALLEL and END PARALLEL directions that define a block of code that is to be executed by multiple threads in parallel.

OpenMP-based nested parallelism

Nested parallelism can be achieved when calling VECLIB parallelized subprograms from an OpenMP parallel region. (See “Parallelized subprograms in VECLIB” on page 1104.) Consider the following code running on an HP platform with at least four processors:

```
...                       
c$omp_set_nested (.true.)
c$omp parallel NUM_THREADS(2)
   myid = omp_get_thread_num
   if (myid.eq.0) then
      call dgemm(‘n’, ‘n’, m, m, alpha, a, lda, b, ldb, beta, c, ldc)
   else
      call dgemm(‘n’, ‘n’, m, m, alpha, d, ldd, e, lde, beta, f, ldf)
```
Using MLIB_NUMBER_OF_THREADS set to 1, the code would run two-way parallel: one OpenMP thread for

\[C = \alpha AB + \beta C \]

and another for

\[F = \alpha DE + \beta F \]

Setting MLIB_NUMBER_OF_THREADS to 2 would allow nested parallelism and run the code four-way parallel.

If a parallel VECLIB subprogram is called from a parallelized loop or region, VECLIB will automatically avoid over-subscription of the CPUs. The number of threads spawned by each call to a parallelized VECLIB subroutine on a nested parallel region is limited by:

- MLIB_NUMBER_OF_THREADS
- The number of threads still available in the system
- will never be larger than four. Specifically:

\[\text{MIN} \left(\text{MLIB_NUMBER_OF_THREADS, threads still available, 4} \right) \]

Message passing-based nested parallelism

Nested parallelism can be achieved when calling VECLIB parallelized subprograms from an MPI process. (See “Parallelized subprograms in VECLIB” on page 1104.) Consider the following code:

```fortran
... 
call mpi_init(ierr)
call mpi_comm_rank(MPI_COMM_WORLD, myid, ierr)
if (myid.eq.0) then
call dgemm('n', 'n', m, m, m, alpha, a, lda, b, ldb, beta, c, ldc)
else
call dgemm('n', 'n', m, m, m, alpha, d, ldd, e, lde, beta, f, ldf)
endif 
... 
```
Parallel processing

Assume the application started on two MPI processes. Using MLIB_NUMBER_OF_THREADS set to 1, the code would run two-way parallel: one MPI process for

\[C = \alpha AB + \beta C \]

and another for

\[F = \alpha DE + \beta F \]

Setting MLIB_NUMBER_OF_THREADS to 2 would allow nested parallelism and run the code four-way parallel.

Default CPS library stack is too small for MLIB

In libcps, the HP Compiler Parallel Support library, a CPS thread has a default stack size of 8M bytes. For performance reasons, several subprograms in HP MLIB use the stack for temporary arrays that exceed the default value. Using the default CPS stack size, these routines overwrite neighboring stacks, resulting in errors that are difficult to diagnose.

The solution is to change the CPS thread stacksize attribute to a value that is large enough to accommodate all the MLIB subprograms the thread may encounter. Currently, 8 MB*(the number of threads) should be sufficient for all MLIB subprograms.

The environment variable CPS_STACK_SIZE expects values in K bytes. Setting the stack size as follows would be sufficient for programs that execute on two threads:

For C shell:

\% setenv CPS_STACK_SIZE 16384

For Korn shell:

\% export CPS_STACK_SIZE=16384

Default Pthread library stack is too small for MLIB

The stack allocated for each new thread created using direct pthread calls to “pthread_create” might not be large enough for HP MLIB. Several subprograms in HP MLIB use the stack for storing temporary work arrays and improve performance. If the stack size is not large enough, these routines overwrite neighboring stacks, resulting in errors that are difficult to diagnose.
Currently, 8 MB\(^\ast\) (the number of threads) should be sufficient for all MLIB subprograms. If your application launches threads directly from pthread library calls, set the minimum allocated stack size to match HP MLIB needs on each new thread. Setting the stack size on HP-UX as follows would be sufficient for programs that execute on two threads:

```c
int stacksize = 8388608;
(...) 
pthread_attr_setstacksize(&thread_attr, stacksize);
pthread_create(&thread_id, &thread_attr, thread_func, &thread_parm);
(...) 
```

Roundoff effects

VECLIB subprograms may use a different arithmetic order of evaluation than other implementations. Different roundoff characteristics may result. Accuracy of results is usually similar to other implementations, so using VECLIB should not affect the accumulation of roundoff errors in a complete application. If it does, examine the mathematical analysis of the problem to determine if it is ill-conditioned. Ill-conditioned means that the small roundoff errors that are inadvertently introduced into any computation are magnified out of proportion to the desired result. Similarly, if results with and without VECLIB differ materially, both sets of answers are probably inaccurate and you should investigate further. If the program correctly applies stable computational algorithms, the problem itself is probably ill-posed.

Data types and precision

In general, VECLIB provides the same range of functionality for both real and complex data. For most computations, there are matching subprograms for real and complex data, but there are a few exceptions.

For example, corresponding to the subprograms for real dot products, there are subprograms for complex dot products in both the conjugated and unconjugated forms because both types of complex dot products occur. However, there is no complex analogue of the subprograms for solving a real symmetric sparse linear system.
Matching subprograms for real and complex data have been coded to maintain a close correspondence between the two. However, in some areas, the correspondence is necessarily weaker, and this has not been possible.

Subprograms in VECLIB are provided in both 32-bit and 64-bit addressing versions, except in the VECLIB8 library where only 64-bit addressing is supported.

Table 1-3 VECLIB Naming Convention—Data Type

<table>
<thead>
<tr>
<th>T</th>
<th>Data Type</th>
<th>VECLIB</th>
<th>VECLIB8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Single Precision</td>
<td>REAL*4</td>
<td>REAL*4</td>
</tr>
<tr>
<td>D</td>
<td>Double Precision</td>
<td>REAL*8</td>
<td>REAL*8</td>
</tr>
<tr>
<td>I</td>
<td>Integer</td>
<td>INTEGER*4</td>
<td>INTEGER*8</td>
</tr>
<tr>
<td>C</td>
<td>Complex</td>
<td>COMPLEX*8</td>
<td>COMPLEX*8</td>
</tr>
<tr>
<td>Z</td>
<td>Double Complex</td>
<td>COMPLEX*16</td>
<td>COMPLEX*16</td>
</tr>
</tbody>
</table>

Basic Linear Algebra Subprograms, that is, level 1, 2, and 3 BLAS, as well as the Sparse BLAS use this naming convention. For example, subprograms that compute the sum of vector elements are named according to data type: SSUM, DSUM, ISUM, CSUM, and ZSUM. Some function subprograms use two of these letters, the first describing the data type of the function and the second indicating the type of data on which it operates.

Fortran 77 BLAS Standard subprograms use a similar convention, with F_* prepended to each routine name.

For example, the legacy BLAS single-precision, triangular-solve routine is named STRSM and its BLAS Standard counterpart is named F_*STRSM. BLAS Standard subprograms that compute the sum of vector elements are named F_*SSUM, F_*DSUM, F_*CSUM, and F_*ZSUM. Refer to “Legacy BLAS routines” on page 211 and “BLAS Standard routines” on page 339 for more information.
Data type and byte length

There is a relationship between the data type of a subprogram, designated by the first character of its name (refer to T in Table 1-3), and the byte lengths of its arguments. This relationship is shown in Table:

MLIB Argument Lengths

<table>
<thead>
<tr>
<th>T</th>
<th>VECLIB INTEGER</th>
<th>VECLIBS INTEGER</th>
<th>REAL</th>
<th>COMPLEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

Operator arguments

Some BLAS routines take input-only arguments called operators that allow for the specification of multiple related operations to be performed by a single function. Operator arguments used by the BLAS Standard routines are NORM, SORT, SIDE, UPLO, TRANS, CONJ, DIAG, and JROT. Their meanings are defined as follows:

norm
Used by routines computing the norm of a vector or matrix. There are seven valid values that specify the norm to be computed, namely one-norm, real one-norm, infinity-norm and real infinity-norm for vectors and matrices, two-norm for vectors, and Frobenius-norm, max-norm, and real max-norm for matrices.

sort
Used by sorting routines. There are two valid values that specify whether the data should be specified in increasing or decreasing order.

side
Used by functions computing the product of two matrices A and B. There are two valid values that specify whether A^*B or B^*A should be computed.
Operator arguments

uplo
Refers to triangular matrices. There are two valid values to specify whether a matrix is upper or lower triangular.

trans
Used by routines applying a matrix, say A, to another vector or another matrix. There are three valid values to specify whether the matrix (A), its transpose (A^T), or its conjugate transpose (A^*) should be applied. \(\text{op}(A) \) refers to A, A^T, or A^* depending on the input value of the \text{trans} operator argument. Some BLAS routines have more than one \text{trans} operator. For example, a general matrix multiply operation can be specified as

\[C \leftarrow \text{op}(A)\text{op}(B) \]

where A, B, and C are general matrices. A \text{trans} argument is needed for each of the input matrices A and B. These arguments are denoted transA and transB.

conj
Used by complex routines operating with x or \bar{x}.

diag
Refers to triangular matrices. Two values are valid to specify whether the triangular matrix has unit-diagonal or not.

jrot
Used by the routine to generate Jacobi rotations. There are three valid values to specify whether the rotation is an inner rotation, an outer rotation, or a sorted rotation.

For BLAS Standard routines, specify an operator argument with a named constant value. Table 1-4 on page 27 lists the operator arguments and their associated named constants.

The actual numeric value assigned to the named constant is defined in the appropriate language include file. For example, the f77blas.h include file defines assigned values for Fortran 77.

Table 1-4 lists the operator arguments and their associated named constants.
Table 1-4 BLAS Standard Operator Arguments

<table>
<thead>
<tr>
<th>Operator Argument</th>
<th>Named Constant</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>norm</td>
<td>blas_one_norm</td>
<td>1-norm</td>
</tr>
<tr>
<td></td>
<td>blas_real_one_norm</td>
<td>real 1-norm</td>
</tr>
<tr>
<td></td>
<td>blas_two_norm</td>
<td>2-norm</td>
</tr>
<tr>
<td></td>
<td>blas_frobenius_norm</td>
<td>Frobenius-norm</td>
</tr>
<tr>
<td></td>
<td>blas_inf_norm</td>
<td>infinity-norm</td>
</tr>
<tr>
<td></td>
<td>blas_real_inf_norm</td>
<td>real infinity-norm</td>
</tr>
<tr>
<td></td>
<td>blas_max_norm</td>
<td>max-norm</td>
</tr>
<tr>
<td></td>
<td>blas_real_max_norm</td>
<td>real-norm</td>
</tr>
<tr>
<td>sort</td>
<td>blas_increasing_order</td>
<td>sort in increasing order</td>
</tr>
<tr>
<td></td>
<td>blas_decreasing_order</td>
<td>sort in decreasing order</td>
</tr>
<tr>
<td>side</td>
<td>blas_left_side</td>
<td>operate on the left hand side</td>
</tr>
<tr>
<td></td>
<td>blas_right_side</td>
<td>operate on the right hand side</td>
</tr>
<tr>
<td>uplo</td>
<td>blas_upper</td>
<td>reference upper triangle only</td>
</tr>
<tr>
<td></td>
<td>blas_lower</td>
<td>reference lower triangle only</td>
</tr>
<tr>
<td>transx</td>
<td>blas_trans</td>
<td>operate with x^T</td>
</tr>
<tr>
<td></td>
<td>blas_no_trans</td>
<td>operate with x</td>
</tr>
<tr>
<td></td>
<td>blas_conj_trans</td>
<td>operate with x^*</td>
</tr>
<tr>
<td>conj</td>
<td>blas_conj</td>
<td>operate with \overline{x}</td>
</tr>
<tr>
<td></td>
<td>blas_no_conj</td>
<td>operate with x</td>
</tr>
<tr>
<td>diag</td>
<td>blas_non_unit_diag</td>
<td>non-unit triangular</td>
</tr>
<tr>
<td></td>
<td>blas_unit_diag</td>
<td>unit triangular</td>
</tr>
<tr>
<td>jrot</td>
<td>blas_jrot_inner</td>
<td>inner rotation $c \geq \frac{1}{\sqrt{2}}$</td>
</tr>
<tr>
<td></td>
<td>blas_jrot_outer</td>
<td>outer rotation $0 \leq c \leq \frac{1}{\sqrt{2}}$</td>
</tr>
<tr>
<td></td>
<td>blas_jrot_sorted</td>
<td>sorted rotation $abs(a) \geq abs(b)$</td>
</tr>
</tbody>
</table>
Error handling

VECLIB subprograms are divided into two classes according to the way they detect and report usage errors:

- Low-level subprograms
- High-level subprograms

Low-level subprograms

Low-level subprograms are only minimally capable of detecting or handling errors. These subprograms attempt to do what is reasonable when a usage error occurs, but they do not warn you that something is wrong. For example, SDOT, which computes the dot product of two dense real vectors of length N, gives the mathematically proper result, zero, when $N \leq 0$. This is considered mathematically correct because, by definition, an empty sum is zero. Because SDOT conforms to the published BLAS argument list and usage, however, SDOT does not notify you that you may have made a mistake. Issuing a warning would add severe usage conflicts with codes that already use the BLAS.

Because these low-level subprograms do what is reasonable, you can simplify a program and perhaps speed it up by using VECLIB subprograms without checking for special cases. For example, relying on SDOT having a zero result for $N \leq 0$ may eliminate an IF statement that would take the same branch almost every time through a loop.

High-level subprograms

High-level subprograms detect and report errors. These subprograms usually do more work than the low-level subprograms, so the relative expense of checking and reporting errors may be small. Some possible errors are:

- Argument value errors, such as negative matrix order
- Computational errors, such as a singular matrix
- Computational problems, such as ill-conditioning

When a high-level subprogram detects an error, it responds with a success/error code, usually with the output argument ier.

The convention used for ier is:

- $\text{ier} = 0$: Successful exit
- $\text{ier} < 0$: Invalid value of an argument—computation not completed
• \texttt{ier} > 0: Failure during the computation

Some VECLIB subprograms do not have a success/error code in their argument lists, but instead call another VECLIB subprogram to process the error condition. MLIB provides the following error handlers:

• XERBLA
• XERVEC
• F_BLASERROR

Refer to the documentation for individual VECLIB subprogram to determine if one of these error handlers is used. For example, all BLAS Standard subprograms (those subprograms whose names begin with \texttt{F}) use F_BLASERROR.

The standard versions of XERBLA, XERVEC, and F_BLASERROR write an error message onto the standard error file. Execution is then terminated with a nonzero exit status. You can supply a version of the error handler that alters this action. Refer to “XERBLA” on page 337, “XERVEC” on page 623, and “F_BLASERROR” on page 605 for more information about these routines.

Routine-specific error conditions are listed in the respective subprogram documentation.

Troubleshooting

The following are suggestions to help you find the cause of a problem:

1. Verify that the subprogram usage in the program matches the subprogram specifications in the documentation. Pay attention to the number of arguments in the \texttt{CALL} statement and to the declarations of arrays and integer constants or variables that describe them. Write out all the arguments immediately before and after the \texttt{CALL} statement.

2. Make sure there really is a problem. For example, if you get an apparently incorrect answer, check if the answer satisfies the problem as defined in the program. For problems with more than one answer, VECLIB may produce a different answer or give the answers in a different order than expected. If the problem is ill-conditioned, VECLIB may not be able to compute a reliable answer. Error messages often suggest the cause of the problem.

3. Isolate the problem. If possible, write a small test program that encounters the same difficulty. For example, write the data causing the problem from
the original program into the small one. In this way, you eliminate extraneous code from suspicion. If the problem area is large, try to pare it to a manageable size. For example, if a 50-by-50 linear system fails, try to produce a 2-by-2 system that fails in the same way.

HP MLIB man pages

The HP MLIB man pages contain online documentation that includes information from the *HP MLIB User's Guide*.

The HP MLIB man pages are installed in the directory `/opt/mlib/share/man`. Set this path in your MANPATH environment variable to access man pages for VECLIB and LAPACK.

HP VECLIB man pages provide:

- An introduction to VECLIB (`veclib (3m)`)
- An introduction to each group of subprograms, for example, `blas2(3m)`
- A man page for each subprogram

The *HP MLIB User's Guide* has more detailed information than the man pages because of the limited number of fonts supported and the difficulty of presenting mathematical equations in the `man(1)` system.

For further explanation and a table of contents of reference entries for VECLIB, refer to the `veclib(3)` man page.
2 Basic Vector Operations

Overview

This chapter explains how to use the VECLIB vector subprograms that serve as building blocks for many user programs. It describes subprograms for performing dense and sparse vector operations. This set of VECLIB subprograms includes:

- Basic Linear Algebra Subprograms
- Sparse BLAS
- Hewlett-Packard extensions to the BLAS
- BLAS Standard

The term BLAS, as used in this section, refers to all of the above listed BLAS and the Hewlett-Packard extensions to the BLAS.

BLAS standardization efforts, supported by software and hardware vendors and university groups, began with a BLAS Technical (BLAST) Forum meeting in November 1995 at the University of Tennessee. The efforts of the BLAST Forum resulted in a BLAS Standard specification in 1999.

HP MLIB 8.5 supports a subset of the BLAS Standard routines. This chapter describes dense and banded BLAS Standard functionality in “BLAS Standard routines” on page 152.

This section discusses commonly used or computationally expensive operations of linear algebra. Even though you can code most of these operations in fewer than 10 lines of Fortran or C, using VECLIB subprograms can improve program performance as well as program modularity and readability. However, in some situations, you can achieve better computational performance by entering Fortran or C code than by calling one of these subprograms.
Chapter objectives

After reading this chapter you will:

- Understand BLAS storage conventions
- Know how to specify array sections
- Know how to handle backward storage
- Know how to use increment (also called stride) arguments
- Understand the vector subprograms included with HP VECLIB, both Legacy BLAS and BLAS Standard subprograms

Associated documentation

The following documents provide supplemental material for this chapter:

What you need to know to use vector subprograms

The following sections describe overall considerations for using vector subprograms:

- BLAS storage conventions
 - Fortran storage of arrays
 - Fortran array argument association
- BLAS indexing conventions
 - Forward storage
 - Backward storage
 - Increment arguments
- Operator arguments in the BLAS Standard
- Representation of a permutation matrix
- Representation of a Householder matrix

BLAS storage conventions

The Basic Linear Algebra Subprograms (BLAS) were developed to enhance the portability of published linear algebra codes. In particular LAPACK, the high-level public-domain linear equation package, uses the BLAS. When your routines use the VECLIB BLAS, you increase the efficiency of those routines on your Hewlett-Packard servers.

You need not limit your use of the VECLIB BLAS to linear algebra codes. Because these subprograms are portable, modular, and efficient, you can incorporate them into your programs. To realize the full power of the BLAS, you should understand storage and indexing conventions.
What you need to know to use vector subprograms

Fortran storage of arrays

Two-dimensional arrays in Fortran are stored by columns. Consider the following specifications:

```
DIMENSION A(N1,N2), B(N3)
EQUIVALENCE (A,B)
```

where \(N3 = N1 \times N2 \). Then \(A(I,J) \) is associated with the same memory location as \(B(K) \) where

\[
K = I + (J-1) \times N1
\]

Successive elements of a column of \(A \) are adjacent in memory, while successive elements of a row of \(A \) are stored with a difference of \(N1 \) storage units between them. Remember that the size of a storage unit depends on the data type.

Fortran array argument association

When a Fortran subprogram is called with an array element as an argument, the value is not passed. Instead, the subprogram receives the address in memory of the element. Consider the following code segment:

```
REAL A(10,10)
J = 3
L = 10
CALL SUBR (A(1,J),L)
.
.
.
SUBROUTINE SUBR (X,N)
REAL X(N)
.
.
.
SUBR is given the address of the first element of the third column of \( A \). Because it treats that argument as a one-dimensional array, successive elements \( X(1), X(2), \ldots \), occupy the same memory locations as the successive elements of the third column of \( A \), that is, \( A(1,3), A(2,3), \ldots \). Hence, the entire third column of \( A \) is available to the subprogram.
BLAS indexing conventions

This section describes handling stride arguments and forward and backward storage.

A vector in the BLAS is defined by three quantities:

- Vector length
- Array or starting element within an array
- Increment, sometimes called stride—defines the number of storage units between successive vector elements

Forward storage

Suppose that $X$ is a real array. Let $N$ be the vector length and let $\text{INCX}$ be the increment. Suppose that a vector $x$ with components $x_i$, $i = 1, 2, ..., N$, is stored in $X$. If $\text{INCX} \geq 0$, then $x_i$ is stored in $X(1 + (i - 1) \times \text{INCX})$. This is forward storage starting from $X(1)$ with stride equal to $\text{INCX}$, ending with $X(1 + (N-1) \times \text{INCX})$. Thus, if $N = 4$ and $\text{INCX} = 2$, the vector components $x_1, x_2, x_3$, and $x_4$ are stored in the array elements $X(1), X(3), X(5)$, and $X(7)$, respectively.

Backward storage

Some BLAS subprograms permit the backward storage of vectors, which is specified by using a negative $\text{INCX}$. If $\text{INCX} < 0$, then $x_i$ is stored in $X(1 + (N-I) \times |\text{INCX}|)$ or equivalently in $X(1 - (N-I) \times |\text{INCX}|)$. This is backward storage starting from $X(1 - (N-1) \times |\text{INCX}|)$ with stride equal to $\text{INCX}$, ending with $X(1)$. Thus, if $N = 4$ and $\text{INCX} = -2$, the vector components $x_4, x_3, x_2$, and $x_1$ are stored in the array elements $X(7), X(5), X(3)$, and $X(1)$, respectively.

$\text{INCX} = 0$ is only permitted by COPY routines in the legacy BLAS subprograms. When $\text{INCX} = 0$ is allowed, it means that $x$ is a vector of length $N$, whose components all equal the value of $X(1)$.

The notation $(N, X, \text{INCX})$ describes a BLAS vector. For example, if $X$ is an array of dimension $N$, then $(N, X, 1)$ represents forward storage and $(N, X, -1)$ represents backward storage. If $A$ is an $M$-by-$N$ array, then $(M, A(1, J), 1)$ represents column $J$ and $(N, A(I, 1), M)$ represents row $I$. Finally, if an $M$-by-$N$ matrix is embedded in the upper left-hand corner of an array $B$ of size $LDB$ by $NMAX$, then column $J$ is $(M, B(1, J), 1)$ and row is $I(N, B(I, 1), LDB)$. 
What you need to know to use vector subprograms

Increment arguments

The following examples illustrate how to use increment arguments to perform different operations with the same subprogram. These examples use the function F_SDOT with the following usage:

```fortran
SUBROUTINE F_SDOT (CONJ, N, ALPHA, X, INCX, BETA, Y, INCY, R)
INTEGER CONJ, INCX, INCY, N
REAL*4 ALPHA, BETA, R, X(*), Y(*)
```

This usage adds the scaled dot product of the vectors \( X(*) \) and \( Y(*) \) to a scaled scalar \( R \).

Example 1

Compute the dot product

\[
R = X(1)*Y(1) + X(2)*Y(2) + X(3)*Y(3) + X(4)*Y(4):
\]

```fortran
REAL*4 ALPHA,BETA,R,X(*),Y(*)
SUBROUTINE F_SDOT (CONJ, 4, 1.0, X, 1, 0.0, Y, 1)
```

Example 2

Compute the dot product

\[
T = X(1)*Y(4) + X(2)*Y(3) + X(3)*Y(2) + X(4)*Y(1)
\]

```fortran
REAL*4 ALPHA,BETA,R,X(*),Y(*)
SUBROUTINE F_SDOT (CONJ, 4, 1.0, X, 1, 0.0, Y, -1)
```

Example 3

Compute the dot product

\[
Y(2) = A(2,1)*X(1) + A(2,2)*X(2) + A(2,3)*X(3)
\]

This is the dot product of the second row of an \( M \)-by-3 matrix \( A \), stored in a 10-by-3 array, with a 3-vector \( X \):

```fortran
PARAMETER (LDA = 10)
REAL*4 SDOT,A(LDA,3),X(3),Y(LDA)
N = 3
Y(2) = SDOT (N, A(2,1),LDA, X,1)
```

Operator arguments in the BLAS Standard

Some routines in the BLAS Standard take input-only arguments called operators. Operators allow for the specification of multiple related operations to be performed by a single function. The BLAS Standard specifies the type and the valid values these arguments should have according to the specific programming language.

Operator arguments used by the BLAS Standard routines are NORM, SORT, SIDE, UPLO, TRANS, CONJ, DIAG, and JROT. Refer to “Operator arguments” on page 25 for explanations of the valid operator values.
What you need to know to use vector subprograms

In BLAS Standard routines, you specify an operator argument with a named constant value. The actual numeric value assigned to the named constant is defined in the appropriate language's include file. Operator arguments are represented in the Fortran 77 interface as INTEGERS. This specification is different from the legacy BLAS, where operator arguments are defined as CHARACTER*1.

Refer to individual routines in “BLAS Standard routines” on page 152 for the named constants you can use to specify operator arguments for basic vector subprograms.

Representation of a permutation matrix

This section explains how the BLAS Standard represents a permutation matrix.

An $n$-by-$n$ permutation matrix $P$ is represented as a product of at most $n$ interchange permutations. An interchange permutation $E$ is a permutation obtained by swapping two rows of the identity matrix. An efficient way to represent a general permutation matrix $P$ is with an integer vector $p$ of length $n$. In other words, $P = E_n ... E_1$ and each $E_i$ is the identity with rows $i$ and $p_i$ interchanged:

For $i = n$ to 1 and incp < 0, $x(i) \leftrightarrow x(p(i))$

For $i = 1$ to $n$ and incp > 0, $x(i) \leftrightarrow x(p(i))$
What you need to know to use vector subprograms

Representation of a Householder matrix

This section explains how the BLAS Standard represents a Householder matrix.

An elementary reflector (or elementary Householder matrix) $H$ of order $n$ is a unitary matrix of the form

$$H = I - \tau v v^H$$

where $\tau$ is a scalar, and $v$ is an $n$-vector, with

$$|v|^2 |v|^2 = 2 \Re(\tau)$$

$v$ is often referred to as the Householder vector. Often, $v$ can have leading or trailing zero elements, but for the purposes of this discussion, assume that $H$ has no special structure.

This representation sets $v_1 = 1$, meaning that $v_1$ need not be stored. In real arithmetic, $1 \leq \tau \leq 2$, except that $\tau = 0$ implies $H = I$. This representation agrees with that used in LAPACK.

In complex arithmetic, $\tau$ may be complex, and satisfies

$$1 \leq \Re(\tau) \leq 2 \text{ and } |\tau - 1| \leq 1$$

Thus a complex $H$ is not Hermitian, as with other representations, but it is unitary. The latter is the important property. The advantage of allowing $\tau$ to be complex is that, given an arbitrary complex vector $x$, $H$ can be computed so that

$$H^* x = \beta (1, 0, \ldots, 0)^T$$

with real $\beta$. This is useful, for example, when reducing a complex Hermitian matrix to a real symmetric tridiagonal matrix, or a complex rectangular matrix to real bidiagonal form.
Subprograms for basic vector operations

The following sections in this chapter describe the vector subprograms included with VECLIB:

- Legacy BLAS routines
- BLAS Standard routines

Note that the specification for operator arguments is different in legacy BLAS routines than in BLAS Standard routines. Operator arguments are represented in the BLAS Standard Fortran 77 interface as INTEGERs; in the legacy BLAS they are defined as CHARACTER*1.

In BLAS Standard routines, you specify an operator argument with a named constant value. Refer to the individual routines in “BLAS Standard routines” on page 152 for the named constants you can use to specify operator arguments. The actual numeric value assigned to the named constant is defined in the f77blas.h include file.
Legacy BLAS routines

Name
ISAMAX/IDAMAX/IIAMAX/ICAMAX/IZAMAX
Index of maximum of magnitudes

Purpose
Given a real or integer vector \( x \) of length \( n \), ISAMAX, IDAMAX, or IIAMAX determines the index of the element of the vector of maximum magnitude. Specifically, the subprograms determine the smallest index \( i \) such that

\[
|x_i| = \max \{|x_j| : j = 1, 2, ..., n\}
\]

Given a complex vector \( x \) of length \( n \), ICAMAX or IZAMAX determines the smallest index \( i \):

\[
|Re(x_i)| + |Im(x_i)| = \max(|Re(x_j)| + |Im(x_j)| : j = 1, 2, ..., n)
\]

where \( Re(x) \) and \( Im(x) \) are the real and imaginary parts of \( x_i \), respectively. The usual definition of complex magnitude is

\[
\left(Re(x_i)^2 + Im(x_i)^2\right)^{1/2}
\]

This definition is not used because of computational speed. If the index \( i \) is used for pivot selection in matrix factorization, no significant difference in numerical stability should result.

The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage
VECLIB:

```fortran
INTEGER*4 i, ISAMAX, n, incx
REAL*4 x(lenx)
i = ISAMAX(n, x, incx)

INTEGER*4 i, IDAMAX, n, incx
REAL*8 x(lenx)
i = IDAMAX(n, x, incx)

INTEGER*4 i, IIAMAX, n, incx, x(lenx)
i = IIAMAX(n, x, incx)
```
Index of maximum of magnitudes

**ISAMAX/IDAMAX/I IAMAX/ICAMAX/IZAMAX**

\[
\begin{align*}
\text{INTEGER}^*4 & \quad i, \text{ ICAMAX}, n, \text{ incx} \\
\text{COMPLEX}^*8 & \quad x(\text{lenx}) \\
i & = \text{ICAMAX}(n, x, \text{ incx}) \\
\text{INTEGER}^*4 & \quad i, \text{ IZAMAX}, n, \text{ incx} \\
\text{COMPLEX}^*16 & \quad x(\text{lenx}) \\
i & = \text{IZAMAX}(n, x, \text{ incx}) \\
\text{VECLIBS:} & \\
\text{INTEGER}^*8 & \quad i, \text{ ISAMAX}, n, \text{ incx} \\
\text{REAL}^*4 & \quad x(\text{lenx}) \\
i & = \text{ISAMAX}(n, x, \text{ incx}) \\
\text{INTEGER}^*8 & \quad i, \text{ IDAMAX}, n, \text{ incx} \\
\text{REAL}^*8 & \quad x(\text{lenx}) \\
i & = \text{IDAMAX}(n, x, \text{ incx}) \\
\text{INTEGER}^*8 & \quad i, \text{ IIAMAX}, n, \text{ incx}, x(\text{lenx}) \\
i & = \text{IIAMAX}(n, x, \text{ incx}) \\
\text{INTEGER}^*8 & \quad i, \text{ ICAMAX}, n, \text{ incx} \\
\text{COMPLEX}^*8 & \quad x(\text{lenx}) \\
i & = \text{ICAMAX}(n, x, \text{ incx}) \\
\text{INTEGER}^*8 & \quad i, \text{ IZAMAX}, n, \text{ incx} \\
\text{COMPLEX}^*16 & \quad x(\text{lenx}) \\
i & = \text{IZAMAX}(n, x, \text{ incx})
\end{align*}
\]

**Input**

\[ n \]
Number of elements of vector \( x \) to be used. If \( n \leq 0 \), the subprograms do not reference \( x \).

\[ x \]
Array of length \( \text{lenx} = (n-1) \times |\text{ incx}| + 1 \) containing the \( n \)-vector \( x \).

\[ \text{incx} \]
Increment for the array \( x \). \( x \) is stored forward in array \( x \) with increment \( |\text{ incx}| \); that is, \( x_i \) is stored in \( x((i-1) \times |\text{ incx}| +1) \).

Use \( \text{incx} = 1 \) if the vector \( x \) is stored contiguously in array \( x \); that is, if \( x_i \) is stored in \( x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

**Output**

\[ i \]
If \( n \leq 0 \), then \( i = 0 \). Otherwise, \( i \) is the index of the element of \( x \) of maximum magnitude.
ISAMAX/IDAMAX/IIAMAX/ICAMAX/IZAMAX

Index of maximum of magnitudes

Fortran Equivalent

```
INTEGER*4 FUNCTION ISAMAX (N,X,INCX)
REAL*4 X(*),TEMP,XMAX
ISAMAX = 1
IF (N .GT. 1) THEN
 XMAX = ABS (X(1))
 INX = ABS (INCX)
 IX = 1 + INX
 DO 10 I = 2, N
 TEMP = ABS (X(IX))
 IF (TEMP .GT. XMAX) THEN
 ISAMAX = I
 XMAX = TEMP
 END IF
 IX = IX + INX
 10 CONTINUE
ELSE IF (N .LT. 1) THEN
 ISAMAX = 0
END IF
RETURN
END
```

Example

Locate the largest element of a REAL*8 vector \( x \), where \( x \) is a vector 10 elements long stored in a one-dimensional array \( X \) of dimension 20.

```
INTEGER*4 I,IDAMAX,N,INCX
REAL*8 X(20)
N = 10
INCX = 1
I = IDAMAX (N,X,INCX)
```
Name	ISAMIN/IDAMIN/IIAMIN/ICAMIN/IZAMIN
Index of minimum of magnitudes

Purpose | Given a real or integer vector $x$ of length $n$, ISAMIN, IDAMIN, or IIAMIN determines the index of element of the vector of minimum magnitude. Specifically, the subprograms determine the smallest index $i$ such that

$$|x| = \min|x_j| : j = 1, 2, ..., n$$

Given a complex vector $x$ of length $n$, ICAMIN or IZAMIN determines the smallest index $i$:

$$|Re(x_i)| + |Im(x_i)| = \min\{|Re(x_j)| + |Im(x_j)| : j = 1, 2, ..., n\}$$

where $Re(x_j)$ and $Im(x_j)$ are the real and imaginary parts of $x_j$, respectively. The usual definition of complex magnitude is

$$\left(Re(x_j)^2 + Im(x_j)^2\right)^{1/2}$$

This definition is not used because of computational speed.

The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage	VECLIB:
INTEGER*4	i, ISAMIN, n, inex
REAL*4	x(lenx)
INTEGER*4	i, IDAMIN, n, inex
REAL*8	x(lenx)
INTEGER*4	i, IIAMIN, n, inex
REAL*8	x(lenx)
INTEGER*4	i, ICAMIN, n, inex
COMPLEX*8	x(lenx)
INTEGER*4	i, IZAMIN, n, inex
COMPLEX*16	x(lenx)
**VECLIBS:**

```fortran
INTEGER*8 i, ISAMIN, n, incx
REAL*4 x(lenx)
i = ISAMIN(n, x, incx)

INTEGER*8 i, IDAMIN, n, incx
REAL*8 x(lenx)
i = IDAMIN(n, x, incx)

INTEGER*8 i, IIAMIN, n, incx
x(lenx)
i = IIAMIN(n, x, incx)

INTEGER*8 i, ICAMIN, n, incx
COMPLEX*8 x(lenx)
i = ICAMIN(n, x, incx)

INTEGER*8 i, IZAMIN, n, incx
COMPLEX*16 x(lenx)
i = IZAMIN(n, x, incx)
```

**Input**

- **n**: Number of elements of vector `x` to be used. If `n ≤ 0`, the subprograms do not reference `x`.
- **x**: Array of length `lenx = (n-1)×|incx|+1` containing the `n`-vector `x`.
- **incx**: Increment for the array `x`. `x` is stored forward in array `x` with increment `|incx|`; that is, `x_i` is stored in `x((i-1)×|incx|+1)`. Use `incx = 1` if the vector `x` is stored contiguously in array `x`; that is, if `x_i` is stored in `x(i)`. Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

**Output**

- **i**: If `n ≤ 0`, then `i = 0`. Otherwise, `i` is the index of the element of `x` of minimum magnitude.
Index of minimum of magnitudes

Fortran Equivalent

```
INTEGER*4 FUNCTION ISAMIN (N,X,INCX)
REAL*4 X(*),TEMP,XMIN
ISAMIN = 1
IF (N .GT. 1) THEN
 XMIN = ABS (X(1))
 INCXA = ABS (INCX)
 IX = 1 + INCXA
 DO 10 I = 2, N
 TEMP = ABS (X(IX))
 IF (TEMP .LT. XMIN) THEN
 ISAMIN = I
 XMIN = TEMP
 END IF
 IX = IX + INCXA
 10 CONTINUE
ELSE IF (N .LT. 1) THEN
 ISAMIN = 0
END IF
RETURN
END
```

Example

Locate the smallest element of a REAL*8 vector x, where x is a vector 10 elements long stored in a one-dimensional array x of dimension 20.

```
INTEGER*4 I,IDAMIN,N,INCX
REAL*8 X(20)
N = 10
INCX = 1
I = IDAMIN (N,X,INCX)
```
Name  
ISCTxx/IDCTxx/IICTxx/ICCTxx/IZCTxx  
Count selected vector elements

Purpose  
Given a real, integer, or complex vector \( x \) of length \( n \), these subprograms count the number of elements of the vector that satisfy a specified relationship to a given scalar \( a \).

The last two characters of the subprogram name specify the relation of interest between the elements of the vector and the scalar. For real and integer subprograms, these characters, represented by “xx” in the prototype Fortran statements, and the corresponding function values can be:

<table>
<thead>
<tr>
<th>xx</th>
<th>Function value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>(#{i : x_i = a})</td>
</tr>
<tr>
<td>GE</td>
<td>(#{i : x_i \geq a})</td>
</tr>
<tr>
<td>GT</td>
<td>(#{i : x_i &gt; a})</td>
</tr>
<tr>
<td>LE</td>
<td>(#{i : x_i \leq a})</td>
</tr>
<tr>
<td>LT</td>
<td>(#{i : x_i &lt; a})</td>
</tr>
<tr>
<td>NE</td>
<td>(#{i : x_i \neq a})</td>
</tr>
</tbody>
</table>

For complex subprograms, these characters and corresponding function values are:

<table>
<thead>
<tr>
<th>xx</th>
<th>Function value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>(#{i : x_i = a})</td>
</tr>
<tr>
<td>NE</td>
<td>(#{i : x_i \neq a})</td>
</tr>
</tbody>
</table>

The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage  
VECLIB:

```fortran
INTEGER*4 i, ISCTxx, n, inex
REAL*4 a, x(lenx)
i = ISCTxx(n, x, inex, a)
```

```fortran
INTEGER*4 i, IDCTxx, n, inex
REAL*8 a, x(lenx)
i = IDCTxx(n, x, inex, a)
```

```fortran
INTEGER*4 i, IICTxx, n, inex, a, x(lenx)
i = IICTxx(n, x, inex, a)
```
Count selected vector elements  

\[ \text{INTEGER}^*4 \quad i, \ \text{ICCTxx}, \ n, \ \text{inex} \]
\[ \text{COMPLEX}^*8 \quad a, \ x(\text{lenx}) \]
\[ i = \text{ICCTxx}(n, x, \text{inex}, a) \]

\[ \text{INTEGER}^*4 \quad i, \ \text{IZCTxx}, \ n, \ \text{inex} \]
\[ \text{COMPLEX}^*16 \quad a, \ x(\text{lenx}) \]
\[ i = \text{IZCTxx}(n, x, \text{inex}, a) \]

\text{VECLIB8:}

\[ \text{INTEGER}^*8 \quad i, \ \text{ISCTxx}, \ n, \ \text{inex} \]
\[ \text{REAL}^*4 \quad a, \ x(\text{lenx}) \]
\[ i = \text{ISCTxx}(n, x, \text{inex}, a) \]

\[ \text{INTEGER}^*8 \quad i, \ \text{IDCTxx}, \ n, \ \text{inex} \]
\[ \text{REAL}^*8 \quad a, \ x(\text{lenx}) \]
\[ i = \text{IDCTxx}(n, x, \text{inex}, a) \]

\[ \text{INTEGER}^*8 \quad i, \ \text{IICCTxx}, \ n, \ \text{inex}, \ a, \ x(\text{lenx}) \]
\[ i = \text{IICCTxx}(n, x, \text{inex}, a) \]

\[ \text{INTEGER}^*8 \quad i, \ \text{ICCTxx}, \ n, \ \text{inex} \]
\[ \text{COMPLEX}^*8 \quad a, \ x(\text{lenx}) \]
\[ i = \text{ICCTxx}(n, x, \text{inex}, a) \]

\[ \text{INTEGER}^*8 \quad i, \ \text{IZCTxx}, \ n, \ \text{inex} \]
\[ \text{COMPLEX}^*16 \quad a, \ x(\text{lenx}) \]
\[ i = \text{IZCTxx}(n, x, \text{inex}, a) \]

**Input**

- **n**  
  Number of elements of vector \( x \) to be compared to \( a \). If \( n \leq 0 \), the subprograms do not reference \( x \).

- **x**  
  Array of length \( \text{lenx} = (n-1) \times |\text{inex}| + 1 \) containing the \( n \)-vector \( x \).

- **inex**  
  Increment for the array \( x \). \( x \) is stored forward in array \( x \) with increment \( |\text{inex}| \); that is, \( x_i \) is stored in \( x((i-1) \times |\text{inex}| + 1) \).

  Use \( \text{inex} = 1 \) if the vector \( x \) is stored contiguously in array \( x \); that is, if \( x_i \) is stored in \( x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

- **a**  
  The scalar \( a \).
Output  

\[ i \]

If \( n \leq 0 \), then \( i = 0 \). Otherwise, \( i \) is the number of elements of \( x \) that satisfy the relationship with \( a \) specified by the subprogram name.

**Fortran Equivalent**

```fortran
INTEGER*4 FUNCTION ISCTEQ (N,X,INCX,A)
REAL*4 A,X(*)
ISCTEQ = 0
INCXA = ABS (INCX)
IX = 1
DO 10 I = 1, N
 IF (X(IX) .EQ. A) ISCTEQ = ISCTEQ + 1
 IX = IX + INCXA
10 CONTINUE
RETURN
END
```

**Example**

Count the number of positive elements of a REAL*8 vector \( x \), where \( x \) is a vector 10 elements long stored in a one-dimensional array \( X \) of dimension 20.

```fortran
INTEGER*4 I,IDCTGT,N,INCX
REAL*8 A,X(20)
N = 10
INCX = 1
A = 0.0D0
I = IDCTGT (N,X,INCX,A)
```
Index of maximum element of vector

Name

ISMAX/IDMAX/IIMAX

Index of maximum element of vector

Purpose

Given a real or integer vector \( x \) of length \( n \), these subprograms determine the index of the maximum element of the vector. Specifically, the subprograms determine the smallest index \( i \) such that

\[
x_i = \max(x_j : j = 1, 2, ..., n)
\]

The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage

VECLIB:

```plaintext
INTEGER*4 i, ISMAX, n, incx
REAL*4 x(lenx)
i = ISMAX(n, x, incx)

INTEGER*4 i, IDMAX, n, incx
REAL*8 x(lenx)
i = IDMAX(n, x, incx)

INTEGER*4 i, IIMAX, n, incx, x(lenx)
i = IIMAX(n, x, incx)
```

VECLIB8:

```plaintext
INTEGER*8 i, ISMAX, n, incx
REAL*4 x(lenx)
i = ISMAX(n, x, incx)

INTEGER*8 i, IDMAX, n, incx
REAL*8 x(lenx)
i = IDMAX(n, x, incx)

INTEGER*8 i, IIMAX, n, incx, x(lenx)
i = IIMAX(n, x, incx)
```

Input

- \( n \) — Number of elements of vector \( x \) to be used. If \( n \leq 0 \), the subprograms do not reference \( x \).
- \( x \) — Array of length \( \text{lenx} = (n-1)\times|\text{incx}|+1 \) containing the \( n \)-vector \( x \).
- \( \text{incx} \) — Increment for the array \( x \). \( x \) is stored forward in array \( x \) with increment \( |\text{incx}| \); that is, \( x_i \) is stored in \( x((i-1)\times|\text{incx}|+1) \).
ISMAX/IDMAX/IIMAX

Index of maximum element of vector

Use \( \text{incx} = 1 \) if the vector \( x \) is stored contiguously in array \( x \); that is, if \( x_i \) is stored in \( x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

Output

\( i \)

If \( n \leq 0 \), then \( i = 0 \). Otherwise, \( i \) is the index of the maximum element of \( x \).

Fortran Equivalent

```fortran
INTEGER*4 FUNCTION ISMAX (N,X,INCX)
REAL*4 X(*),XMAX
ISMAX = 1
IF (N .GT. 1) THEN
 XMAX = X(1)
 INCXA = ABS (INCX)
 IX = 1 + INCXA
 DO 10 I = 2, N
 IF (X(IX) .GT. XMAX) THEN
 ISMAX = I
 XMAX = X(IX)
 END IF
 IX = IX + INCXA
 10 CONTINUE
ELSE IF (N .LT. 1) THEN
 ISMAX = 0
END IF
RETURN
END
```

Example

Locate the largest element of a REAL*8 vector \( x \), where \( x \) is a vector 10 elements long stored in a one-dimensional array \( X \) of dimension 20.

```fortran
INTEGER*4 I,IDMAX,N,INCX
REAL*8 X(20)
N = 10
INCX = 1
I = IDMAX (N,X,INCX)
```
Index of minimum element of vector

### Name

ISMIN/IDMIN/IIMIN

Index of minimum element of vector

### Purpose

Given a real or integer vector \( x \) of length \( n \), these subprograms determine the index of minimum element of the vector. Specifically, the subprograms determine the smallest index \( i \) such that

\[
x_i = \min(x_j : j = 1, 2, ..., n)
\]

The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

### Usage

**VECLIB:**

```fortran
INTEGER*4 i, ISMIN, n, incx
REAL*4 x(lenx)

i = ISMIN(n, x, incx)

INTEGER*4 i, IDMIN, n, incx
REAL*8 x(lenx)

i = IDMIN(n, x, incx)

INTEGER*4 i, IIMIN, n, incx, x(lenx)

i = IIMIN(n, x, incx)
```

**VECLIB8:**

```fortran
INTEGER*8 i, ISMIN, n, incx
REAL*4 x(lenx)

i = ISMIN(n, x, incx)

INTEGER*8 i, ISMIN, n, incx
REAL*8 x(lenx)

i = ISMIN(n, x, incx)

INTEGER*8 i, IIMIN, n, incx, x(lenx)

i = IIMIN(n, x, incx)
```

### Input

- **n**  
  Number of elements of vector \( x \) to be used. If \( n \leq 0 \), the subprograms do not reference \( x \).

- **x**  
  Array of length \( \text{lenx} = (n-1)\times|\text{incx}|+1 \) containing the \( n \)-vector \( x \).

- **incx**  
  Increment for the array \( x \). \( x \) is stored forward in array \( x \) with increment \( |\text{incx}| \); that is, \( x_i \) is stored in \( x((i-1)\times|\text{incx}|+1) \).
Use \texttt{incx} = 1 if the vector \( x \) is stored contiguously in array \( x \); that is, if \( x_i \) is stored in \( x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

**Output** \( i \)

If \( n \leq 0 \), then \( i = 0 \). Otherwise, \( i \) is the index of the minimum element of \( x \).

**Fortran Equivalent**

```fortran
INTEGER*4 FUNCTION ISMIN (N,X,INCX)
REAL*4 X(*),XMIN
ISMIN = 1
IF (N .GT. 1) THEN
 XMIN = X(1)
 INCXA = ABS (INCX)
 IX = 1 + INCXA
 DO 10 I = 2, N
 IF (X(IX) .LT. XMIN) THEN
 ISMIN = I
 XMIN = X(IX)
 END IF
 IX = IX + INCXA
 10 CONTINUE
ELSE IF (N .LT. 1) THEN
 ISMIN = 0
END IF
RETURN
END
```

**Example**

Locate the smallest element of a REAL*8 vector \( x \), where \( x \) is a vector 10 elements long stored in a one-dimensional array \( X \) of dimension 20.

```fortran
INTEGER*4 I,IDMIN,N,INCX
REAL*8 X(20)
N = 10
INCX = 1
I = IDMIN (N,X,INCX)
```
Name
ISSVxx/IDSVxx/IISVxx/ICSVxx/IZSVxx
Search vector for element

Purpose
Given a real, integer, or complex vector \( x \) of length \( n \), these subprograms search sequentially through the vector for the first element \( x_i \) that satisfies a specified relationship to a given scalar \( a \) and return the index \( i \) of that element.

The last two characters of the subprogram name specify the relationship of interest between the element of the vector and the scalar. For real and integer subprograms, these characters, represented by “xx” in the prototype Fortran statements, and the corresponding function values can be:

<table>
<thead>
<tr>
<th>xx</th>
<th>Function value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>( \min{i : x_i = a} )</td>
</tr>
<tr>
<td>GE</td>
<td>( \min{i : x_i \geq a} )</td>
</tr>
<tr>
<td>GT</td>
<td>( \min{i : x_i &gt; a} )</td>
</tr>
<tr>
<td>LE</td>
<td>( \min{i : x_i \leq a} )</td>
</tr>
<tr>
<td>LT</td>
<td>( \min{i : x_i &lt; a} )</td>
</tr>
<tr>
<td>NE</td>
<td>( \min{i : x_i \neq a} )</td>
</tr>
</tbody>
</table>

For complex subprograms, these characters and corresponding function values are:

<table>
<thead>
<tr>
<th>xx</th>
<th>Function value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>( \min{i : x_i = a} )</td>
</tr>
<tr>
<td>NE</td>
<td>( \min{i : x_i \neq a} )</td>
</tr>
</tbody>
</table>

The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage
VECLIB:

```
INTEGER*4 i, ISSVxx, n, incx
REAL*4 a, x(lenx)
```

\( i = \text{ISSVxx}(n, x, \text{incx}, a) \)

```
INTEGER*4 i, IDSVxx, n, incx
REAL*8 a, x(lenx)
```

\( i = \text{IDSVxx}(n, x, \text{incx}, a) \)
SEARCH VECTOR FOR ELEMENT

INTEGER*4   i, IISVxx, n, incx, a, x(lenx)
i = IISVxx(n, x, incx, a)
INTEGER*4   i, ICSVxx, n, incx
COMPLEX*8    a, x(lenx)
i = ICSVxx(n, x, incx, a)
INTEGER*4   i, IZSVxx, n, incx
COMPLEX*16   a, x(lenx)
i = IZSVxx(n, x, incx, a)

VECLIB8:

INTEGER*8   i, ISSVxx, n, incx
REAL*4       a, x(lenx)
i = ISSVxx(n, x, incx, a)
INTEGER*8   i, IDSVxx, n, incx
REAL*8       a, x(lenx)
i = IDSVxx(n, x, incx, a)
INTEGER*8   i, IISVxx, n, incx, a, x(lenx)
i = IISVxx(n, x, incx, a)
INTEGER*8   i, ICSVxx, n, incx
COMPLEX*8    a, x(lenx)
i = ICSVxx(n, x, incx, a)
INTEGER*8   i, IZSVxx, n, incx
COMPLEX*16   a, x(lenx)
i = IZSVxx(n, x, incx, a)

Input

n       Number of elements of vector x to be compared to a. If n \leq 0, the subprograms do not reference x.
x       Array of length lenx = (n−1)×|incx|+1 containing the n-vector x.
incx    Increment for the array x. x is stored forward in array x with increment |incx|; that is, x_i is stored in x((i−1)×|incx|+1).
        Use incx = 1 if the vector x is stored contiguously in array x; that is, if x_i is stored in x(i). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.
a       The scalar a.
Output i

If \( n \leq 0 \) or if no element of \( x \) satisfies the relationship with \( a \) specified by the subprogram name, then \( i = 0 \). Otherwise, \( i \) is the index \( i \) of the first element \( x_i \) of \( x \) that satisfies the relationship with \( a \) specified by the subprogram name. Recall that \( x_i \) is stored in \( x(i-1) \times |incx| + 1 \).

**Fortran Equivalent**

```fortran
INTEGER*4 FUNCTION IISVEQ (N, X, INCX, A)
INTEGER*4 X(*), A
IISVEQ = 0
INCXA = ABS (INCX)
IX = 1
DO 10 I = 1, N
 IF (X(IX) .EQ. A) THEN
 IISVEQ = I
 RETURN
 END IF
 IX = IX + INCXA
10 CONTINUE
RETURN
END
```

**Example**

Search for the first positive element of a REAL*8 vector \( x \), where \( x \) is a vector 10 elements long stored in a one-dimensional array \( X \) of dimension 20.

```fortran
INTEGER*4 I, IDSVGT, N, INCX
REAL*8 A, X(20)
N = 10
INCX = 1
A = 0.0D0
I = IDSVGT (N, X, INCX, A)
```
**Name**  
SAMAX/DAMAX/IAMAX/SCAMAX/DZAMAX  
Maximum of magnitudes

**Purpose**  
Given a real or integer vector $x$ of length $n$, SAMAX, DAMAX, or IAMAX computes the $l_\infty$ norm of $x$, that is, the maximum of the magnitudes of the elements of the vector

$$ s = \|x\|_\infty = \max(|x_i| : i = 1, 2, \ldots, n). $$

Given a complex vector $x$ of length $n$, SCAMAX or DZAMAX computes

$$ s = \max(|\text{Re}(x_i)| + |\text{Im}(x_i)| : i = 1, 2, \ldots, n). $$

where $\text{Re}(x_i)$ and $\text{Im}(x_i)$ are the real and imaginary parts of $x_i$, respectively.

The usual definition of the maximum of magnitudes of a complex vector is

$$ t = \|x\|_\infty = \max \left\{ \left( \text{Re}(x_i)^2 + \text{Im}(x_i)^2 \right)^{1/2} : i = 1, 2, \ldots, n \right\}. $$

$s$ is computed instead of $t$ because, with its lack of square roots, it is faster to compute. Because $t \leq s \leq \sqrt{2}t$, $s$ is often an acceptable substitute for $t$.

The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

**Usage**  
VECLIB:

```c
INTEGER*4 n, incx
REAL*4 s, SAMAX, x(lenx)
s = SAMAX(n, x, incx)

INTEGER*4 n, incx
REAL*8 s, DAMAX, x(lenx)
s = DAMAX(n, x, incx)

INTEGER*4 n, incx, s, IAMAX, x(lenx)
s = IAMAX(n, x, incx)

INTEGER*4 n, incx
REAL*4 s, SCAMAX
COMPLEX*8 x(lenx)
s = SCAMAX(n, x, incx)
```
Maximum of magnitudes  SAMAX/DAMAX/IAMAX/SCAMAX/DZAMAX

VECLIB8:

```fortran
INTEGER*4 n, incx
REAL*8 s, DZAMAX
COMPLEX*16 x(lenx)
s = DZAMAX(n, x, incx)
```

```
INTEGER*4 n, incx
REAL*8 s, SAMAX, x(lenx)
s = SAMAX(n, x, incx)
```

```
INTEGER*4 n, incx
REAL*8 s, DAMAX, x(lenx)
s = DAMAX(n, x, incx)
```

```
INTEGER*4 n, incx
REAL*8 s, IAMAX, x(lenx)
s = IAMAX(n, x, incx)
```

```
INTEGER*4 n, incx
REAL*8 s, SCAMAX
COMPLEX*8 x(lenx)
s = SCAMAX(n, x, incx)
```

```
INTEGER*4 n, incx
REAL*8 s, DZAMAX
COMPLEX*16 x(lenx)
s = DZAMAX(n, x, incx)
```

**Input**

- **n**  Number of elements of vector \( x \) to be used. If \( n \leq 0 \), the subprograms do not reference \( x \).
- **x**  Array of length \( \text{lenx} = (n-1)\times|\text{incx}| + 1 \) containing the \( n \)-vector \( x \).
- **incx**  Increment for the array \( x \). \( x \) is stored forward in array \( x \) with increment \( |\text{incx}| \); that is, \( x_i \) is stored in \( x((i-1)\times|\text{incx}| + 1) \).

Use \( \text{incx} = 1 \) if the vector \( x \) is stored contiguously in array \( x \); that is, if \( x_i \) is stored in \( x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

**Output**

- **s**  If \( n \leq 0 \), then \( s = 0 \). Otherwise, \( s \) is the maximum of the magnitudes of the elements of \( x \).
SAMAX/DAMAX/IAMAX/SCAMAX/DZAMAX  Maximum of magnitudes

**Fortran Equivalent**

```fortran
REAL*4 FUNCTION SAMAX (N,X,INCX)
REAL*4 X(*)
SAMAX = 0.0
INCXA = ABS (INCX)
IX = 1
DO 10 I = 1, N
 SAMAX = MAX (SAMAX , ABS (X(IX)))
 IX = IX + INCXA
10 CONTINUE
RETURN
END
```

**Example**

Compute the maximum of the magnitudes of the elements of a REAL*8 vector x, where x is a vector 10 elements long stored in a one-dimensional array X of dimension 20.

```fortran
INTEGER*4 N,INCX
REAL*8 S,DAMAX,X(20)
N = 10
INCX = 1
S = DAMAX (N,X,INCX)
```
Minimum of magnitudes

Name  SAMIN/DAMIN/IAMIN/SCAMIN/DZAMIN

Purpose Given a real or integer vector \( x \) of length \( n \), SAMIN, DAMIN, or IAMIN computes the minimum of the magnitudes of the elements of the vector

\[
s = \min(|x_i| : i = 1, 2, \ldots, n).
\]

Given a complex vector \( x \) of length \( n \), SCAMIN or DZAMIN computes

\[
s = \min([\text{Re}(x_i)]^2 + [\text{Im}(x_i)]^2 : i = 1, 2, \ldots, n)
\]

where \( \text{Re}(x_i) \) and \( \text{Im}(x_i) \) are the real and imaginary parts of \( x_i \), respectively.

The usual definition of the minimum of magnitudes of a complex vector is

\[
t = \min((\text{Re}(x_i))^2 + (\text{Im}(x_i))^2)^{1/2} : i = 1, 2, \ldots, n.
\]

\( s \) is computed instead of \( t \) because, with its lack of square roots, it is faster to compute. Because \( t \leq s \leq 2t \), \( s \) is often an acceptable substitute for \( t \).

The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage

**VECLIB:**

- INTEGER*4 \( n, \text{incx} \)
  - REAL*4 \( s, \text{SAMIN}, x(\text{lenx}) \)
  - \( s = \text{SAMIN}(n, x, \text{incx}) \)

- INTEGER*4 \( n, \text{incx} \)
  - REAL*8 \( s, \text{DAMIN}, x(\text{lenx}) \)
  - \( s = \text{DAMIN}(n, x, \text{incx}) \)

- INTEGER*4 \( n, \text{incx}, s, \text{IAMIN}, x(\text{lenx}) \)
  - \( s = \text{IAMIN}(n, x, \text{incx}) \)

- INTEGER*4 \( n, \text{incx} \)
  - REAL*4 \( s, \text{SCAMIN} \)
  - COMPLEX*8 \( x(\text{lenx}) \)
  - \( s = \text{SCAMIN}(n, x, \text{incx}) \)

- INTEGER*4 \( n, \text{incx} \)
  - REAL*8 \( s, \text{DZAMIN} \)
  - COMPLEX*16 \( x(\text{lenx}) \)
  - \( s = \text{DZAMIN}(n, x, \text{incx}) \)

**VECLIB8:**
INTEGR*8 n, incx
REAL*4 s, SAMIN, x(lenx)
s = SAMIN(n, x, incx)

INTEGER*8 n, incx
REAL*8 s, DAMIN, x(lenx)
s = DAMIN(n, x, incx)

INTEGER*8 n, incx, s, IAMIN, x(lenx)
s = IAMIN(n, x, incx)

INTEGER*8 n, incx
REAL*4 s, SCAMIN
COMPLEX*8 x(lenx)
s = SCAMIN(n, x, incx)

INTEGER*8 n, incx
REAL*8 s, DZAMIN
COMPLEX*16 x(lenx)
s = DZAMIN(n, x, incx)
Minimum of magnitudes

**Input**

- **n**
  Number of elements of vector \( x \) to be used. If \( n \leq 0 \), the subprograms do not reference \( x \).

- **x**
  Array of length \( \text{len}x = (n-1) \times |\text{inc}x| + 1 \) containing the \( n \)-vector \( x \).

- **incx**
  Increment for array \( x \). \( x \) is stored forward in array \( x \) with increment \( |\text{inc}x| \); that is, \( x_i \) is stored in \( x((i-1) \times |\text{inc}x| + 1) \).
  Use \( \text{inc}x = 1 \) if the vector \( x \) is stored contiguously in array \( x \); that is, if \( x_i \) is stored in \( x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

**Output**

- **s**
  If \( n \leq 0 \), then \( s = \infty \), the largest representable machine number. Otherwise, \( s \) is the minimum of the magnitudes of the elements of \( x \).

**Fortran Equivalent**

```fortran
REAL*4 FUNCTION SAMIN (N,X,INCX)
REAL*4 X(*)
SAMIN = \infty
INCXA = ABS (INCX)
IX = 1
DO 10 I = 1, N
 SAMIN = MIN (SAMIN , ABS (X(IX)))
 IX = IX + INCXA
10 CONTINUE
RETURN
END
```

**Example**

Compute the minimum of the magnitudes of the elements of a REAL*8 vector \( x \), where \( x \) is a vector 10 elements long stored in a one-dimensional array \( X \) of dimension 20.

```plaintext
INTEGER*4 N, INCX
REAL*8 S, DAMIN, X(20)
N = 10
INCX = 1
S = DAMIN (N,X,INCX)
```
**Name**
SASUM/DASUM/IASUM/SCASUM/DZASUM

Sum of magnitudes

**Purpose**
Given a real or integer vector $x$ of length $n$, SASUM, DASUM, or IASUM computes the $l_1$ norm of $x$, that is, the sum of magnitudes of the elements of the vector

$$s = \|x\|_1 = \sum_{i=1}^{n} |x_i|$$

Given a complex vector $x$ of length $n$, SCASUM or DZASUM computes

$$s = \sum_{i=1}^{n} |Re(x_i)| + |Im(x_i)|$$

where $Re(x_i)$ and $Im(x_i)$ are the real and imaginary parts of $x_i$, respectively.

The usual definition of sum of magnitudes of a complex vector is

$$t = \|X\|_2 = \left( \sum_{i=1}^{n} \left( Re(x_i)^2 + Im(x_i)^2 \right) \right)^{1/2}$$

$s$ is computed instead of $t$ because, with its lack of square roots, it is faster to compute. Because $t \leq s \leq \sqrt{2}t$, $s$ is often an acceptable substitute for $t$.

The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

**Usage**

**VECLIB:**

```fortran
INTEGER*4 n, inx
REAL*4 s, SASUM, x(lenx)
s = SASUM(n, x, inx)

INTEGER*4 n, inx
REAL*8 s, DASUM, x(lenx)
s = DASUM(n, x, inx)

INTEGER*4 n, inx
REAL*8 s, IASUM, x(lenx)
s = IASUM(n, x, inx)
```

---

62  HP MLIB User's Guide
**Sum of magnitudes**

**SASUM/DASUM/IASUM/SCASUM/DZASUM**

```
INTEGER*4 n, incx
REAL*4 s, SCASUM
COMPLEX*8 x(lenx)
s = SCASUM(n, x, incx)

INTEGER*4 n, incx
REAL*8 s, DZASUM
COMPLEX*16 x(lenx)
s = DZASUM(n, x, incx)

VECLIB8:
INTEGER*8 n, incx
REAL*4 s, SASUM, x(lenx)
s = SASUM(n, x, incx)

INTEGER*8 n, incx
REAL*8 s, DASUM, x(lenx)
s = DASUM(n, x, incx)

INTEGER*8 n, incx, s, IASUM, x(lenx)
s = IASUM(n, x, incx)

INTEGER*8 n, incx
REAL*4 s, SCASUM
COMPLEX*8 x(lenx)
s = SCASUM(n, x, incx)

INTEGER*8 n, incx
REAL*8 s, DZASUM
COMPLEX*16 x(lenx)
s = DZASUM(n, x, incx)
```

**Input**

- **n**  
  Number of elements of vector `x` to be used in the sum of magnitudes. If `n ≤ 0`, the subprograms do not reference `x`.

- **x**  
  Array of length \( \text{lenx} = (n-1) \times |\text{incx}| + 1 \) containing the `n`-vector `x`.

- **incx**  
  Increment for the array `x`. `x` is stored forward in array `x` with increment \( |\text{incx}| \); that is, \( x_i \) is stored in \( x((i-1) \times |\text{incx}| + 1) \).

  Use \( \text{incx} = 1 \) if the vector `x` is stored contiguously in array `x`; that is, if \( x_i \) is stored in `x(i)`. Refer to “BLAS
Indexing Conventions" in the introduction to this chapter.

Output

\( s \) 

If \( n \leq 0 \), then \( s = 0 \). Otherwise, \( s \) is the sum of magnitudes of the elements of \( x \).

**Fortran Equivalent**

```
REAL*4 FUNCTION SASUM (N, X, INCX)
REAL*4 X(*)
SASUM = 0.0
IF (N .LE. 0) RETURN
IX = 1
INCXA = ABS (INCX)
DO 10 I = 1, N
 SASUM = SASUM + ABS (X(IX))
 IX = IX + INCXA
10 CONTINUE
RETURN
END
```

**Example**

Compute the sum of magnitudes of the elements of a REAL*8 vector \( x \), where \( x \) is a vector 10 elements long stored in a one-dimensional array \( X \) of dimension 20.

```
INTEGER*4 N, INCX
REAL*8 S, DASUM, X(20)
N = 10
INCX = 1
S = DASUM (N, X, INCX)
```
Name	SAXPY/DAXPY/CAXPY/CAXPYC/ZAXPY/ZAXPYC
Elementary vector operation  

Purpose  | Given a real or complex scalar \( a \) and real or complex vectors \( x \) and \( y \) of length \( n \), these subprograms perform the elementary vector operations  
\[
y \leftarrow ax + y \quad \text{and} \quad y \leftarrow a\bar{x} + y
\]
where \( \bar{x} \) is the complex conjugate of \( x \). The vectors can be stored in one-dimensional arrays or in either rows or columns of two-dimensional arrays, and the indexing through the arrays can be either forward or backward.  

Usage	VECLIB:

VECLIB:  

| INTEGER*4 | \( n \), \( \text{inex} \), \( \text{incy} \)  
REAL*4 | \( a \), \( x(\text{lenx}) \), \( y(\text{leny}) \)  
CALL SAXPY(\( n \), \( a \), \( x \), \( \text{inex} \), \( y \), \( \text{incy} \))  
INTEGR*4 | \( n \), \( \text{inex} \), \( \text{incy} \)  
REAL*8 | \( a \), \( x(\text{lenx}) \), \( y(\text{leny}) \)  
CALL DAXPY(\( n \), \( a \), \( x \), \( \text{inex} \), \( y \), \( \text{incy} \))  
INTEGR*4 | \( n \), \( \text{inex} \), \( \text{incy} \)  
COMPLEX*8 | \( a \), \( x(\text{lenx}) \), \( y(\text{leny}) \)  
CALL CAXPY(\( n \), \( a \), \( x \), \( \text{inex} \), \( y \), \( \text{incy} \))  
INTEGR*4 | \( n \), \( \text{inex} \), \( \text{incy} \)  
COMPLEX*8 | \( a \), \( x(\text{lenx}) \), \( y(\text{leny}) \)  
CALL CAXPYC(\( n \), \( a \), \( x \), \( \text{inex} \), \( y \), \( \text{incy} \))  
INTEGR*4 | \( n \), \( \text{inex} \), \( \text{incy} \)  
COMPLEX*16 | \( a \), \( x(\text{lenx}) \), \( y(\text{leny}) \)  
CALL ZAXPY(\( n \), \( a \), \( x \), \( \text{inex} \), \( y \), \( \text{incy} \))  
INTEGR*4 | \( n \), \( \text{inex} \), \( \text{incy} \)  
COMPLEX*16 | \( a \), \( x(\text{lenx}) \), \( y(\text{leny}) \)  
CALL ZAXPYC(\( n \), \( a \), \( x \), \( \text{inex} \), \( y \), \( \text{incy} \))  

VECLIB8:  

| INTEGER*8 | \( n \), \( \text{inex} \), \( \text{incy} \)  
REAL*4 | \( a \), \( x(\text{lenx}) \), \( y(\text{leny}) \)  
CALL SAXPY(\( n \), \( a \), \( x \), \( \text{inex} \), \( y \), \( \text{incy} \))  
INTEGR*8 | \( n \), \( \text{inex} \), \( \text{incy} \)  
REAL*8 | \( a \), \( x(\text{lenx}) \), \( y(\text{leny}) \)  
CALL DAXPY(\( n \), \( a \), \( x \), \( \text{inex} \), \( y \), \( \text{incy} \))
INTEGER*8 n, indx, incy
COMPLEX*8 a, x(lenx), y(leny)
CALL CAXPY(n, a, x, indx, y, incy)

INTEGER*8 n, indx, incy
COMPLEX*8 a, x(lenx), y(leny)
CALL CAXPYC(n, a, x, indx, y, incy)

INTEGER*8 n, indx, incy
COMPLEX*16 a, x(lenx), y(leny)
CALL ZAXPY(n, a, x, indx, y, incy)

INTEGER*8 n, indx, incy
COMPLEX*16 a, x(lenx), y(leny)
CALL ZAXPYC(n, a, x, indx, y, incy)

**Input**

**n**
Number of elements of vectors x and y to be used in the elementary vector operation. If n \( \leq 0 \), the subprograms do not reference x or y.

**a**
The scalar a.

**x**
Array of length lenx = \( (n-1) \times |\text{indx}| + 1 \) containing the n-vector x. x is used in conjugated form by CAXPYC and ZAXPYC and in unconjugated form by the other subprograms.

**indx**
Increment for the array x:

- if \( \text{indx} \geq 0 \) then x is stored forward in array x; that is, \( x_i \) is stored in \( x((i-1) \times |\text{indx}| + 1) \).
- if \( \text{indx} < 0 \) then x is stored backward in array x; that is, \( x_i \) is stored in \( x((i-n) \times |\text{indx}| + 1) \).

Use \( \text{indx} = 1 \) if the vector x is stored contiguously in array x; that is, if \( x_i \) is stored in \( x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

**y**
Array of length leny = \( (n-1) \times |\text{incy}| + 1 \) containing the n-vector y.

**incy**
Increment for the array y, incy \( \neq 0 \):

- if \( \text{incy} > 0 \) then y is stored forward in array y; that is, \( y_i \) is stored in \( y((i-1) \times \text{incy} + 1) \).
- if \( \text{incy} < 0 \) then y is stored backward in array y; that is, \( y_i \) is stored in \( y((i-n) \times \text{incy} + 1) \).
Elementary vector operation

Use $\text{incy} = 1$ if the vector $y$ is stored contiguously in array $y$; that is, if $y_i$ is stored in $y(i)$. Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

Output $y$

If $n \leq 0$ or $a = 0$, then $y$ is unchanged. Otherwise, $ax + y$ overwrites the input.

Notes

If $\text{incx} = 0$, then $x_i = x(1)$ for all $i$.

The result is unspecified if $\text{incy} = 0$ or if $x$ and $y$ overlap such that any element of $x$ shares a memory location with any element of $y$.

Fortran Equivalent

```fortran
SUBROUTINE SAXPY (N, A, X, INCX, Y, INCY)
REAL*4 X(*), Y(*)
IF (N .LE. 0) RETURN
IF (A .EQ. 0.0) RETURN
IX = 1
IY = 1
IF (INCX .LT. 0) IX = 1 - (N-1) * INCX
IF (INCY .LT. 0) IY = 1 - (N-1) * INCY
DO 10 I = 1, N
 Y(IY) = A * X(IX) + Y(IY)
 IX = IX + INCX
 IY = IY + INCY
10 CONTINUE
RETURN
END
```

Example 1

Compute the REAL*8 elementary vector operation $y \leftarrow 2x + y$.

where $x$ and $y$ are vectors 10 elements long stored in one-dimensional arrays $X$ and $Y$ of dimension 20.

```fortran
INTEGER*4 N, INCX, INCY
REAL*8 A, X(20), Y(20)
N = 10
A = 2.0D0
INCX = 1
INCY = 1
CALL DAXPY (N, A, X, INCX, Y, INCY)
```

Example 2

Subtract 3 times the 4th row of a 10-by-10 matrix from the 5th row. The matrix is stored in a two-dimensional array $B$ of dimension 20-by-21.

```fortran
INTEGER*4 N
REAL*8 A, B(20, 21)
N = 10
A = -3.0D0
CALL DAXPY (N, A, B(4, 1), 20, B(5, 1), 20)
```
Name

SAXPYI/DAXPYI/CAXPYI/ZAXPYI
Sparse elementary vector operation

Purpose

Given a real or complex scalar $a$, a sparse vector $x$ stored in compact form via a set of indices and a dense vector $y$ stored in full storage form, these subprograms perform the elementary vector operation

$$y \leftarrow ax + y.$$  

More precisely, let $x$ be a sparse $n$-vector with $m \leq n$ interesting (usually nonzero) elements, and let $\{k_1, k_2, ..., k_m\}$ be the indices of these elements. All uninteresting elements of $x$ are assumed to be zero. Let $y$ be an ordinary $n$-vector. If $x$ is represented by arrays $\mathbf{x}$ and $\mathbf{indx}$ such that $\mathbf{indx}(i) = k_i$ and $\mathbf{x}(i) = x_{k_i}$ then these subprograms compute

$$y_{k_i} \leftarrow ax_i + y_{k_i}, \quad i = 1, 2, ..., m.$$  

Usage

\begin{verbatim}
VECLIB:
INTEGER*4   m, indx(m)
REAL*4      a, x(m), y(n)
CALL SAXPYI(m, a, x, indx, y)

INTEGER*4   m, indx(m)
REAL*8      a, x(m), y(n)
CALL DAXPYI(m, a, x, indx, y)

INTEGER*4   m, indx(m)
COMPLEX*8   a, x(m), y(n)
CALL CAXPYI(m, a, x, indx, y)

INTEGER*4   m, indx(m)
COMPLEX*16  a, x(m), y(n)
CALL ZAXPYI(m, a, x, indx, y)

VECLIB8:
INTEGER*8   m, indx(m)
REAL*4      a, x(m), y(n)
CALL SAXPYI(m, a, x, indx, y)

INTEGER*8   m, indx(m)
REAL*8      a, x(m), y(n)
CALL DAXPYI(m, a, x, indx, y)
\end{verbatim}
Sparse elementary vector operation

SAXPYI/DAXPYI/CAXPYI/ZAXPYI

\[
\begin{align*}
\text{INTEGER}^*8 & \quad m, \text{indx}(m) \\
\text{COMPLEX}^*8 & \quad a, x(m), y(n) \\
\text{CALL CAXPYI}(m, a, x, \text{indx}, y) \\
\text{INTEGER}^*8 & \quad m, \text{indx}(m) \\
\text{COMPLEX}^*16 & \quad a, x(m), y(n) \\
\text{CALL ZAXPYI}(m, a, x, \text{indx}, y)
\end{align*}
\]

**Input**

- **m**: Number of interesting elements of \(x\), \(m \leq n\), where \(n\) is the length of \(y\). If \(m \leq 0\), the subprograms do not reference \(x\), \(\text{indx}\), or \(y\).
- **a**: The scalar \(a\).
- **x**: Array of length \(m\) containing the interesting elements of \(x\). \(x(j) = x_i\) if \(\text{indx}(j) = i\).
SAXPYI/DAXPYI/CAXPYI/ZAXPYI  
Sparse elementary vector operation

\[ \text{SAXPYI} \]

\[ \text{DAXPYI} \]

\[ \text{CAXPYI} \]

\[ \text{ZAXPYI} \]

**indx**  
Array containing the indices \( \{ k_i \} \) of the interesting elements of \( x \). The indices must satisfy
\[ 1 \leq \text{indx}(i) \leq n \quad i = 1, 2, \ldots, m \]
and
\[ \text{indx}(i) \neq \text{indx}(j) \quad 1 \leq i \neq j \leq m, \]
where \( n \) is the length of \( y \).

**Output**  
\( y \)  
Array containing the elements of \( y \), \( y(i) = y_i \).

**Output**  
\( y \)  
If \( m \leq 0 \) or \( a = 0 \), then \( y \) is unchanged. Otherwise, \( ax + y \) overwrites the input. Only the elements of \( y \) whose indices are included in \( \text{indx} \) are changed.

**Notes**  
The result is unspecified if any element of \( \text{indx} \) is out of range, if any two elements of \( \text{indx} \) have the same value, or if \( x, \text{indx} \), and \( y \) overlap such that any element of \( x \) or any index shares a memory location with any element of \( y \).

**Fortran Equivalent**

```fortran
SUBROUTINE SAXPYI (M, A, X, INDX, Y)
REAL*4 A, X(*), Y(*)
INTEGER*4 INDX(*)
IF (M .LE. 0) RETURN
IF (A .EQ. 0.0) RETURN
DO 10 I = 1, M
 Y(INDX(I)) = A * X(I) + Y(INDX(I))
10 CONTINUE
RETURN
END
```

**Example**  
Compute the REAL*8 elementary vector operation
\[ y \leftarrow 2x + y, \]
where \( x \) is a sparse vector with interesting elements \( x_1, x_4, x_5 \), and \( x_9 \) stored in one-dimensional array \( X \), and \( y \) is stored in a one-dimensional array \( Y \) of dimension 20.

```fortran
INTEGER*4 M, INDX(4)
REAL*8 A, X(4), Y(20)
DATA INDX / 1, 4, 5, 9 /
M = 4
A = 2.0D0
CALL DAXPYI (M, A, X, INDX, Y)
```

---

70  HP MLIB User's Guide
Two sided vector clip

**Name**
SCLIP/DCLIP/ICLIP
Two sided vector clip

**Purpose**
Given scalars $a$ and $b$ and a vector $x$ of length $n$, these subprograms form the vector $y$ by the clip operation

$$y_i = \begin{cases} 
  a & \text{if } x_i \leq a \\
  x_i & \text{if } a < x_i < b \\
  b & \text{if } b \leq x_i
\end{cases} \quad i = 1, 2, ..., n$$

The vectors can be stored in one-dimensional arrays or in either rows or columns of two-dimensional arrays. Indexing through the arrays can be either forward or backward.

**Usage**

**VECLIB:**

```fortran
INTEGER*4 n, inx, iny
REAL*4 a, b, x(lenx), y(leny)
CALL SCLIP(n, a, b, x, inx, y, iny)

INTEGER*4 n, inx, iny
REAL*8 a, b, x(lenx), y(leny)
CALL DCLIP(n, a, b, x, inx, y, iny)

INTEGER*4 n, inx, iny, a, b, x(lenx), y(leny)
CALL ICLIP(n, a, b, x, inx, y, iny)
```

**VECLIB8:**

```fortran
INTEGER*8 n, inx, iny
REAL*4 a, b, x(lenx), y(leny)
CALL SCLIP(n, a, b, x, inx, y, iny)

INTEGER*8 n, inx, iny
REAL*8 a, b, x(lenx), y(leny)
CALL DCLIP(n, a, b, x, inx, y, iny)

INTEGER*8 n, inx, iny, a, b, x(lenx), y(leny)
CALL ICLIP(n, a, b, x, inx, y, iny)
```

**Input**

- **n**
  Number of elements of vectors $x$ and $y$ to be used. If $n \leq 0$, the subprograms do not reference $x$ or $y$.
- **a**
  The scalar $a$.
- **b**
  The scalar $b$. 
**SCLIP/DCLIP/ICLIP**

**Two sided vector clip**

**x**  
Array of length \( \text{len} = (n-1) \times |\text{inc}| + 1 \) containing the \( n \)-vector \( x \).

**inc**  
Increment for the array \( x \):

- If \( \text{inc} \geq 0 \), \( x \) is stored forward in array \( x \); that is, \( x_i \) is stored in \( x((i-1) \times \text{inc}+1) \).
- If \( \text{inc} < 0 \), \( x \) is stored backward in array \( x \); that is, \( x_i \) is stored in \( x((i-n) \times \text{inc}+1) \).

Use \( \text{inc} = 1 \) if the vector \( x \) is stored contiguously in array \( x \); that is, if \( x_i \) is stored in \( x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.
Two sided vector clip

incy  Increment for the array y, incy ≠ 0:
iny  > 0   y is stored forward in array y; that is,
iy  is stored in y((i-1)×incy+1).
incy  < 0   y is stored backward in array y; that
iny  is, iy  is stored in y((i-n)×incy+1).

Use incy = 1 if the vector y is stored contiguously in
array y; that is, if iy is stored in y(i). Refer to “BLAS
Indexing Conventions” in the introduction to this
chapter.

Output  y  Array of length leny = (n-1)×|incy|+1 containing the
n-vector y. If n ≤ 0, then y is unchanged. Otherwise, y is
set as specified in “Purpose.”

Notes  x and y can be the same array if incx = incy. Otherwise, the result is
unspecified if x and y overlap such that any element of x shares a memory
location with any element of y.

Fortran  Equivalent

SUBROUTINE SCLIP (N, A, B, X(INCX), Y(INCY)
REAL*4 A,B,X(*),Y(*)
IF ( N .LE. 0 ) RETURN
IX = 1
IY = 1
IF ( INCX .LT. 0 ) IX = 1 - (N-1) * INCX
IF ( INCY .LT. 0 ) IY = 1 - (N-1) * INCY
DO 10 I = 1, N
   Y(IY) = MIN ( MAX ( X(IX) , A ) , B )
   IX = IX + INCX
   IY = IY + INCY
10 CONTINUE
RETURN
END

Example  Clip the REAL*8 vector x between −1 and 1 into y, where x and y are vectors 10
elements long stored in one-dimensional arrays X and Y of dimension 20.

INTEGER*4 N, INCX, INCY
REAL*8 A,B,X(20),Y(20)
N = 10
INCX = 1
INCY = 1
A = -1.0D0
B = 1.0D0
CALL DCLIP (N, A, B, X(INCX), Y(INCY)
Name  SCLIPL/DCLIPL/ICLIPL
Left sided vector clip

Purpose  Given scalar \(a\) and a vector \(x\) of length \(n\), these subprograms form the vector \(y\) by the left-sided clip operation

\[
y_i = \begin{cases} 
a & \text{if } x_i \leq a \\x_i & \text{if } x_i > a \\
\end{cases} \quad i = 1, 2, \ldots, n.
\]

The vectors can be stored in one-dimensional arrays or in either rows or columns of two-dimensional arrays. Indexing through the arrays can be either forward or backward.

Usage  VECLIB:
INTEGRER*4  n, incx, incy
REAL*4  a, x(lenx), y(leny)
CALL SCLIPL(n, a, x, incx, y, incy)
INTEGRER*4  n, incx, incy
REAL*8  a, x(lenx), y(leny)
CALL DCLIPL(n, a, x, incx, y, incy)
INTEGRER*4  n, incx, incy, a, x(lenx), y(leny)
CALL ICLIPL(n, a, x, incx, y, incy)

VECLIB8:
INTEGRER*8  n, incx, incy
REAL*4  a, x(lenx), y(leny)
CALL SCLIPL(n, a, x, incx, y, incy)
INTEGRER*8  n, incx, incy
REAL*8  a, x(lenx), y(leny)
CALL DCLIPL(n, a, x, incx, y, incy)
INTEGRER*8  n, incx, incy, a, x(lenx), y(leny)
CALL ICLIPL(n, a, x, incx, y, incy)

Input  \(n\)  Number of elements of vectors \(x\) and \(y\) to be used. If \(n \leq 0\), the subprograms do not reference \(x\) or \(y\).
\(a\)  The scalar \(a\).
\(x\)  Array of length \(\text{lenx} = (n-1) \times |\text{incx}| + 1\) containing the \(n\)-vector \(x\).
\(\text{incx}\)  Increment for the array \(x\):
\textbf{Left sided vector clip}  \hspace{5cm} \textbf{SCLIPL/DCLIPL/ICLIPL}

\begin{itemize}
  \item \textbf{incx} \geq 0 \quad x \text{ is stored forward in array } x; \text{ that is, } x_i \text{ is stored in } x((i-1)\times\text{incx}+1).
  \item \textbf{incx} < 0 \quad x \text{ is stored backward in array } x; \text{ that is, } x_i \text{ is stored in } x((i-n)\times\text{incx}+1).
\end{itemize}

Use \textbf{incx} = 1 if the vector \(x\) is stored contiguously in array \(x\); that is, if \(x_i\) is stored in \(x(i)\). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.
incy Increment for the array y, incy ≠ 0:

\[\text{incy} > 0\]  
y is stored forward in array y; that is, 
y\text{, is stored in } y((i-1) \times \text{incy} + 1).

\[\text{incy} < 0\]  
y is stored backward in array y; that is, 
y is stored in y((i-n) \times \text{incy} + 1).

Use incy = 1 if the vector y is stored contiguously in 
array y; that is, if y is stored in y(i). Refer to “BLAS 
Indexing Conventions” in the introduction to this 
chapter.

Output y Array of length leny = (n−1)×|incy|+1 containing the 
n-vector y. If n ≤ 0, then y is unchanged. Otherwise, y is 
set as specified in “Purpose.”

Notes x and y can be the same array if incx = incy. Otherwise, the result is 
unspecified if x and y overlap such that any element of x shares a memory 
location with any element of y.

Fortran Equivalent

SUBROUTINE SCLIPL (N, A, XINCX, Y, INCY)
REAL*4 A,X(*),Y(*)
IF ( N .LE. 0 ) RETURN
IX = 1
IY = 1
IF ( INCX .LT. 0 ) IX = 1 - (N-1) * INCX
IF ( INCY .LT. 0 ) IY = 1 - (N-1) * INCY
DO 10 I = 1, N
  Y(IY) = MAX ( X(IX) , A )
  IX = IX + INCX
  IY = IY + INCY
10 CONTINUE
RETURN
END

Example Clip the REAL*8 vector x below −1 into y, where x and y are vectors 10 
elements long stored in one-dimensional arrays X and Y of dimension 20.

INTEGER*4 N, INCX, INCY
REAL*8 A,X(20),Y(20)
N = 10
INCX = 1
INCY = 1
A = -1.0D0
CALL DCLIPL (N,A,X,INCX,Y,INCY)
Name       SCLPR/DCLPR/ICLPR
Right sided vector clip

Purpose   Given scalar \( b \) and a vector \( x \) of length \( n \), these subprograms form the vector \( y \)
by the right-sided clip operation

\[
    y_i = \begin{cases} 
    x_i & \text{if } x_i < b \\
    b & \text{if } x_i \geq b 
    \end{cases} 
\]

\( i = 1, 2, \ldots, n \).

The vectors can be stored in one-dimensional arrays or in either rows or columns of two-dimensional arrays, and the indexing through the arrays can be either forward or backward.

Usage    VECLIB:

\[
\begin{align*}
\text{INTEGER}^{*}4 & \quad n, \text{incx}, \text{incy} \\
\text{REAL}^{*}4 & \quad b, x(\text{lenx}), y(\text{leny}) \\
& \text{CALL SCLPR}(n, b, x, \text{incx}, y, \text{incy}) \\
\text{INTEGER}^{*}4 & \quad n, \text{incx}, \text{incy} \\
\text{REAL}^{*}8 & \quad b, x(\text{lenx}), y(\text{leny}) \\
& \text{CALL DCLPR}(n, b, x, \text{incx}, y, \text{incy}) \\
\text{INTEGER}^{*}4 & \quad n, \text{incx}, \text{incy}, b, x(\text{lenx}), y(\text{leny}) \\
& \text{CALL ICLPR}(n, b, x, \text{incx}, y, \text{incy}) \\
\end{align*}
\]

VECLIB8:

\[
\begin{align*}
\text{INTEGER}^{*}8 & \quad n, \text{incx}, \text{incy} \\
\text{REAL}^{*}4 & \quad b, x(\text{lenx}), y(\text{leny}) \\
& \text{CALL SCLPR}(n, b, x, \text{incx}, y, \text{incy}) \\
\text{INTEGER}^{*}8 & \quad n, \text{incx}, \text{incy} \\
\text{REAL}^{*}8 & \quad b, x(\text{lenx}), y(\text{leny}) \\
& \text{CALL DCLPR}(n, b, x, \text{incx}, y, \text{incy}) \\
\text{INTEGER}^{*}8 & \quad n, \text{incx}, \text{incy}, b, x(\text{lenx}), y(\text{leny}) \\
& \text{CALL ICLPR}(n, b, x, \text{incx}, y, \text{incy}) \\
\end{align*}
\]

Input   \( n \)       Number of elements of vectors \( x \) and \( y \) to be used. If \( n \leq 0 \), the subprograms do not reference \( x \) or \( y \).

\( b \)       The scalar \( b \).

\( x \)       Array of length \( \text{lenx} = (n-1) \times |\text{incx}| + 1 \) containing the \( n \)-vector \( x \).

\( \text{incx} \)       Increment for the array \( x \):
HP MLIB User’s Guide

SCLPR/DCLPR/ICLPR

Right sided vector clip

\[
\text{incx} \geq 0 \quad x \text{ is stored forward in array } x; \text{ that is, } x_i \text{ is stored in } x((i-1)\times\text{incx}+1).
\]

\[
\text{incx} < 0 \quad x \text{ is stored backward in array } x; \text{ that is, } x_i \text{ is stored in } x((i-n)\times\text{incx}+1).
\]

Use \text{incx} = 1 if the vector \( x \) is stored contiguously in array \( x \); that is, if \( x_i \) is stored in \( x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.
Right sided vector clip

**incy**

Increment for the array \( y \), \( \text{incy} \neq 0 \):

- \( \text{incy} > 0 \) \( y \) is stored forward in array \( y \); that is, \( y_i \) is stored in \( y((i-1) \times \text{incy} + 1) \).
- \( \text{incy} < 0 \) \( y \) is stored backward in array \( y \); that is, \( y_i \) is stored in \( y((i-n) \times \text{incy} + 1) \).

Use \( \text{incy} = 1 \) if the vector \( y \) is stored contiguously in array \( y \); that is, if \( y_i \) is stored in \( y(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

**Output**

\( y \)

Array of length \( \text{leny} = (n-1) \times |\text{incy}| + 1 \) containing the \( n \)-vector \( y \). If \( n \leq 0 \), then \( y \) is unchanged. Otherwise, \( y \) is set as specified in “Purpose.”

**Notes**

\( x \) and \( y \) can be the same array if \( \text{incx} = \text{incy} \). Otherwise, the result is unspecified if \( x \) and \( y \) overlap such that any element of \( x \) shares a memory location with any element of \( y \).

**Fortran Equivalent**

```fortran
SUBROUTINE SCLIPR (N, B, X, INCX, Y, INCY)
REAL*4 B, X(*), Y(*)
IF (N .LE. 0) RETURN
IX = 1
IY = 1
IF (INCX .LT. 0) IX = 1 - (N-1) * INCX
IF (INCY .LT. 0) IY = 1 - (N-1) * INCY
DO 10 I = 1, N
 Y(IY) = MIN (X(IX) , B)
 IX = IX + INCX
 IY = IY + INCY
10 CONTINUE
RETURN
END
```

**Example**

Clip the REAL*8 vector \( x \) above 1 into \( y \), where \( x \) and \( y \) are vectors 10 elements long stored in one-dimensional arrays \( X \) and \( Y \) of dimension 20.

```fortran
INTEGER*4 N, INCX, INCY
REAL*8 B, X(20), Y(20)
N = 10
INCX = 1
INCY = 1
B = 1.0D0
CALL DCLIPR (N, B, X, INCX, Y, INCY)
```
**Name**  
SCOPY/DCOPY/ICOPY/CCOPY/CCOPYC/ZCOPY/ZCOPYC  
Copy vector

**Purpose**  
Given real, integer, or complex vectors $x$ and $y$ of length $n$, these subprograms perform the vector copy operations

$$
y ← x \quad \text{and} \quad y ← \bar{x}
$$

where $\bar{x}$ is the complex conjugate of $x$. The vectors can be stored in one-dimensional arrays or in either rows or columns of two-dimensional arrays. Indexing through the arrays can be either forward or backward.

**Usage**  
VECLIB:

```fortran
INTEGER*4 n, inx, incy
REAL*4 x(lenx), y(leny)
CALL SCOPY(n, x, inx, y, incy)

INTEGER*4 n, inx, incy
REAL*8 x(lenx), y(leny)
CALL DCOPY(n, x, inx, y, incy)

INTEGER*4 n, inx, incy, x(lenx), y(leny)
CALL ICOPY(n, x, inx, y, incy)

INTEGER*4 n, inx, incy
COMPLEX*8 x(lenx), y(leny)
CALL CCOPY(n, x, inx, y, incy)

INTEGER*4 n, inx, incy
COMPLEX*8 x(lenx), y(leny)
CALL CCOPYC(n, x, inx, y, incy)

INTEGER*4 n, inx, incy
COMPLEX*16 x(lenx), y(leny)
CALL ZCOPY(n, x, inx, y, incy)

INTEGER*4 n, inx, incy
COMPLEX*16 x(lenx), y(leny)
CALL ZCOPYC(n, x, inx, y, incy)
```

VECLIB8:

```fortran
INTEGER*8 n, inx, incy
REAL*4 x(lenx), y(leny)
CALL SCOPY(n, x, inx, y, incy)
```
Copy vector

```fortran
INTEGER*8 n, incx, incy
REAL*8 x(lenx), y(leny)
CALL DCOPY(n, x, incx, y, incy)

INTEGER*8 n, incx, incy, x(lenx), y(leny)
CALL ICOPY(n, x, incx, y, incy)

INTEGER*8 n, incx, incy
COMPLEX*8 x(lenx), y(leny)
CALL CCOPY(n, x, incx, y, incy)

INTEGER*8 n, incx, incy
COMPLEX*8 x(lenx), y(leny)
CALL CCOPYC(n, x, incx, y, incy)

INTEGER*8 n, incx, incy
COMPLEX*16 x(lenx), y(leny)
CALL ZCOPY(n, x, incx, y, incy)

INTEGER*8 n, incx, incy
COMPLEX*16 x(lenx), y(leny)
CALL ZCOPYC(n, x, incx, y, incy)
```
### Input

**n**  
Number of elements of vectors **x** and **y** to be used in the copy operation. If **n** ≤ 0, the subprograms do not reference **x** or **y**.

**x**  
Array of length **lenx** = (n−1)×|**incx**|+1 containing the **n**-vector **x**. **x** is used in conjugated form by **CCOPYC** and **ZCOPYC** and in unconjugated form by the other subprograms.

**incx**  
Increment for the array **x**:

- **incx** ≥ 0  
  **x** is stored forward in array **x**; that is, $x_i$ is stored in **x**[(i−1)×**incx**+1].

- **incx** < 0  
  **x** is stored backward in array **x**; that is, $x_i$ is stored in **x**[(i−n)×**incx**+1].

Use **incx** = 1 if the vector **x** is stored contiguously in array **x**; that is, if $x_i$ is stored in **x**(i). Refer to “Notes” for use of **incx** = 0. Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

### Output

**y**  
Array of length **leny** = (n−1)×|**incy**|+1 containing the **n**-vector **y**. If **n** ≤ 0, then **y** is unchanged. Otherwise, $y ← x$.

### Notes

If **incx** = 0, then $y_i = x(1)$ for all **i**. This can be used to initialize all elements of **y** to a constant. Refer to “Example 2” on page 83.

The result is unspecified if **x** and **y** overlap such that any element of **x** shares a memory location with any element of **y**.
**Fortran Equivalent**

```fortran
SUBROUTINE SCOPY (N, X, INCX, Y, INCY)
REAL*4 X(*), Y(*)
IF (N .LE. 0) RETURN
IX = 1
IY = 1
IF (INCX .LT. 0) IX = 1 - (N-1) * INCX
IF (INCY .LT. 0) IY = 1 - (N-1) * INCY
DO 10 I = 1, N
 Y(IY) = X(IX)
 IX = IX + INCX
 IY = IY + INCY
10 CONTINUE
RETURN
END
```

**Example 1**  
Copy the REAL*8 vector $x$ into $y$, where $x$ and $y$ are vectors 10 elements long stored in one-dimensional arrays $X$ and $Y$ of dimension 20.

```fortran
INTEGER*4 N, INCX, INCY
REAL*8 X(20), Y(20)
N = 10
INCX = 1
INCY = 1
CALL DCOPY (N, X, INCX, Y, INCY)
```

**Example 2**  
Initialize a one-dimensional array to zero.

```fortran
INTEGER*4 N
REAL*8 Y(20)
N = 10
CALL DCOPY (N, 0.0D0, 0, Y)
```
Name
SDOT/DDOT/CDOTC/CDOTU/ZDOTC/ZDOTU
Dot product

Purpose
Given real or complex data vectors x and y of length n, these subprograms compute the dot products

\[ s = \sum_{i=1}^{n} x_i y_i \quad \text{and} \quad \bar{s} = \sum_{i=1}^{n} \bar{x}_i \bar{y}_i \]

where \( \bar{x} \) is the complex conjugate of x. The vectors can be stored in one-dimensional arrays or in either rows or columns of two-dimensional arrays. Indexing through the arrays can be either forward or backward.

Usage
VECLIB:

```
INTEGER*4 n, inx, incy
REAL*4 s, SDOT, x(lenx), y(leny)
 s = SDOT(n, x, inx, y, incy)

INTEGER*4 n, inx, incy
REAL*8 s, DDOT, x(lenx), y(leny)
 s = DDOT(n, x, inx, y, incy)

INTEGER*4 n, inx, incy
COMPLEX*8 s, CDOTC, x(lenx), y(leny)
 s = CDOTC(n, x, inx, y, incy)

INTEGER*4 n, inx, incy
COMPLEX*16 s, ZDOTC, x(lenx), y(leny)
 s = ZDOTC(n, x, inx, y, incy)

INTEGER*4 n, inx, incy
COMPLEX*16 s, ZDOTU, x(lenx), y(leny)
 s = ZDOTU(n, x, inx, y, incy)
```

VECLIB8:

```
INTEGER*8 n, inx, incy
REAL*4 s, SDOT, x(lenx), y(leny)
 s = SDOT(n, x, inx, y, incy)
```
**Dot product**

**SDOT/DDOT/CDOTC/CDOTU/ZDOTC/ZDOTU**

```
INTEGER*8 n, incx, incy
REAL*8 s, DDOT, x(lenx), y(leny)
s = DDOT(n, x, incx, y, incy)

INTEGER*8 n, incx, incy
COMPLEX*8 s, CDOTC, x(lenx), y(leny)
s = CDOTC(n, x, incx, y, incy)

INTEGER*8 n, incx, incy
COMPLEX*8 s, CDOTU, x(lenx), y(leny)
s = CDOTU(n, x, incx, y, incy)

INTEGER*8 n, incx, incy
COMPLEX*16 s, ZDOTC, x(lenx), y(leny)
s = ZDOTC(n, x, incx, y, incy)

INTEGER*8 n, incx, incy
COMPLEX*16 s, ZDOTU, x(lenx), y(leny)
s = ZDOTU(n, x, incx, y, incy)

INTELCOMP:

```

```
INTEGER*4 n, incx, incy
INTEGER*8 n, incx, incy
COMPLEX*8 s, CDOTC, x(lenx), y(leny), res
s = CDOTC(n, x, incx, y, incy, res)

INTEGER*4 n, incx, incy
INTEGER*8 n, incx, incy
COMPLEX*8 s, CDOTU, x(lenx), y(leny), res
s = CDOTU(n, x, incx, y, incy, res)

INTEGER*4 n, incx, incy
INTEGER*8 n, incx, incy
COMPLEX*16 s, ZDOTC, x(lenx), y(leny), res
s = ZDOTC(n, x, incx, y, incy, res)

INTEGER*4 n, incx, incy
INTEGER*8 n, incx, incy
COMPLEX*16 s, ZDOTU, x(lenx), y(leny), res
s = ZDOTU(n, x, incx, y, incy, res)

Input

```
Input        n
Number of elements of vectors x and y to be used in the
dot product. If n ≤ 0, the subprograms do not reference
x or y.
```
Dot product

Array of length $\text{lenx} = (n-1)\times|\text{inex}| + 1$ containing the n-vector x. x is used in conjugated form by CDOTC and ZDOTC and in unconjugated form by the other subprograms.

inex
Increment for the array x:
- $\text{inex} \geq 0$: x is stored forward in array x; that is, x_i is stored in $x((i-1)\times\text{inex}+1)$.
- $\text{inex} < 0$: x is stored backward in array x; that is, x_i is stored in $x((i-n)\times\text{inex}+1)$.

Use $\text{inex} = 1$ if the vector x is stored contiguously in array x; that is, if x_i is stored in $x(i)$. Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

Array of length $\text{leny} = (n-1)\times|\text{incy}| + 1$ containing the n-vector y.

incy
Increment for the array y:
- $\text{incy} \geq 0$: y is stored forward in array y; that is, y_i is stored in $y((i-1)\times\text{incy}+1)$.
- $\text{incy} < 0$: y is stored backward in array y; that is, y_i is stored in $y((i-n)\times\text{incy}+1)$.

Use $\text{incy} = 1$ if the vector y is stored contiguously in array y; that is, if y_i is stored in $y(i)$. Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

Pointer to output (for use with Intel compilers only).

The resulting value of the dot product. If $n \leq 0$, then $s = 0$. Otherwise,

$$s = \sum_{i=1}^{n} x_i y_i$$

unless the subprogram name is CDOTC or ZDOTC, in which case

$$s = \sum_{i=1}^{n} \bar{x}_i y_i$$

If $\text{inex} = 0$, then $x_i = x(1)$ for all i. If $\text{incy} = 0$, then $y_i = y(1)$ for all i. In either of these cases, another VECLIB subprogram would be more efficient.
Chapter 2 Basic Vector Operations

Example 1

Compute the REAL*8 dot product

\[s = \sum_{i=1}^{10} x_i y_i \]

where \(x \) and \(y \) are vectors 10 elements long stored in one-dimensional arrays \(X \) and \(Y \) of dimension 20.

```fortran
INTEGER*4 N, INCX, INCY
REAL*8   S, DDOT, X(20), Y(20)
N = 10
INCX = 1
INCY = 1
S = DDOT (N, X, INCX, Y, INCY)
```

Example 2

Compute the REAL*8 dot product

\[s = \sum_{i=1}^{10} x_i y_i \]

where \(x \) is the 4th row of a 10-by-10 matrix stored in a two-dimensional array \(X \) of dimension 20-by-21, and \(y \) is a vector 10 elements long stored in one-dimensional array \(Y \) of dimension 20.

```fortran
INTEGER*4 N
REAL*8   S, DDOT, X(20, 21), Y(20)
N = 10
S = DDOT (N, X(4,1), 20, Y, 1)
```
Name SDOTI/DDOTI/CDOTCI/CDOTUI/ZDOTCI/ZDOTUI
Sparse dot product

Purpose Given a real or complex sparse vector \(\mathbf{x} \) stored in compact form via an index vector and a dense vector \(\mathbf{y} \) stored in full storage form, these subprograms compute the sparse dot products

\[
s = \sum_{i=1}^{n} x_i y_i \quad \text{and} \quad s = \sum_{i=1}^{n} x_i^* y_i
\]

where \(x_i^* \) is the complex conjugate of \(x_i \).

More precisely, let \(\mathbf{x} \) be a sparse \(n \)-vector with \(m \leq n \) interesting (usually nonzero) elements, let \(\{k_1, k_2, \ldots, k_m\} \) be the indices of these elements. (While some interesting elements of \(\mathbf{x} \) can be zero, all uninteresting elements are assumed to be zero.) Let \(\mathbf{y} \) be an ordinary \(n \)-vector. If \(\mathbf{x} \) is represented by arrays \(\mathbf{x} \) and \(\mathbf{indx} \) such that \(\mathbf{indx}(i) = k_i \) and \(x(i) = x_{k_i} \), then these subprograms compute

\[
s = \sum_{i=1}^{m} x_i y_{k_i} \quad \text{and} \quad s = \sum_{i=1}^{m} x_i^* y_{k_i}
\]

Usage VECLIB:

```
INTEGER*4    m, indx(m)
REAL*4        s, SDOTI, x(m), y(n)
s = SDOTI(m, x, indx, y)

INTEGER*4    m, indx(m)
REAL*8        s, DDOTI, x(m), y(n)
s = DDOTI(m, x, indx, y)

INTEGER*4    m, indx(m)
COMPLEX*8     s, CDOTCI, x(m), y(n)
s = CDOTCI(m, x, indx, y)

INTEGER*4    m, indx(m)
COMPLEX*16    s, ZDOTCI, x(m), y(n)
s = ZDOTCI(m, x, indx, y)
```
Sparse dot product

SDOT/DDOT/CDOTCI/CDOTUI/ZDOTCI/ZDOTUI

\begin{verbatim}
INTEGER*4 m, indx(m)
COMPLEX*16 s, ZDOTUI, x(m), y(n)
s = ZDOTUI(m, x, indx, y)

VECLIB8:
INTEGER*8 m, indx(m)
REAL*4 s, SDOTI, x(m), y(n)
s = SDOTI(m, x, indx, y)
INTEGER*8 m, indx(m)
REAL*8 s, DDOTI, x(m), y(n)
s = DDOTI(m, x, indx, y)
INTEGER*8 m, indx(m)
COMPLEX*8 s, CDOTCI, x(m), y(n)
s = CDOTCI(m, x, indx, y)
INTEGER*8 m, indx(m)
COMPLEX*8 s, CDOTUI, x(m), y(n)
s = CDOTUI(m, x, indx, y)
INTEGER*8 m, indx(m)
COMPLEX*16 s, ZDOTCI, x(m), y(n)
s = ZDOTCI(m, x, indx, y)
INTEGER*8 m, indx(m)
COMPLEX*16 s, ZDOTUI, x(m), y(n)
s = ZDOTUI(m, x, indx, y)
\end{verbatim}

Input

| m | Number of interesting elements of \(x\), \(m \leq n\). If \(m \leq 0\),
| | the subprograms do not reference \(x\), \(\text{indx}\), or \(y\). |

x	Array of length \(m\) containing the interesting elements
	of \(x\). \(x\) is used in conjugated form by CDOTCI and
	ZDOTCI and in unconjugated form by the other
	subprograms.

indx	Array containing the indices \(\{k_i\}\) of the interesting
	elements of \(x\). The indices must satisfy
	\(1 \leq \text{indx}(i) \leq n\), \(i = 1, 2, ..., m\).
	where \(n\) is the length of \(y\).

| y | Array containing the elements of \(y\), \(y(i) = y_i\). |
Output \(s \)

The resulting value of the dot product. If \(m \leq 0 \), then \(s = 0 \). Otherwise,

\[
s = \sum_{i=1}^{m} x(i) \times y(\text{indx}(i))
\]

unless the subprogram name is CDOTCI or ZDOTCI, in which case

\[
s = \sum_{i=1}^{m} \text{CONJG}(x(i)) \times y(\text{indx}(i))
\]

Fortran Equivalent

```fortran
REAL*4 FUNCTION SDOTI (M, X,INDX, Y)
REAL*4 X(*),Y(*)
INTEGER*4 INDX(*)
SDOTI = 0.0
IF ( M .LE. 0 ) RETURN
DO 10 I = 1, M
     SDOTI = SDOTI + X(I) * Y(INDX(I))
10 CONTINUE
RETURN
END
```
Example

Compute the REAL*8 sparse dot product

\[s = \sum_{i=1}^{10} x_i y_i, \]

where \(x \) is a sparse vector with interesting elements \(x_1, x_4, x_9 \), and \(x_9 \) stored in one-dimensional array \(X \), and \(y \) is a vector 10 elements long stored in a one-dimensional array \(Y \) of dimension 20.

```fortran
INTEGER*4 M, INDX(4)
REAL*8   S, DDOTI, X(4), Y(20)
DATA     INDX / 1, 4, 5, 9 /
M = 4
S = DDOTI (M, X, INDX, Y)
```
SFRAC/DFRAC

Name
SFRAC/DFRAC
Extract fractional parts

Purpose
Given a real vector \(x \) of length \(n \), these subprograms extract the fractional portions of the elements of \(x \) and return them in a vector \(y \).

The vectors can be stored in one-dimensional arrays or in either rows or columns of two-dimensional arrays. Indexing through the arrays can be either forward or backward.

Usage

VECLIB:

```plaintext
INTEGER*4 n, incx, incy
REAL*4 x(lenx), y(leny)
CALL SFRAC(n, x, incx, y, incy)

INTEGER*4 n, incx, incy
REAL*8 x(lenx), y(leny)
CALL DFRAC(n, x, incx, y, incy)
```

VECLIB8:

```plaintext
INTEGER*8 n, incx, incy
REAL*4 x(lenx), y(leny)
CALL SFRAC(n, x, incx, y, incy)

INTEGER*8 n, incx, incy
REAL*8 x(lenx), y(leny)
CALL DFRAC(n, x, incx, y, incy)
```

Input

- **n**
 Number of elements of vectors \(x \) and \(y \) to be used. If \(n \leq 0 \), the subprograms do not reference \(x \) or \(y \).

- **x**
 Array of length \(\text{lenx} = (n-1) \times |\text{incx}| + 1 \) containing the \(n \)-vector \(x \).

- **incx**
 Increment for the array \(x \):
 - \(\text{incx} \geq 0 \) \(x \) is stored forward in array \(x \); that is, \(x_i \) is stored in \(x((i-1) \times \text{incx} + 1) \).
 - \(\text{incx} < 0 \) \(x \) is stored backward in array \(x \); that is, \(x_i \) is stored in \(x((i-n) \times \text{incx} + 1) \).

 Use \(\text{incx} = 1 \) if the vector \(x \) is stored contiguously in array \(x \); that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

- **incy**
 Increment for the array \(y \), \(\text{incy} \neq 0 \):
Extract fractional parts

SFRAC/DFRAC

Chapter 2 Basic Vector Operations

incey > 0
y is stored forward in array y; that is, y_i is stored in $y((i-1)\times incy+1)$.

incey < 0
y is stored backward in array y; that is, y_i is stored in $y((i-n)\times incy+1)$.

Use $incy = 1$ if the vector y is stored contiguously in array y; that is, if y_i is stored in $y(i)$. Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

Output
y
Array of length $leny = (n-1)\times |incy| + 1$ containing the n-vector y. If $n \leq 0$, y is unchanged. Otherwise, y_i is the fractional part of x_i.

Notes
The fractional part of a number is either zero or of the same sign as the number. Thus, the fractional parts of -1.4, -1.0, 0.6, and 2.0 are -0.4, 0.0, 0.6, and 0.0, respectively. x and y can be the same array if $incx = incy$. Otherwise, the result is unspecified if x and y overlap such that any element of x shares a memory location with any element of y.

Fortran Equivalent

```fortran
SUBROUTINE SFRAC (N, X, INCX, Y, INCY)
REAL*4 X(*), Y(*)
IF ( N .LE. 0 ) RETURN
IX = 1
IY = 1
IF ( INCX .LT. 0 ) IX = 1 - (N-1) * INCX
IF ( INCY .LT. 0 ) IY = 1 - (N-1) * INCY
DO 10 I = 1, N
   Y(IY) = X(IX) - AINT ( X(IX) )
   IX = IX + INCX
   IY = IY + INCY
10 CONTINUE
RETURN
END
```

Example
Extract the fractional parts of the elements of the REAL*8 vector x into y, where x and y are vectors 10 elements long stored in one-dimensional arrays X and Y of dimension 20.

```fortran
INTEGER*4 N, INCX, INCY
REAL*8 X(20), Y(20)
N = 10
INCX = 1
INCY = 1
CALL DFRAC (N, X, INCX, Y, INCY)
```
SGTHR/DGTHR/IGTHR/CGTHR/ZGTHR
Gather sparse vector

Name
SGTHR/DGTHR/IGTHR/CGTHR/ZGTHR
Gather sparse vector

Purpose
Given a real, integer, or complex dense vector \(y \) stored in full storage form and a set of indices of interesting elements of \(y \), these subprograms gather those elements into a sparse vector \(x \) stored in compact form via the set of indices.

More precisely, let \(\{k_1, k_2, \ldots, k_m\} \) be the indices of the interesting elements. If \(x \) is represented by arrays \(x \) and \(\text{indx} \) such that \(\text{indx}(i) = k_i \) and \(x(i) = x_{k_i} \), then

\[x_i = y_{k_i}, i = 1, 2, \ldots, m. \]

Usage
VECLIB:

```plaintext
INTEGER*4   m, indx(m)
REAL*4      y(n), x(m)
CALL SGTHR(m, y, x, indx)

INTEGER*4   m, indx(m)
REAL*8      y(n), x(m)
CALL DGTHR(m, y, x, indx)

INTEGER*4   m, indx(m), y(n), x(m)
CALL IGTHR(m, y, x, indx)

INTEGER*4   m, indx(m)
COMPLEX*8   y(n), x(m)
CALL CGTHR(m, y, x, indx)

INTEGER*4   m, indx(m)
COMPLEX*16  y(n), x(m)
CALL ZGTHR(m, y, x, indx)
```

VECLIB8:

```plaintext
INTEGER*8   m, indx(m)
REAL*4      y(n), x(m)
CALL SGTHR(m, y, x, indx)

INTEGER*8   m, indx(m)
REAL*8      y(n), x(m)
CALL DGTHR(m, y, x, indx)

INTEGER*8   m, indx(m), y(n), x(m)
CALL IGTHR(m, y, x, indx)

INTEGER*8   m, indx(m)
COMPLEX*16  y(n), x(m)
CALL ZGTHR(m, y, x, indx)
```
Gather sparse vector

Input

- **m**
 - Number of interesting elements, \(m \leq n \), where \(n \) is the length of \(y \). If \(m \leq 0 \), the subprograms do not reference \(x \), \(indx \), or \(y \).

- **y**
 - Array containing the elements of \(y \), \(y(i) = y_i \). Only the elements of \(y \) whose indices are included in \(indx \) are accessed.

- **indx**
 - Array containing the indices \(\{ k_i \} \) of the interesting elements of \(y \). The indices must satisfy \(1 \leq indx(i) \leq n, \quad i = 1, 2, ..., m \), where \(n \) is the length of \(y \).

Output

- **x**
 - If \(m \leq 0 \), then \(x \) is unchanged. Otherwise, the \(m \) interesting elements of \(y \): \(x(j) = y_i \) if \(indx(j) = i \).

Notes

The result is unspecified if any element of \(indx \) is out of range or if \(x \), \(indx \), and \(y \) overlap such that any element of \(y \) or any index shares a memory location with any element of \(x \).

Fortran Equivalent

```fortran
SUBROUTINE SGTHR (M, Y, X, INDX)
REAL*4 X(*),Y(*)
INTEGER*4 INDX(*)
IF ( M .LE. 0 ) RETURN
DO 10 I = 1, M
   X(I) = Y(INDX(I))
10 CONTINUE
RETURN
END
```

Example

Gather \(y \) into \(x \), where \(y \) is a vector with interesting elements \(y_4, y_5, y_9 \), and \(y_9 \) stored in one-dimensional array \(Y \) of dimension 20, and \(x \) is a vector stored in compact form in a one-dimensional array \(X \).

```
INTEGER*4 M, INDX(4)
REAL*8 Y(20),X(4)
DATA       INDX / 1, 4, 5, 9 /
M = 4
CALL DGTHR (M,Y,X,INDX)
```
SGTHRZ/DGTHRZ/IGTHRZ/CGTHRZ/ZGTHRZ

Gather and zero sparse vector

Name

SGTHRZ/DGTHRZ/IGTHRZ/CGTHRZ/ZGTHRZ

Gather and zero sparse vector

Purpose

Given a real, integer, or complex dense vector \(y \) stored in full storage form and a set of indices of interesting elements of \(y \), these subprograms gather those elements into a sparse vector \(x \) stored in compact form via the set of indices and then reset those elements of \(y \) to zero.

More precisely, let \(\{k_1, k_2, \ldots, k_m\} \) be the indices of the interesting elements. If \(x \) is represented by arrays \(x \) and \(\text{indx} \) such that \(\text{indx}(i) = k_i \) and \(x(i) = x_{k_i} \), then these subprograms simultaneously perform the operations

\[
\begin{align*}
 x_i &= y_{k_i} \\
 y_{k_i} &= 0
\end{align*}
\]

If all nonzero elements of \(y \) are listed in \(\text{indx} \), then these subprograms simultaneously perform the vector operations

\[
\begin{align*}
 x &\leftarrow y \\
 y &\leftarrow 0
\end{align*}
\]

Usage

VECLIB:

- INTEGER*4 \(m, \text{indx}(m) \)
- REAL*4 \(y(n), x(m) \)
- CALL SGTHRZ(m, y, x, \text{indx})

- INTEGER*4 \(m, \text{indx}(m) \)
- REAL*8 \(y(n), x(m) \)
- CALL DGTHRZ(m, y, x, \text{indx})

- INTEGER*4 \(m, \text{indx}(m), y(n), x(m) \)
- CALL IGTHRZ(m, y, x, \text{indx})

- INTEGER*4 \(m, \text{indx}(m) \)
- COMPLEX*8 \(y(n), x(m) \)
- CALL CGTHRZ(m, y, x, \text{indx})

- INTEGER*4 \(m, \text{indx}(m) \)
- COMPLEX*16 \(y(n), x(m) \)
- CALL ZGTHRZ(m, y, x, \text{indx})

VECLIB8:
Gather and zero sparse vector \texttt{SGTHRZ/DGTHRZ/IGTHRZ/CGTHRZ/ZGTHRZ}

\begin{verbatim}
INTEGER*8 m, indx(m)
REAL*4 y(n), x(m)
CALL SGTHRZ(m, y, x, indx)

INTEGER*8 m, indx(m)
REAL*8 y(n), x(m)
CALL DGTHRZ(m, y, x, indx)

INTEGER*8 m, indx(m), y(n), x(m)
CALL IGTHRZ(m, y, x, indx)

INTEGER*8 m, indx(m)
COMPLEX*8 y(n), x(m)
CALL CGTHRZ(m, y, x, indx)

INTEGER*8 m, indx(m)
COMPLEX*16 y(n), x(m)
CALL ZGTHRZ(m, y, x, indx)
\end{verbatim}
Gather and zero sparse vector

Input

- **m**
 - Number of interesting elements of \(y \), \(m \leq n \), where \(n \) is the length of \(y \). If \(m \leq 0 \), the subprograms do not reference \(x \), \(\text{indx} \), or \(y \).

- **y**
 - Array containing the elements of \(y \), \(y(i) = y_i \). Only the elements of \(y \) whose indices are included in \(\text{indx} \) are accessed.

- **indx**
 - Array containing the indices \(\{ k_i \} \) of the interesting elements of \(y \). The indices must satisfy
 \[
 1 \leq \text{indx}(i) \leq n, \quad i = 1, 2, \ldots, m
 \]
 and
 \[
 \text{indx}(i) \neq \text{indx}(j), \quad 1 \leq i \neq j \leq m,
 \]
 where \(n \) is the length of \(y \).

Output

- **x**
 - If \(m \leq 0 \), then \(x \) is unchanged. Otherwise, the \(m \) interesting elements of \(y \): \(x(j) = y_i \) if \(\text{indx}(j) = i \).

- \(y(\text{indx}(i)) = 0 \), \(i = 1, 2, \ldots, m \).

Notes

The result is unspecified if any element of \(\text{indx} \) is out of range, if any two elements of \(\text{indx} \) have the same value, or if \(x, \text{indx} \), and \(y \) overlap such that any element of \(y \) or any index shares a memory location with any element of \(x \).

Fortran Equivalent

```fortran
SUBROUTINE SGTHRZ (M, Y, X, INDX)
REAL*4 X(*), Y(*)
INTEGER*4 INDX(*)
IF ( M .LE. 0 ) RETURN
DO 10 I = 1, M
   X(I) = Y(INDX(I))
   Y(INDX(I)) = 0.0
10 CONTINUE
RETURN
END
```

Example

Gather \(y \) into \(x \) and reset \(y \) to zero, where \(y \) is a vector with nonzero elements \(y_1, y_4, y_5, \) and \(y_9 \) stored in a one-dimensional array \(Y \) of dimension 20, and \(x \) is stored in compact form in a one-dimensional array \(X \).

```fortran
INTEGER*4 M, INDX(4)
REAL*8 Y(20), X(4)
DATA INDX / 1, 4, 5, 9 /
M = 4
CALL DGTHRZ (M, Y, X, INDX)
```
List selected vector elements

Name
SLSTxx/DLSTxx/ILSTxx/CLSTxx/ZLSTxx
List selected vector elements

Purpose
Given a real, integer, or complex vector \(x \) of length \(n \), these subprograms search sequentially through the vector and fill an array with a list of the indices \(i \) for which the elements \(x_i \) satisfy a specified relationship to a given scalar \(a \).

The last two characters of the subprogram name specify the relationship of interest between the elements of the vector and the scalar. For real and integer subprograms, these characters, represented by “xx” in the prototype Fortran statements, and the corresponding list contents can be:

<table>
<thead>
<tr>
<th>xx</th>
<th>List contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>(i : x_i = a)</td>
</tr>
<tr>
<td>GE</td>
<td>(i : x_i \geq a)</td>
</tr>
<tr>
<td>GT</td>
<td>(i : x_i > a)</td>
</tr>
<tr>
<td>LE</td>
<td>(i : x_i \leq a)</td>
</tr>
<tr>
<td>LT</td>
<td>(i : x_i < a)</td>
</tr>
<tr>
<td>NE</td>
<td>(i : x_i \neq a)</td>
</tr>
</tbody>
</table>

For complex subprograms, these characters and corresponding list contents are:

<table>
<thead>
<tr>
<th>xx</th>
<th>List contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>(i : x_i = a)</td>
</tr>
<tr>
<td>NE</td>
<td>(i : x_i \neq a)</td>
</tr>
</tbody>
</table>

The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage

VECLIB:

```fortran
INTEGER*4    n, incx, nindx, indx(n)
REAL*4        a, x(lenx)
CALL SLSTxx(n, x, incx, a, nindx, indx)
```

```fortran
INTEGER*4    n, incx, nindx, indx(n)
REAL*8        a, x(lenx)
CALL DLSTxx(n, x, incx, a, nindx, indx)
```

```fortran
INTEGER*4    n, incx, nindx, indx(n), a, x(lenx)
CALL ILSTxx(n, x, incx, a, nindx, indx)
```
SLSTxx/DLSTxx/ILSTxx/CLSTxx/ZLSTxx

List selected vector elements

INTEGER*4 n, incx, nindx, indx(n)
COMPLEX*8 a, x(lenx)
CALL CLSTxx(n, x, incx, a, nindx, indx)

INTEGER*4 n, incx, nindx, indx(n)
COMPLEX*16 a, x(lenx)
CALL ZLSTxx(n, x, incx, a, nindx, indx)

VECLIB8:

INTEGER*8 n, incx, nindx, indx(n)
REAL*4 a, x(lenx)
CALL SLSTxx(n, x, incx, a, nindx, indx)

INTEGER*8 n, incx, nindx, indx(n)
REAL*8 a, x(lenx)
CALL DLSTxx(n, x, incx, a, nindx, indx)

INTEGER*8 n, incx, nindx, indx(n), a, x(lenx)
CALL ILSTxx(n, x, incx, a, nindx, indx)

INTEGER*8 n, incx, nindx, indx(n)
COMPLEX*8 a, x(lenx)
CALL CLSTxx(n, x, incx, a, nindx, indx)

INTEGER*8 n, incx, nindx, indx(n)
COMPLEX*16 a, x(lenx)
CALL ZLSTxx(n, x, incx, a, nindx, indx)

Input

n Number of elements of vector x to be compared to a. If n ≤ 0, the subprograms do not reference x or indx.
x Array of length lenx = (n−1)×|incx|+1 containing the n-vector x.
ingx Increment for the array x. x is stored forward in array x with increment |incx|; that is, xᵢ is stored in x((i−1)×|incx|+1).

Use incx = 1 if the vector x is stored contiguously in array x; that is, if xᵢ is stored in x(i). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.
a The scalar a.
List selected vector elements

Output

nindx

If \(n \leq 0 \), then \(nindx = 0 \). Otherwise, \(nindx \) is the number of elements of \(x \) that satisfy the relationship with \(a \) specified by the subprogram name.

indx

Array filled with the list of indices \(i \) of the elements \(x_i \) of \(x \) that satisfy the relationship with \(a \) specified by the subprogram name. Only the first \(nindx \) elements of \(indx \) are changed. Recall that \(x_i \) is stored in \(x((i-1)\times|\text{incx}|+1) \).

Notes

These subprograms are sometimes useful for optimizing a loop containing an IF statement. Refer to “Example 2” on page 101.

Fortran Equivalent

```fortran
SUBROUTINE SLSTEQ (N,X,INCX,A,NI,INDX)
  REAL*4 X(*),A
  INTEGER*4 INDX(*)
  IX = 1
  NI = 0
  DO 10 I = 1, N
     IF ( X(IX) .EQ. A ) THEN
        NI = NI + 1
        INDX(NI) = I
     END IF
     IX = IX + INCXA
 10 CONTINUE
RETURN
END
```

Example 1

Build a list of the indices of the positive elements of a REAL*8 vector \(x \), where \(x \) is a vector 10 elements long stored in a one-dimensional array \(X \) of dimension 20.

```fortran
INTEGER*4 N,INCX,NINDX,INDX(20)
REAL*8 A,X(20)
N = 10
INCX = 1
A = 0.0D0
CALL DLSTGT (N,X,INCX,A,NINDX,INDX)
```

Example 2

Optimize the following program segment, where the THEN clause of the IF statement is much more likely than the ELSE clause.
List selected vector elements

INTEGER*4 I,N
REAL*8 A,B,D,DLIM,R
REAL*8 F(20000),X(20000),Y(20000),Z(20000)
A = ...
B = ...
DLIM = ...
R = ...
N = 20000
DO 10 I = 1, N
 D = SQRT(X(I)**2 + Y(I)**2 + Z(I)**2) - R
 IF (D .GT. DLIM) THEN
 F(I) = A * EXP(B * D)
 ELSE
 CALL FORCE (D,F(I))
 END IF
10 CONTINUE

Change D to an array and introduce array INDX to hold the indices corresponding to the ELSE clause. Split the body of the DO loop into two parts. The first part corresponds to the body of the loop before the IF statement and the THEN clause. It fully optimizes, so, even though it computes a few more exponentials than the original code, it is still considerably faster. DLSTLE is then called to determine the indices for which the ELSE clause must be executed, and the second DO loop executes the ELSE clause for those indices. The resulting program segment is:

INTEGER*4 I,J,N,NINDX,INDX(20000)
REAL*8 A,B,DLIM,R
REAL*8 D(20000),F(20000),X(20000),Y(20000),Z(20000)
A = ...
B = ...
DLIM = ...
R = ...
N = 20000
DO 10 I = 1, N
 D(I) = SQRT(X(I)**2 + Y(I)**2 + Z(I)**2) - R
 IF (D(I) .GT. DLIM) THEN
 F(I) = A * EXP(B * D(I))
 ELSE
 CALL FORCE (D(I),F(I))
 END IF
10 CONTINUE

CALL DLSTLE (N,D,1,DLIM,NINDX,INDX)
DO 20 J = 1, NINDX
 I = INDX(J)
 CALL FORCE (D(I),F(I))
20 CONTINUE
Maximum of vector

Name SMAX/DMAX/IMAX
Maximum of vector

Purpose Given a real or integer vector \(x \) of length \(n \), these subprograms compute the maximum of the elements of the vector

\[
s = \max(x_i : i = 1, 2, \ldots, n).
\]

The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage

VECLIB:

```plaintext
INTEGER*4  n, incx
REAL*4     s, SMAX, x(lenx)
  s = SMAX(n, x, incx)

INTEGER*4  n, incx
REAL*8     s, DMAX, x(lenx)
  s = DMAX(n, x, incx)

INTEGER*4  n, incx, s, IMAX, x(lenx)
  s = IMAX(n, x, incx)
```

VECLIB8:

```plaintext
INTEGER*8  n, incx
REAL*4     s, SMAX, x(lenx)
  s = SMAX(n, x, incx)

INTEGER*8  n, incx
REAL*8     s, DMAX, x(lenx)
  s = DMAX(n, x, incx)

INTEGER*8  n, incx, s, IMAX, x(lenx)
  s = IMAX(n, x, incx)
```

Input

\(n \) Number of elements of vector \(x \) to be used. If \(n \leq 0 \), the subprograms do not reference \(x \).

\(x \) Array of length \(\text{lenx} = (n-1) \times |\text{incx}| + 1 \) containing the \(n \)-vector \(x \).

\(\text{incx} \) Increment for the array \(x \). \(x \) is stored forward in array \(x \) with increment \(|\text{incx}| \); that is, \(x_i \) is stored in \(x((i-1) \times |\text{incx}| + 1) \).

Use \(\text{incx} = 1 \) if the vector \(x \) is stored contiguously in array \(x \); that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS
Indexing Conventions” in the introduction to this chapter.

Output

\(s \)

If \(n \leq 0 \), then \(s = -\infty \), the most negative representable machine number. Otherwise, \(s \) is the maximum of the elements of \(x \).

Fortran Equivalent

```fortran
REAL*4 FUNCTION SMAX (N,X,INCX)
REAL*4 X(*)
SMAX = - \infty
INCXA = ABS ( INCX )
IX = 1
DO 10 I = 1, N
   SMAX = MAX ( SMAX, X(IX) )
   IX = IX + INCXA
10 CONTINUE
RETURN
END
```

Example

Compute the maximum of the elements of REAL*8 vector \(x \), where \(x \) is a vector 10 elements long stored in a one-dimensional array \(X \) of dimension 20.

```fortran
INTEGER*4 N,INCX
REAL*8 S,DMAX,X(20)
N = 10
INCX = 1
S = DMAX (N,X,INCX)
```
Minimum of vector

Name
SMIN/DMIN/IMIN
Minimum of vector

Purpose
Given a real or integer vector \(x \) of length \(n \), these subprograms compute the minimum of the elements of the vector

\[
s = \min(x_i : i = 1, 2, ..., n).
\]

The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage
VECLIB:

```fortran
INTEGER*4 n, incx
REAL*4 s, SMIN, x(lenx)
  s = SMIN(n, x, incx)

INTEGER*4 n, incx
REAL*8 s, DMIN, x(lenx)
  s = DMIN(n, x, incx)

INTEGER*4 n, incx, s, IMIN, x(lenx)
  s = IMIN(n, x, incx)
```

VECLIB8:

```fortran
INTEGER*8 n, incx
REAL*4 s, SMIN, x(lenx)
  s = SMIN(n, x, incx)

INTEGER*8 n, incx
REAL*8 s, DMIN, x(lenx)
  s = DMIN(n, x, incx)

INTEGER*8 n, incx, s, IMIN, x(lenx)
  s = IMIN(n, x, incx)
```

Input
\(n \)
Number of elements of vector \(x \) to be used. If \(n \leq 0 \), the subprograms do not reference \(x \).

\(x \)
Array of length \(\text{lenx} = (n-1) \times |\text{incx}| + 1 \) containing the \(n \)-vector \(x \).

\(\text{incx} \)
Increment for the array \(x \). \(x \) is stored forward in array \(x \) with increment \(|\text{incx}|\); that is, \(x_i \) is stored in \(x((i-1) \times |\text{incx}| + 1) \).

Use \(\text{incx} = 1 \) if the vector \(x \) is stored contiguously in array \(x \); that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS
Indexing Conventions" in the introduction to this chapter.

Output

\[s \]

If \(n \leq 0 \), then \(s = \infty \), the largest representable machine number. Otherwise, \(s \) is the minimum of the elements of \(x \).

Fortran Equivalent

```fortran
REAL*4 FUNCTION SMIN (N,X,INCX)
REAL*4 X(*)
SMIN = ∞
INCXA = ABS ( INCX )
IX = 1
DO 10 I = 1, N
   SMIN = MIN ( SMIN , X(IX) )
   IX = IX + INCXA
10 CONTINUE
RETURN
END
```

Example

Compute the minimum of the elements of REAL*8 vector \(x \), where \(x \) is a vector 10 elements long stored in a one-dimensional array \(X \) of dimension 20.

```fortran
INTEGER*4 N,INCX
REAL*8  S,DMIN,X(20)
N = 10
INCX = 1
S = DMIN (N,X,INCX)
```
Euclidean norm

Name

SNRM2/DNRM2/SCNRM2/DZNRM2

Purpose

Given a real or complex vector \(x \) of length \(n \), these subprograms compute the Euclidean (that is, \(l_2 \)) norm of the vector

\[
 s = \|x\|_2 = \left(\sum_{i=1}^{n} |x_i|^2 \right)^{1/2}
\]

The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage

VECLIB:

```plaintext
INTEGER*4   n, incx
REAL*4      s, SNRM2, x(lenx)
  s = SNRM2(n, x, incx)

INTEGER*4   n, incx
REAL*8      s, DNRM2, x(lenx)
  s = DNRM2(n, x, incx)

INTEGER*4   n, incx
REAL*8      s, SCNRM2
  x(lenx)
  s = SCNRM2(n, x, incx)

INTEGER*4   n, incx
REAL*8      s, DZNRM2
  x(lenx)
  s = DZNRM2(n, x, incx)
```

VECLIB8:

```plaintext
INTEGER*8   n, incx
REAL*4      s, SNRM2, x(lenx)
  s = SNRM2(n, x, incx)

INTEGER*8   n, incx
REAL*8      s, DNRM2, x(lenx)
  s = DNRM2(n, x, incx)

INTEGER*8   n, incx
REAL*8      s, SCNRM2
  x(lenx)
  s = SCNRM2(n, x, incx)
```
SNRM2/DNRM2/SCNRM2/DZNRM2

Euclidean norm

INTEGER 8 \(n, \text{incx} \)
REAL 8 \(s, \text{DZNRM2} \)
COMPLEX 16 \(x(\text{lenx}) \)
\(s = \text{DZNRM2}(n, x, \text{incx}) \)

Input

n
Number of elements of vector \(x \) to be used in the Euclidean norm. If \(n \leq 0 \), the subprograms do not reference \(x \).

x
Array of length \(\text{lenx} = (n-1) \times |\text{incx}| + 1 \) containing the \(n \)-vector \(x \).

incx
Increment for the array \(x \). \(x \) is stored forward in array \(x \) with increment \(|\text{incx}| \); that is, \(x_i \) is stored in \(x((i-1) \times |\text{incx}| + 1) \).

Use \(\text{incx} = 1 \) if the vector \(x \) is stored contiguously in array \(x \); that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

Output

s
If \(n \leq 0 \), then \(s = 0 \). Otherwise, \(s \) is the Euclidean norm of \(x \).

Fortran Equivalent

```fortran
REAL*4 FUNCTION SNRM2 ( N, X, INCX )
INTEGER*4 INCX, INCXA, IX, N
REAL*4 ABSXI, SCALE, SSQ, X(*)
IF ( N .GT. 1 ) THEN
  INCXA = ABS ( INCX )
  SCALE = 0.0
  SSQ   = 1.0
  DO 10 IX = 1, 1 + (N-1)*INCXA, INCXA
    IF ( X(IX) .NE.0.0 ) THEN
      ABSXI = ABS ( X(IX) )
      IF ( SCALE .LT. ABSXI ) THEN
        SSQ   = 1.0 + SSQ * (SCALE/ABSXI) ** 2
        SCALE = ABSXI
      ELSE
        SSQ   = SSQ + (ABSXI/SCALE) ** 2
      END IF
    END IF
  10 CONTINUE
  SNRM2 = SCALE * SQRT ( SSQ )
ELSE IF ( N .EQ. 1 ) THEN
  SNRM2 = ABS ( X(1) )
ELSE
  SNRM2 = 0.0
END IF
RETURN
END
```
Euclidean norm

Example

Compute the Euclidean norm of the REAL*8 vector x, where x is a vector 10 elements long stored in a one-dimensional array X of dimension 20.

```
INTEGER*4 N, INCX
REAL*8 S, DNRM2, X(20)
N = 10
INCX = 1
S = DNRM2 (N, X, INCX)
```
Name
SNRSQ/DNRSQ/SCNRSQ/DZNRSQ
Euclidean norm squared

Purpose
Given a real or complex vector x of length n, these subprograms compute the square of the Euclidean (that is, l_2) norm of the vector

$$s = \|x\|^2 = \sum_{i=1}^{n} \|x_i\|$$

The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage
VECLIB:

```fortran
INTEGER*4     n, inx
REAL*4        s, SNRSQ, x(lenx)
            s = SNRSQ(n, x, inx)
```

```fortran
INTEGER*4     n, inx
REAL*8        s, DNRSQ, x(lenx)
            s = DNRSQ(n, x, inx)
```

```fortran
INTEGER*4     n, inx
REAL*4        s, SCNRSQ
COMPLEX*8     x(lenx)
            s = SCNRSQ(n, x, inx)
```

```fortran
INTEGER*4     n, inx
REAL*8        s, DZNRSQ
COMPLEX*16    x(lenx)
            s = DZNRSQ(n, x, inx)
```

VECLIB8:

```fortran
INTEGER*8     n, inx
REAL*4        s, SNRSQ, x(lenx)
            s = SNRSQ(n, x, inx)
```

```fortran
INTEGER*8     n, inx
REAL*8        s, DNRSQ, x(lenx)
            s = DNRSQ(n, x, inx)
```

```fortran
INTEGER*8     n, inx
REAL*8        s, SCNRSQ
COMPLEX*8     x(lenx)
            s = SCNRSQ(n, x, inx)
```
Euclidean norm squared

\[\text{SNRSQ/DNRSQ/SCNRSQ/DZNRSQ} \]

\textbf{INTEGER*8} \hspace{1em} n, incx
\textbf{REAL*8} \hspace{1em} s, DZNRSQ
\textbf{COMPLEX*16} \hspace{1em} x(lenx)

\[s = \text{DZNRSQ}(n, x, \text{incx}) \]

\textbf{Input} \hspace{1em} n \hspace{2em} Number of elements of vector \(x \) to be used in the calculation. If \(n \leq 0 \), the subprograms do not reference \(x \).

\(x \) \hspace{2em} Array of length \(\text{lenx} = (n-1) \times |\text{incx}| + 1 \) containing the \(n \)-vector \(x \).

\(\text{incx} \) \hspace{2em} Increment for the array \(x \). \(x \) is stored forward in array \(x \) with increment \(|\text{incx}| \); that is, \(x_i \) is stored in \(x((i-1) \times |\text{incx}| + 1) \).

Use \(\text{incx} = 1 \) if the vector \(x \) is stored contiguously in array \(x \); that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

\textbf{Output} \hspace{1em} s \hspace{2em} If \(n \leq 0 \), then \(s = 0 \). Otherwise, \(s \) is the square of the Euclidean norm of \(x \).

\textbf{Fortran Equivalent}

\begin{verbatim}
REAL*4 FUNCTION SNRSQ (N, X, INCX)
REAL*4 X(*)
SNRSQ = 0.0
IF (N .LE. 0) RETURN
IX = 1
INCXA = ABS (INCX)
DO 10 I = 1, N
 SNRSQ = SNRSQ + X(IX) ** 2
 IX = IX + INCXA
10 CONTINUE
RETURN
END
\end{verbatim}

\textbf{Example} \hspace{1em} Compute the square of the Euclidean norm of the REAL*8 vector \(x \), where \(x \) is a vector 10 elements long stored in a one-dimensional array \(X \) of dimension 20.

\begin{verbatim}
INTEGER*4 N, INCX
REAL*8 S, DNRSEQ, X(20)
N = 10
INCX = 1
S = DZNRSQ (N, X, INCX)
\end{verbatim}
SRAMP/DRAMP/IRAMP
Generate linear ramp

Purpose
Given real or integer scalars \(a\) and \(h\), these subprograms generate a linear ramp function
\[x_i = a + (i - 1)h, \quad i = 1, 2, \ldots, n. \]
x can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage
VECLIB:

```fortran
INTEGER*4 n, incx
REAL*4 a, h, x(lenx)
CALL SRAMP(n, a, h, x, incx)
```

```fortran
INTEGER*4 n, incx
REAL*8 a, h, x(lenx)
CALL DRAMP(n, a, h, x, incx)
```

```fortran
INTEGER*4 n, incx, a, h, x(lenx)
CALL IRAMP(n, a, h, x, incx)
```

VECLIB8:

```fortran
INTEGER*8 n, incx
REAL*4 a, h, x(lenx)
CALL SRAMP(n, a, h, x, incx)
```

```fortran
INTEGER*8 n, incx
REAL*8 a, h, x(lenx)
CALL DRAMP(n, a, h, x, incx)
```

```fortran
INTEGER*8 n, incx, a, h, x(lenx)
CALL IRAMP(n, a, h, x, incx)
```

Input
\(n\) Number of elements of \(x\) to be generated.
\(a\) The scalar \(a\).
\(h\) The scalar \(h\).
\(\text{incx}\) Increment for the array \(x\), \(\text{incx} \neq 0\). \(x\) is stored forward in array \(x\) with increment \(|\text{incx}|\); that is, \(x_i\) is stored in \(x((i-1)\times|\text{incx}|+1)\).

Use \(\text{incx} = 1\) if the vector \(x\) is stored contiguously in array \(x\); that is, if \(x_i\) is stored in \(x(i)\). Refer to “BLAS
Indexing Conventions” in the introduction to this chapter.

Output \(\mathbf{x} \)
Array of length \(\text{lenx} = (n-1) \times |\text{incx}| + 1 \) containing the \(n \)-vector \(\mathbf{x} \). If \(n \leq 0 \), then \(\mathbf{x} \) is not referenced. Otherwise, the specified linear ramp function replaces the input.

Notes
The result is unspecified if \(\text{incx} = 0 \).

Fortran Equivalent

```fortran
SUBROUTINE SRAMP (N, X1, DX, X, INCX)
REAL*4 X1, DX, X(*)
IF ( N .LE. 0 ) RETURN
IX = 1
INCXA = ABS ( INCX )
DO 10 I = 1, N
   X(IX) = X1 + (I-1) * DX
   IX = IX + INCXA
10 CONTINUE
RETURN
END
```

Example

Generate the linear ramp \(\mathbf{x} \) with initial value 0 and slope \(\pi/9 \), where \(\mathbf{x} \) is a vector 10 elements long stored in a one-dimensional array \(\mathbf{X} \) of dimension 20.

```fortran
INTEGER*4 N, INCX
REAL*8    A, H, PI, X(20)
PARAMETER ( PI = 3.14159265358979323846D0 )
N = 10
INCX = 1
A = 0.0D0
H = PI / (N-1)
CALL DRAMP (N, A, H, X, INCX)
```
Name SROT/DROT/CROT/CSROT/ZROT/ZDROT
Apply Givens rotation

Purpose Given a real scalar \(c \), a real or complex scalar, \(s \) and real or complex vectors \(x \) and \(y \) of length \(n \), these subprograms apply the Givens rotation

\[
\begin{bmatrix}
 x_i \\
 y_i
\end{bmatrix}
\leftarrow
\begin{bmatrix}
 c & s \\
 -\bar{s} & c
\end{bmatrix}
\begin{bmatrix}
 x_i \\
 y_i
\end{bmatrix}
\text{ for } i = 1, \ldots, n
\]

where \(\bar{s} \) is the complex conjugate of \(s \); \(\bar{s} = s \) if \(s \) is real. The vectors can be stored in one-dimensional arrays or in either rows or columns of two-dimensional arrays. The indexing through the arrays can be either forward or backward.

Usually, \(c \) and \(s \) have been determined by the companion subprogram SROTG, DROTG, CROTG, or ZROTG.

Usage VECLIB:

\[
\begin{align*}
\text{INTEGER}^*4 & \quad n, \text{inex, incy} \\
\text{REAL}^*4 & \quad x(\text{lenx}), y(\text{leny}), c, s \\
\text{CALL SROT}(n, x, \text{inex, y, incy, c, s}) \\
\text{INTEGER}^*4 & \quad n, \text{inex, incy} \\
\text{REAL}^*8 & \quad x(\text{lenx}), y(\text{leny}), c, s \\
\text{CALL DROT}(n, x, \text{inex, y, incy, c, s}) \\
\text{INTEGER}^*4 & \quad n, \text{inex, incy} \\
\text{REAL}^*4 & \quad c \\
\text{COMPLEX}^*8 & \quad x(\text{lenx}), y(\text{leny}), s \\
\text{CALL CROT}(n, x, \text{inex, y, incy, c, s}) \\
\text{INTEGER}^*4 & \quad n, \text{inex, incy} \\
\text{REAL}^*4 & \quad c, s \\
\text{COMPLEX}^*8 & \quad x(\text{lenx}), y(\text{leny}) \\
\text{CALL CSROT}(n, x, \text{inex, y, incy, c, s}) \\
\text{INTEGER}^*4 & \quad n, \text{inex, incy} \\
\text{REAL}^*8 & \quad c \\
\text{COMPLEX}^*16 & \quad x(\text{lenx}), y(\text{leny}), s \\
\text{CALL ZROT}(n, x, \text{inex, y, incy, c, s})
\end{align*}
\]
Apply Givens rotation

SROT/DROT/CROT/CSROT/ZROT/ZDROT

INTEGER*4 n, incx, incy
REAL*8 c, s
COMPLEX*16 x(lenx), y(leny)
CALL ZDROT(n, x, incx, y, incy, c, s)

VECLIB8:

INTEGER*8 n, incx, incy
REAL*4 x(lenx), y(leny), c, s
CALL SROT(n, x, incx, y, incy, c, s)
INTEGER*8 n, incx, incy
REAL*8 x(lenx), y(leny), c, s
CALL DROT(n, x, incx, y, incy, c, s)
INTEGER*8 n, incx, incy
REAL*4 c
COMPLEX*8 x(lenx), y(leny), s
CALL CROT(n, x, incx, y, incy, c, s)
INTEGER*8 n, incx, incy
REAL*4 c, s
COMPLEX*8 x(lenx), y(leny)
CALL CSROT(n, x, incx, y, incy, c, s)
INTEGER*8 n, incx, incy
REAL*4 c
COMPLEX*16 x(lenx), y(leny)
CALL ZROT(n, x, incx, y, incy, c, s)
INTEGER*8 n, incx, incy
REAL*8 c, s
COMPLEX*16 x(lenx), y(leny)
CALL ZDROT(n, x, incx, y, incy, c, s)

Input

n Number of elements of vectors x and y to be used in the Givens rotation. If n ≤ 0, the subprograms do not reference x or y.

x Array of length lenx = (n−1)×|incx| + 1 containing the n-vector x.

incx Increment for the array x, incx ≠ 0:

incx > 0 x is stored forward in array x; that is, xi is stored in x((i−1)×incx+1).
SROT/DROT/CROT/CSROT/ZROT/ZDROT Apply Givens rotation

\(\text{inex} < 0 \) \(x \) is stored backward in array \(x \); that is, \(x_i \) is stored in \(x((i-n)\times\text{inex}+1) \).

Use \(\text{inex} = 1 \) if the vector \(x \) is stored contiguously in array \(x \); that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

\(y \) Array of length \(\text{leny} = (n-1)\times| \text{incy} | + 1 \) containing the \(n \)-vector \(y \).

\(\text{incy} \) Increment for the array \(y \), \(\text{incy} \neq 0 \):

\(\text{incy} > 0 \) \(y \) is stored forward in array \(y \); that is, \(y_i \) is stored in \(y((i-1)\times\text{incy}+1) \).

\(\text{incy} < 0 \) \(y \) is stored backward in array \(y \); that is, \(y_i \) is stored in \(y((i-n)\times\text{incy}+1) \).

Use \(\text{incy} = 1 \) if the vector \(y \) is stored contiguously in array \(y \); that is, if \(y_i \) is stored in \(y(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

\(c \) The scalar \(c \).

\(s \) The scalar \(s \).

Output \(x \) and \(y \) If \(n \leq 0 \) or if \(c = 1 \) and \(s = 0 \), then \(x \) and \(y \) are unchanged. Otherwise, the result vectors overwrite the input.
Notes

The result is unspecified if incx = 0 or incy = 0 or if x and y overlap such that any element of x shares a memory location with any element of y.

There are no companion subprograms that construct real Givens rotations for CSROT and ZDROT.

VECLIB also contains subprograms that construct and apply modified Givens rotations. They are documented elsewhere in this chapter. The modified Givens subprograms are a little more difficult to use, but are more efficient.

Fortran Equivalent

SUBROUTINE SROT (N, X, INCX, Y, INCY, C, S)
REAL*4 C, S, TEMP, X(*), Y(*)
IF (N .LE. 0) RETURN
IF (C .EQ. 1.0 .AND. S .EQ. 0.0) RETURN
IX = 1
IY = 1
IF (INCX .LT. 0) IX = 1 - (N-1) * INCX
IF (INCY .LT. 0) IY = 1 - (N-1) * INCY
DO 10 I = 1, N
TEMP = C * X(IX) + S * Y(IY)
Y(IY) = C * Y(IY) - S * X(IX)
X(IX) = TEMP
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN
END

Example 1

Apply a Givens rotation to x and y, vectors 10 elements long stored in one-dimensional arrays X and Y of dimension 20.

INTEGER*4 N, INCX, INCY
REAL*8 X(20), Y(20), C, S
N = 10
INCX = 1
INCY = 1
CALL DROT (N, X, INCX, Y, INCY, C, S)

Example 2

Reduce 10-by-10 matrix a stored in two-dimensional array A of dimension 20-by-21 to upper-triangular form via Givens rotations (compare with “Example 2” on page 126 in the description of SROTM and DROTM).

INTEGER*4 INCA, I, J, N
REAL*8 A(20, 21), C, S
INCA = 20
DO 20 I = 1, 9
N = 10 - I
DO 10 J = I+1, 10
CALL DROTG (A(I, I), A(J, I), C, S)
CALL DROT (N, A(I+1), INCA, A(J+1), INCA, C, S)
10 CONTINUE
20 CONTINUE
SROTG/DROTG/CROTG/ZROTG
Construct Givens rotation

Name
SROTG/DROTG/CROTG/ZROTG
Construct Givens rotation

Purpose
Given real or complex scalars \(a \) and \(b \), these subprograms construct a Givens plane rotation matrix that annihilates \(b \). Specifically, they determine scalars \(c \) and \(s \) such that

\[
\begin{pmatrix}
c & s \\
-\bar{s} & c
\end{pmatrix}
\begin{bmatrix}
a \\
b
\end{bmatrix}
= \begin{bmatrix}
r \\
0
\end{bmatrix}
\]

where \(c \) is real, \(r \) and \(s \) are of the same type as \(a \) and \(b \), and \(\bar{s} \) is the complex conjugate of \(s \).

Usually, \(c \) and \(s \) are passed to companion subprogram SROT, DROT, CROT, or ZROT to apply the Givens rotation to a pair of vectors.

SROTG and DROTG also determine a quantity \(z \) that permits the later stable reconstruction of \(c \) and \(s \) from a single quantity.

Usage
VECLIB, VECLIB8:

\[
\begin{align*}
\text{REAL*4} & \quad a, b, c, s \\
\text{CALL SROTG}(a, b, c, s) \\
\text{REAL*8} & \quad a, b, c, s \\
\text{CALL DROTG}(a, b, c, s) \\
\text{REAL*4} & \quad c \\
\text{COMPLEX*8} & \quad a, b, s \\
\text{CALL CROTG}(a, b, c, s) \\
\text{REAL*8} & \quad c \\
\text{COMPLEX*16} & \quad a, b, s \\
\text{CALL ZROTG}(a, b, c, s)
\end{align*}
\]

Input
\(a \) \quad The scalar \(a \).
\(b \) \quad The scalar \(b \).
Construct Givens rotation

Output

- **a**: The rotated result \(r \) overwrites \(a \).
- **b**: Not used as output by CROTG and ZROTG. In SROTG and DROTG, the reconstruction quantity \(z \) overwrites \(b \). The reconstruction quantity \(z \) is useful if a matrix is being transformed by a sequence of Givens rotations that must be saved to be applied again. Because each \(z \) overwrites an element that has been reduced to zero, the transformations can be saved without using any additional storage. The quantities \(c \) and \(s \) can be reconstructed from \(z \) as follows:
 - if \(|z| = 0 \), set \(c = 0 \) and \(s = 1 \).
 - if \(|z| < 0 \), set \(c = \sqrt{1-z^2} \) and \(\sigma = \zeta \).
 - if \(|z| > 0 \), set \(c = 1/z \) and \(s = \sqrt{1-c^2} \).

- **c**: The rotation scalar \(c \).
- **s**: The rotation scalar \(s \).

Notes

VECLIB also contains subprograms that construct and apply modified Givens rotations. They are documented elsewhere in this chapter. The modified Givens subprograms are a little more difficult to use but are more efficient.

Example

Construct a Givens plane rotation that rotates vectors \(x \) and \(y \) in such a way as to annihilate \(y_1 \). \(x \) and \(y \) are vectors 10 elements long stored in one-dimensional arrays \(X \) and \(Y \) of dimension 20.

```plaintext
REAL*8 X(20), Y(20), C, S
CALL DROTG (X(1), Y(1), C, S)
```

\(X(1) \) is the rotated result and \(Y(1) \) is the reconstruction quantity, so these elements should not be rotated by a subsequent call to DROT.
Name

SROTI/DROTI
Apply sparse Givens rotation

Purpose
Given real scalars \(c \) and \(s \), a sparse vector \(x \) stored in compact form via a set of indices, and a dense vector \(y \) stored in full storage form, these subprograms apply the Givens rotation

\[
\begin{bmatrix}
 x_i \\
y_i
\end{bmatrix}
\leftarrow
\begin{bmatrix}
 c & s \\
 -s & c
\end{bmatrix}
\begin{bmatrix}
 x_i \\
y_i
\end{bmatrix}
\quad \text{for } i = 1, \ldots, n.
\]

More precisely, let \(x \) be a sparse \(n \)-vector with \(m \leq n \) interesting (usually nonzero) elements, and let \(\{k_1, k_2, \ldots, k_m\} \) be the indices of these elements. All uninteresting elements of \(x \) are assumed to be zero. Let \(y \) be an ordinary \(n \)-vector that has zero elements corresponding to the uninteresting elements of \(x \). If \(x \) is represented by arrays \(x \) and \(\text{indx} \) such that \(\text{indx}(i) = k_i \) and \(x(i) = x_{k_i} \), these subprograms compute

\[
\begin{bmatrix}
 x_i \\
y_{k_i}
\end{bmatrix}
\leftarrow
\begin{bmatrix}
 c & s \\
 -s & c
\end{bmatrix}
\begin{bmatrix}
 x_i \\
y_{k_i}
\end{bmatrix}
\quad \text{for } i = 1, \ldots, m.
\]

Usually, \(c \) and \(s \) have been determined by the companion subprogram SROTG or DROTG.

Usage

VECLIB:

\begin{verbatim}
INTEGER*4 m, indx(m)
REAL*4 x(m), y(n), c, s
CALL SROTI(m, x, indx, y, c, s)
INTEGER*4 m, indx(m)
REAL*8 x(m), y(n), c, s
CALL DROTI(m, x, indx, y, c, s)
\end{verbatim}

VECLIB8:

\begin{verbatim}
INTEGER*8 m, indx(m)
REAL*4 x(m), y(n), c, s
CALL SROTI(m, x, indx, y, c, s)
INTEGER*8 m, indx(m)
REAL*8 x(m), y(n), c, s
CALL DROTI(m, x, indx, y, c, s)
\end{verbatim}
Apply sparse Givens rotation

SROTIDROTI

<table>
<thead>
<tr>
<th>Input</th>
<th>m</th>
<th>Number of interesting elements of x, $m \leq n$, where n is the length of y. If $m \leq 0$, the subprograms do not reference x, indx, or y.</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Array containing the interesting elements of x. $x(j) = x_i$ if $\text{indx}(j) = i$.</td>
<td></td>
</tr>
</tbody>
</table>
Apply sparse Givens rotation

indx

Array containing the indices \(k_i \) of the interesting elements of \(x \). The indices must satisfy the following:

\[
1 \leq \text{indx}(i) \leq n, \ i = 1, 2, \ldots, m
\]

\[
\text{indx}(i) \neq \text{indx}(j),\ 1 \leq i \neq j \leq m
\]

where \(n \) is the length of \(y \).

\(y \)

Array containing the elements of \(y, y(i) = y_i \).

\(c \)

The scalar \(c \).

\(s \)

The scalar \(s \).

Output

\(x \) and \(y \)

If \(m \leq 0 \) or if \(c = 1 \) and \(s = 0 \), then \(x \) and \(y \) are unchanged. Otherwise, the result vectors overwrite the input. Only the elements of \(y \) whose indices are included in \(\text{indx} \) are changed.

Notes

The result is unspecified if any element of \(\text{indx} \) is out of range, if any two elements of \(\text{indx} \) have the same value, or if \(x, \text{indx}, \) and \(y \) overlap such that any index or any element of \(x \) or \(y \) share a memory location.

Fortran Equivalent

SUBROUTINE SROTI (M, X,INDX, Y, C,S)
REAL*4 C,S,TEMP,X(*),Y(*)
INTEGER*4 INDX(*)
IF (M .LE. 0) RETURN
IF (C .EQ. 1.0 .AND. S .EQ. 0.00) RETURN
DO 10 I = 1, M
 TEMP = C * X(I) + S * Y(INDX(I))
 Y(INDX(I)) = C * Y(INDX(I)) - S * X(I)
 X(I) = TEMP
10 CONTINUE
RETURN
END

Example

Apply a Givens rotation to \(x \) and \(y \), where \(x \) is a sparse vector with interesting elements \(x_1, x_4, x_5, \) and \(x_9 \) stored in one-dimensional array \(X \), and \(y \) is stored in a one-dimensional array \(Y \) of dimension 20.

INTEGER*4 M,INDX(4)
REAL*8 X(4),Y(20),C,S
DATA INDEX / 1, 4, 5, 9 /
M = 4
CALL DROTI (M,X,INDX,Y,C,S)
Apply modified Givens rotation

Name
SROTM/DROTM

Apply modified Givens rotation

Purpose
Given a modified Givens rotation matrix $H = \{h_{ij}\}$ as constructed by SROTMG or DROTMG, and real vectors x and y of length n, these subprograms apply the modified rotation

$$
\begin{bmatrix}
x_i \\
y_i
\end{bmatrix}
\leftarrow
\begin{bmatrix}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{bmatrix}
\begin{bmatrix}
x_i \\
y_i
\end{bmatrix}
\quad \text{for } i = 1, \ldots, n.
$$

Refer to the description of the companion subprograms SROTMG and DROTMG for more details about the modified Givens rotation.

The vectors can be stored in one-dimensional arrays or in either rows or columns of two-dimensional arrays, and the indexing through the arrays can be either forward or backward.

Usage
VECLIB:

\begin{verbatim}
INTEGER*4 n, incx, incy
REAL*4 x(lenx), y(leny), param(5)
CALL SROTM(n, x, incx, y, incy, param)
\end{verbatim}

\begin{verbatim}
INTEGER*4 n, incx, incy
REAL*8 x(lenx), y(leny), param(5)
CALL DROTM(n, x, incx, y, incy, param)
\end{verbatim}

VECLIB8:

\begin{verbatim}
INTEGER*8 n, incx, incy
REAL*4 x(lenx), y(leny), param(5)
CALL SROTM(n, x, incx, y, incy, param)
\end{verbatim}

\begin{verbatim}
INTEGER*8 n, incx, incy
REAL*8 x(lenx), y(leny), param(5)
CALL DROTM(n, x, incx, y, incy, param)
\end{verbatim}

Input
\begin{itemize}
\item \textbf{n} \quad \text{Number of elements of vectors } x \text{ and } y \text{ to be used. If } n \leq 0, \text{ the subprograms do not reference } x \text{ or } y.
\item \textbf{x} \quad \text{Array of length } \text{lenx} = (n-1)\times|\text{incx}| + 1 \text{ containing the } n\text{-vector } x.
\item \textbf{incx} \quad \text{Increment for the array } x, \text{ incx} \neq 0:
\end{itemize}

\begin{itemize}
\item \text{incx} > 0 \quad x \text{ is stored forward in array } x; \text{ that is, } x_i \text{ is stored in } x((i-1)\times\text{incx}+1).
\end{itemize}
SROTMDROTM

Apply modified Givens rotation

\[\text{incx} < 0 \quad \text{x is stored backward in array x; that is, } x_i \text{ is stored in } x((i-n)\times\text{incx}+1). \]

Use \(\text{incx} = 1 \) if the vector \(x \) is stored contiguously in array \(x \); that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

\(y \)
Array of length \(\text{leny} = (n-1)\times|\text{incy}|+1 \) containing the \(n \)-vector \(y \).
Apply modified Givens rotation

incy

Increment for the array \(y \), \(\text{incy} \neq 0 \):

- \(\text{incy} > 0 \) \(y \) is stored forward in array \(y \); that is, \(y_i \) is stored in \(y((i-1)\times\text{incy}+1) \).
- \(\text{incy} < 0 \) \(y \) is stored backward in array \(y \); that is, \(y_i \) is stored in \(y((i-n)\times\text{incy}+1) \).

Use \(\text{incy} = 1 \) if the vector \(y \) is stored contiguously in array \(y \); that is, if \(y_i \) is stored in \(y(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

param

Array containing the matrix elements of the modified Givens rotation matrix \(H \) and a flag indicating which form the rotation matrix takes, and therefore which of the elements of **param** are significant. **param** is usually set by the companion subprogram SROTMG or DROTMG; refer to the description of these companion subprograms for the specific contents of **param**.

Output

\(x \) and \(y \)

If \(n \leq 0 \) or if \(\text{param}(1) = -2 \), \(x \) and \(y \) are unchanged. Otherwise, the result vectors overwrite the input.

Notes

The result is unspecified if \(\text{inex} = 0 \) or \(\text{incy} = 0 \) or if \(x \) and \(y \) overlap such that any element of \(x \) shares a memory location with any element of \(y \).

VECLIB also contains subprograms that construct and apply regular Givens rotations. They are documented elsewhere in this chapter. The modified Givens subprograms are a little more difficult to use but are more efficient.

Example 1

Apply a modified Givens rotation to \(x \) and \(y \), vectors 10 elements long stored in one-dimensional arrays \(X \) and \(Y \) of dimension 20.

```fortran
INTEGER*4 N, INCX, INCY
REAL*8 X(20), Y(20), PARAM(5)
N = 10
INCY = 1
INCY = 1
CALL DROTM (N, X, INCX, Y, INCY, PARAM)
```
Example 2 Reduce 10-by-10 matrix \(a \) stored in two-dimensional array \(A \) of dimension 20-by-21 to upper-triangular form via modified Givens rotations (compare with “Example 2” on page 117 in the description of SROT and DROT).

```fortran
INTEGER*4 INCA, I, J, N
REAL*8    A(20,21), D(20), PARAM(5)
INCA = 20
DO 10 I = 1, 10
   D(I) = 1.0D0
10 CONTINUE
DO 30 I = 1, 9
   N = 10 - I
   DO 20 J = I+1, 10
      CALL DROTMG (D(I), D(J), A(I,I), A(J,I), PARAM)
      CALL DROTM (N, A(I,I+1), INCA, A(J,I+1), INCA, PARAM)
20 CONTINUE
30 CONTINUE
DO 40 I = 1, 10
   N = 11 - I
   CALL DSCAL (N, SQRT(D(I)), A(I,I), INCA)
40 CONTINUE
```
Construct modified Givens rotation

SROTMG/DROTMG

Construct modified Givens rotation

Purpose

The Givens rotation, G, that annihilates z_1, if $z_1 \neq 0$ is

$$GW = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} w_1 & \ldots & w_n \\ z_1 & \ldots & z_n \end{bmatrix}$$

where $c = w_1/r$, $s = z_1/r$, and $r = \pm \sqrt{w_1^2 + z_1^2}$. Computing G and applying it to a pair of n vectors requires $\sim 4n$ floating-point multiplications, $\sim 2n$ floating-point additions, and one square root.

The modified Givens rotation is a device for reducing this operation count. Suppose that W above is available in factored form

$$W = D^{1/2}X = \begin{bmatrix} d_1^{1/2} & 0 \\ 0 & d_2^{1/2} \end{bmatrix} \begin{bmatrix} x_1 & \ldots & x_n \\ y_1 & \ldots & y_n \end{bmatrix}$$

These subprograms construct \tilde{a}_1, \tilde{a}_2, and H such that GW is obtained in the same factored form in which W was given

$$GW = \begin{bmatrix} \tilde{a}_1^{1/2} & 0 \\ 0 & \tilde{a}_2^{1/2} \end{bmatrix} \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_1 & \ldots & x_n \\ y_1 & \ldots & y_n \end{bmatrix}$$

H is chosen to have the same numerical stability as the standard Givens rotation but better computational efficiency. Thus, H usually has two elements equal to ± 1. When this is true, computing H and applying it to a pair of n-vectors requires $\sim 2n$ floating-point multiplications, $\sim 2n$ floating-point additions, and no square roots. Companion VECLIB subprograms SROTM and DROTM are provided to apply the modified Givens notation to a pair of vectors.

In most applications, d_1 and d_2 are initially set to 1, manipulated by SROTMG or DROTMG as the modified Givens rotations are constructed, then applied to the vectors as the final step in the computation. For example, the reduction of an n-by-n matrix to upper-triangular form via modified Givens rotations requires $O(n)$ square roots compared to the $O(n^2)$ required by ordinary Givens rotations. Refer to “Example 2” in the description of SROTM and DROTM.
SROTMG/DROTMG

Construct modified Givens rotation

Usage

VECLIB, VECLIB8:

REAL*4 d1, d2, x1, y1, param(5)
CALL SROTMG(d1, d2, x1, y1, param)

REAL*8 d1, d2, x1, y1, param(5)
CALL DROTMG(d1, d2, x1, y1, param)

Input

d1
The scale factor for the “x” row.
d2
The scale factor for the “y” row.
x1
The first element of the “x” row.
y1
The first element of the “y” row. This is the element that is annihilated by the rotation.

Output

d1
The updated scale factor for the “x” row.
d2
The updated scale factor for the “y” row.
x1
The rotated first element of the “x” row.

param
Array containing the matrix elements of the modified Givens rotation matrix \(H \) and a flag indicating which form the rotation matrix \(H \) takes and, therefore, which elements of \(\text{param} \) are significant. \(\text{param} \) is usually an argument to the companion subprogram SROTM or DROTM.

\(\text{param}(1) \) specifies the form of the rotation matrix \(H \), as follows:

\[
\begin{align*}
\text{param}(1) = -2 & \quad H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\
\text{param}(1) = -1 & \quad H = \begin{bmatrix} \text{param}(2) & \text{param}(4) \\ \text{param}(3) & \text{param}(5) \end{bmatrix} \\
\text{param}(1) = 0 & \quad H = \begin{bmatrix} 1 & \text{param}(4) \\ \text{param}(3) & 1 \end{bmatrix}
\end{align*}
\]
Construct modified Givens rotation

For each of the four values of \(\text{param}(1) \), only the indicated values of \(\text{param}(2) \) through \(\text{param}(5) \) are defined. The 0, 1, and \(-1\) elements are not stored in \(\text{param} \).

Notes

VECLIB also contains subprograms that construct and apply ordinary Givens rotations. They are documented elsewhere in this chapter. The modified Givens subprograms are a little more difficult to use but are more efficient.

Example

Construct a modified Givens plane rotation that rotates vectors \(d_1x \) and \(d_2y \) in such a way as to annihilate \(d_2y_1 \). \(x \) and \(y \) are vectors 10 elements long stored in one-dimensional arrays \(X \) and \(Y \) of dimension 20.

```fortran
REAL*8 D1, D2, X(20), Y(20), PARAM(5)
CALL DROTMG (D1, D2, X(1), Y(1), PARAM)
```

\(X(1) \) is the rotated result, so it should not be rotated by a subsequent call to DROTM.
Name
SRSCL/DRSCL/CRSCL/CSRSCL/ZRSCL/ZDRSCL
Scale vector

Purpose
Given a real or complex scalar a and a real or complex vector x of length n, these subprograms perform the reciprocal vector scaling operation

$$x \leftarrow \frac{x}{a}$$

The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage
VECLIB:

```plaintext
INTEGER*4  n, inx
REAL*4     a, x(lenx)
CALL SRSCL(n, a, x, inx)

INTEGER*4  n, inx
REAL*8     a, x(lenx)
CALL DRSCL(n, a, x, inx)

INTEGER*4  n, inx
COMPLEX*8  a, x(lenx)
CALL CRSCL(n, a, x, inx)

INTEGER*4  n, inx
REAL*4     a
COMPLEX*8  x(lenx)
CALL CSRSCL(n, a, x, inx)

INTEGER*4  n, inx
COMPLEX*16 a, x(lenx)
CALL ZRSCL(n, a, x, inx)

INTEGER*4  n, inx
REAL*8     a
COMPLEX*16 x(lenx)
CALL ZDRSCL(n, a, x, inx)
```

VECLIB8:

```plaintext
INTEGER*8  n, inx
REAL*4     a, x(lenx)
CALL SRSCL(n, a, x, inx)
```
Scale vector

Input

- **n**: Number of elements of vector \(x \) to be used in the scaling operation. If \(n \leq 0 \), the subprograms do not reference \(x \).
- **a**: The scalar \(a \), \(a \neq 0 \).
- **x**: Array of length \(\text{lenx} = (n-1) \times |\text{incx}| + 1 \) containing the \(n \)-vector \(x \).
- **incx**: Increment for the array \(x \), \(\text{incx} \neq 0 \). \(x \) is stored forward in array \(x \) with increment \(|\text{incx}|\); that is, \(x_i \) is stored in \(x((i-1) \times |\text{incx}| + 1) \).

Use \(\text{incx} = 1 \) if the vector \(x \) is stored contiguously in array \(x \); that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

Output

- **x**: If \(n \leq 0 \), then \(x \) is unchanged. Otherwise, \(x \div a \) replaces the input.

Notes

The result is unspecified if \(\text{incx} = 0 \).

A divide-by-zero error occurs if \(a = 0 \) and \(n > 0 \).
SUBROUTINE SRSCL (N, A, X, INCX)
REAL*4 A, X(*)
IF (N .LE. 0) RETURN
IX = 1
INCXA = ABS (INCX)
DO 10 I = 1, N
 X(IX) = X(IX) / A
 IX = IX + INCXA
10 CONTINUE
RETURN
END

Example
Scale the REAL*8 vector x by dividing by 2, where x is a vector 10 elements long stored in a one-dimensional array X of dimension 20.

INTEGER*4 N, INCX
REAL*8 A, X(20)
N = 10
INCX = 1
A = 2.0D0
CALL DRSCL (N, A, X, INCX)
Scale vector

Name

SSCAL/DSCAL/CSCAL/CSSCAL/CSCALC/ZSCAL/ZDSCAL/ZSCALC

Scale vector

Purpose

Given a real or complex scalar \(a\) and a real or complex vector \(x\) of length \(n\), these subprograms perform the vector scaling operations

\[x \leftarrow ax \quad \text{and} \quad x \leftarrow ax^* \]

where \(x^*\) is the complex conjugate of \(x\). The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage

VECLIB:

```plaintext
INTEGER*4 n, incx
REAL*4 a, x(lenx)
CALL SSCAL(n, a, x, incx)

INTEGER*4 n, incx
REAL*8 a, x(lenx)
CALL DSCAL(n, a, x, incx)

INTEGER*4 n, incx
COMPLEX*8 a, x(lenx)
CALL CSCAL(n, a, x, incx)

INTEGER*4 n, incx
REAL*4 a
COMPLEX*8 x(lenx)
CALL CSSCAL(n, a, x, incx)

INTEGER*4 n, incx
COMPLEX*8 a, x(lenx)
CALL CSCALC(n, a, x, incx)

INTEGER*4 n, incx
COMPLEX*16 a, x(lenx)
CALL ZSCAL(n, a, x, incx)

INTEGER*4 n, incx
COMPLEX*16 a, x(lenx)
CALL ZDSCAL(n, a, x, incx)
```
INPUT n Number of elements of vector \(x \) to be used in the scaling operation. If \(n \leq 0 \), the subprograms do not reference \(x \).

\(a \) The scalar \(a \).

\(x \) Array of length \(\text{lenx} = (n-1) \times |\text{incx}| + 1 \) containing the \(n \)-vector \(x \). \(x \) is used in conjugated form by CSCALC.
Scale vector

SSCAL/DSCAL/CSCAL/CSSCAL/CSCAL/ZSCAL/ZDSCAL/ZSCALC

and ZSCALC and in unconjugated form by the other subprograms. Refer to “Purpose.”

inex
Increment for the array \(x \), \(\text{inex} \neq 0 \). \(x \) is stored forward in array \(x \) with increment \(|\text{inex}| \); that is, \(x_i \) is stored in \(x((i-1)\times|\text{inex}|+1) \).

Use \(\text{inex} = 1 \) if the vector \(x \) is stored contiguously in array \(x \); that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

Output
\(x \)
If \(n \leq 0 \), then \(x \) is unchanged. Otherwise, \(ax \) replaces the input.

Notes
The result is unspecified if \(\text{inex} = 0 \).

Fortran Equivalent

```fortran
SUBROUTINE SSCAL (N,A,X,INCX)
REAL*4 A,X(*)
IF ( N .LE. 0 ) RETURN
IX = 1
INCXA = ABS ( INCX )
DO 10 I = 1, N
  X(IX) = A * X(IX)
  IX = IX + INCXA
10 CONTINUE
RETURN
END
```

Example
Scale the REAL*8 vector \(x \) by 2, where \(x \) is a vector 10 elements long stored in a one-dimensional array \(x \) of dimension 20.

```fortran
INTEGER*4 N,INCX
REAL*8 A,X(20)
N = 10
INCX = 1
A = 2.0D0
CALL DSCAL (N,A,X,INCX)
```
SSCTR/DSCTR/ISCTR/CSCTR/ZSCTR

SSCTR/DSCTR/ISCTR/CSCTR/ZSCTR
Scatter sparse vector

Purpose
Given a real, integer, or complex sparse vector \(x \) stored in compact form via a set of indices, these subprograms scatter those elements into the corresponding elements of a dense vector \(y \) stored in full storage form.

More precisely, let \(x \) be a sparse \(n \)-vector with \(m \leq n \) interesting (usually nonzero) elements, and let \(\{k_1, k_2, \ldots, k_m\} \) be the indices of these elements. If \(x \) is represented by arrays \(x \) and \(\text{indx} \) such that \(\text{indx}(i) = k_i \) and \(x(i) = x_{k_i} \), then

\[
y_{k_i} = x_i, i = 1, 2, \ldots, m.
\]

Usage

VECLIB:

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER*4</td>
<td>(m, \text{indx}(m))</td>
</tr>
<tr>
<td>REAL*4</td>
<td>(x(m), y(n))</td>
</tr>
<tr>
<td>CALL SSCTR(m, x, indx, y)</td>
<td></td>
</tr>
<tr>
<td>INTEGER*4</td>
<td>(m, \text{indx}(m))</td>
</tr>
<tr>
<td>REAL*8</td>
<td>(x(m), y(n))</td>
</tr>
<tr>
<td>CALL DSCTR(m, x, indx, y)</td>
<td></td>
</tr>
<tr>
<td>INTEGER*4</td>
<td>(m, \text{indx}(m), x(m), y(n))</td>
</tr>
<tr>
<td>CALL ISCTR(m, x, indx, y)</td>
<td></td>
</tr>
<tr>
<td>INTEGER*4</td>
<td>(m, \text{indx}(m))</td>
</tr>
<tr>
<td>COMPLEX*8</td>
<td>(x(m), y(n))</td>
</tr>
<tr>
<td>CALL CSCTR(m, x, indx, y)</td>
<td></td>
</tr>
<tr>
<td>INTEGER*4</td>
<td>(m, \text{indx}(m))</td>
</tr>
<tr>
<td>COMPLEX*16</td>
<td>(x(m), y(n))</td>
</tr>
<tr>
<td>CALL ZSCTR(m, x, indx, y)</td>
<td></td>
</tr>
</tbody>
</table>

VECLIB8:

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER*8</td>
<td>(m, \text{indx}(m))</td>
</tr>
<tr>
<td>REAL*4</td>
<td>(x(m), y(n))</td>
</tr>
<tr>
<td>CALL SSCTR(m, x, indx, y)</td>
<td></td>
</tr>
<tr>
<td>INTEGER*8</td>
<td>(m, \text{indx}(m))</td>
</tr>
<tr>
<td>REAL*8</td>
<td>(x(m), y(n))</td>
</tr>
<tr>
<td>CALL DSCTR(m, x, indx, y)</td>
<td></td>
</tr>
<tr>
<td>INTEGER*8</td>
<td>(m, \text{indx}(m), x(m), y(n))</td>
</tr>
<tr>
<td>CALL ISCTR(m, x, indx, y)</td>
<td></td>
</tr>
</tbody>
</table>
Scatter sparse vector

\[
\begin{align*}
\text{INTEGER*8} & \quad m, \ indx(m) \\
\text{COMPLEX*8} & \quad x(m), y(n) \\
\text{CALL CSCTR}(m, x, indx, y) \\
\text{INTEGER*8} & \quad m, \ indx(m) \\
\text{COMPLEX*16} & \quad x(m), y(n) \\
\text{CALL ZSCTR}(m, x, indx, y)
\end{align*}
\]

Input

- \(m \)
 Number of interesting elements, \(m \leq n \), where \(n \) is the length of \(y \). If \(m \leq 0 \), the subprograms do not reference \(x, indx \), or \(y \).

- \(x \)
 Array of length \(m \) containing the interesting elements of \(x \). \(x(j) = x_i \) if \(indx(j) = i \).
SSCTR/DSCTR/ISCTR/CSCTR/ZSCTR

Scatter sparse vector

indx
Array containing the indices \(k_i \) of the interesting elements of \(x \). The indices must satisfy the following:

\[1 \leq \text{indx}(i) \leq n, \ i = 1, 2, \ldots, m \]

\(\text{indx}(i) \neq \text{indx}(j), 1 \leq i \neq j \leq m \)

where \(n \) is the length of \(y \).

Output
\(y \)
Array containing the elements of \(y \), \(y(i) = y_i \). If \(m \leq 0 \), then \(y \) is unchanged. Otherwise, only the elements of \(y \) whose indices are included in \(\text{indx} \) are changed.

Notes
The result is unspecified if any element of \(\text{indx} \) is out of range, if any two elements of \(\text{indx} \) have the same value, or if \(x, \text{indx}, \) and \(y \) overlap such that any element of \(x \) or any index shares a memory location with any element of \(y \).

Fortran Equivalent

```fortran
SUBROUTINE SSCTR (M, X, INDX, Y)
REAL*4 X(*), Y(*)
INTEGER*4 INDX(*)
IF (M .LE. 0) RETURN
DO 10 I = 1, M
    Y(INDX(I)) = X(I)
10 CONTINUE
RETURN
END
```

Example
Scatter \(x \) into \(y \), where \(x \) is a sparse vector with interesting elements \(x_1, x_4, x_5, \) and \(x_9 \) stored in one-dimensional array \(X \), and \(y \) is stored in a one-dimensional array \(Y \) of dimension 20.

```fortran
INTEGER*4 M, INDX(4)
REAL*8 X(4), Y(20)
DATA \( \text{INDX} / 1, 4, 5, 9 / \)
M = 4
CALL DSCTR (M, X, INDX, Y)
```
Vector sum

Name
SSUM/DSUM/ISUM/CSUM/ZSUM
Vector sum

Purpose
Given a real, integer, or complex vector x of length n, these subprograms compute the sum of the elements of the vector

$$s = \sum_{i=1}^{n} x_i.$$
The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage
VECLIB:

```fortran
INTEGER*4   n, incx
REAL*4      s, SSUM, x(lenx)
s = SSUM(n, x, incx)

INTEGER*4   n, incx
REAL*8      s, DSUM, x(lenx)
s = DSUM(n, x, incx)

INTEGER*4   n, incx, s, ISUM, x(lenx)
s = ISUM(n, x, incx)

INTEGER*4   n, incx
COMPLEX*8   s, CSUM, x(lenx)
s = CSUM(n, x, incx)

INTEGER*4   n, incx
COMPLEX*16  s, ZSUM, x(lenx)
s = ZSUM(n, x, incx)
```

VECLIB8:

```fortran
INTEGER*8   n, incx
REAL*4      s, SSUM, x(lenx)
s = SSUM(n, x, incx)

INTEGER*8   n, incx
REAL*8      s, DSUM, x(lenx)
s = DSUM(n, x, incx)

INTEGER*8   n, incx, s, ISUM, x(lenx)
s = ISUM(n, x, incx)
```
SSUM/DSUM/ISUM/CSUM/ZSUM

Vector sum

INTEGER*8 n, incx
COMPLEX*8 s, CSUM, x(lenx)

\[s = \text{CSUM}(n, x, \text{incx}) \]

INTEGER*8 n, incx
COMPLEX*16 s, ZSUM, x(lenx)

\[s = \text{ZSUM}(n, x, \text{incx}) \]

Input

- **n**: Number of elements of vector \(x \) to be used in the sum. If \(n \leq 0 \), the subprograms do not reference \(x \).
- **x**: Array of length \(\text{lenx} = (n-1) \times |\text{incx}| + 1 \) containing the \(n \)-vector \(x \).
- **incx**: Increment for the array \(x \). \(x \) is stored forward in array \(x \) with increment \(|\text{incx}| \); that is, \(x_i \) is stored in \(x((i-1) \times |\text{incx}| + 1) \).

 Use \(\text{incx} = 1 \) if the vector \(x \) is stored contiguously in array \(x \); that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

Output

- **s**: If \(n \leq 0 \), then \(s = 0 \). Otherwise, \(s \) is the sum of the elements of \(x \).

Fortran Equivalent

```fortran
REAL*4 FUNCTION SSUM (N, X(INCX))
REAL*4 X(*)
SSUM = 0.0
IF ( N .LE. 0 ) RETURN
IX = 1
INCXA = ABS ( INCX )
DO 10 I = 1, N
   SSUM = SSUM + X(IX)
   IX = IX + INCXA
10 CONTINUE
RETURN
END
```

Example

Compute the sum of the elements of a REAL*8 vector \(x \), where \(x \) is a vector 10 elements long stored in a one-dimensional array \(X \) of dimension 20.

```fortran
INTEGER*4 N, INCX
REAL*8 S, X(20)
N = 10
INCX = 1
S = DSUM (N, X, INCX)
```
Name

SSWAP/DSWAP/ISWAP/CSWAP/ZSWAP

Swap two vectors

Purpose

Given real, integer, or complex vectors x and y of length n, these subprograms perform the vector interchange operation

$$x \leftrightarrow y.$$

The vectors can be stored in one-dimensional arrays or in either rows or columns of two-dimensional arrays. The indexing through the arrays can be either forward or backward.

Usage

VECLIB:

```fortran
INTEGER*4  n, incx, incy
REAL*4     x(lenx), y(leny)
CALL SSWAP(n, x, incx, y, incy)

INTEGER*4  n, incx, incy
REAL*8     x(lenx), y(leny)
CALL DSWAP(n, x, incx, y, incy)

INTEGER*4  n, incx, incy
REAL*8     x(lenx), y(leny)
CALL ISWAP(n, x, incx, y, incy)

INTEGER*4  n, incx, incy
COMPLEX*8   x(lenx), y(leny)
CALL CSWAP(n, x, incx, y, incy)

INTEGER*4  n, incx, incy
COMPLEX*16  x(lenx), y(leny)
CALL ZSWAP(n, x, incx, y, incy)
```

VECLIB8:

```fortran
INTEGER*8  n, incx, incy
REAL*4     x(lenx), y(leny)
CALL SSWAP(n, x, incx, y, incy)

INTEGER*8  n, incx, incy
REAL*8     x(lenx), y(leny)
CALL DSWAP(n, x, incx, y, incy)

INTEGER*8  n, incx, incy
REAL*8     x(lenx), y(leny)
CALL ISWAP(n, x, incx, y, incy)

INTEGER*8  n, incx, incy
COMPLEX*8   x(lenx), y(leny)
CALL CSWAP(n, x, incx, y, incy)

INTEGER*8  n, incx, incy
COMPLEX*16  x(lenx), y(leny)
CALL ZSWAP(n, x, incx, y, incy)
```
The HP MLIB User's Guide contains the following code snippet:

```fortran
INTEGER*8 n, incx, incy
COMPLEX*8 x(lenx), y(leny)
CALL CSWAP(n, x, incx, y, incy)

INTEGER*8 n, incx, incy
COMPLEX*16 x(lenx), y(leny)
CALL ZSWAP(n, x, incx, y, incy)
```

Input

- **n**: Number of elements of vectors 𝑥 and 𝑦 to be used in the swap operation. If **n** ≤ 0, the subprograms do not reference 𝑥 or 𝑦.
- **x**: Array of length lenx = (n−1)×|incx| + 1 containing the 𝑛-vector 𝑥.
Swap two vectors

inx	Increment for the array \(x \), \(\text{inex} \neq 0 \):
\(\text{inex} > 0 \)	\(x \) is stored forward in array \(x \); that is, \(x_i \) is stored in \(x((i-1)\times\text{inex}+1) \).
\(\text{inex} < 0 \)	\(x \) is stored backward in array \(x \); that is, \(x_i \) is stored in \(x((i-n)\times\text{inex}+1) \).

Use \(\text{inex} = 1 \) if the vector \(x \) is stored contiguously in array \(x \); that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

| y | Array of length \(\text{leny} = (n-1)\times|\text{incy}|+1 \) containing the \(n \)-vector \(y \).
|-----------|---|
| \(\text{incy} \neq 0 \) | Increment for the array \(y \), \(\text{incy} \neq 0 \):
| \(\text{incy} > 0 \) | \(y \) is stored forward in array \(y \); that is, \(y_i \) is stored in \(y((i-1)\times\text{incy}+1) \).
| \(\text{incy} < 0 \) | \(y \) is stored backward in array \(y \); that is, \(y_i \) is stored in \(y((i-n)\times\text{incy}+1) \).

Use \(\text{incy} = 1 \) if the vector \(y \) is stored contiguously in array \(y \); that is, if \(y_i \) is stored in \(y(i) \). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

Output

\(x \) and \(y \)
If \(n \leq 0 \), then \(x \) and \(y \) are unchanged. Otherwise, \(x \) and \(y \) are interchanged in \(x \) and \(y \).

Notes

The result is unspecified if \(\text{inex} = 0 \) or \(\text{incy} = 0 \) or if \(x \) and \(y \) overlap such that any element of \(x \) shares a memory location with any element of \(y \).

Fortran Equivalent

```fortran
SUBROUTINE SSWAP (N, X,INCX, Y,INCY)
REAL*4 TEMP,X(*),Y(*)
IF ( N .LE. 0 ) RETURN
IX = 1
IY = 1
IF ( INCX .LT. 0 ) IX = 1 - (N-1) * INCX
IF ( INCY .LT. 0 ) IY = 1 - (N-1) * INCY
DO 10 I = 1, N
   TEMP = X(IX)
   X(IX) = Y(IY)
   Y(IY) = TEMP
   IX = IX + INCX
   IY = IY + INCY
10 CONTINUE
RETURN
END
```
SSWAP/DSWAP/ISWAP/CSWAP/ZSWAP

Swap two vectors

Example 1 Interchange REAL*8 vectors x and y, where x and y are vectors 10 elements long stored in one-dimensional arrays X and Y of dimension 20.

```
INTEGER*4 N, INCX, INCY
REAL*8    X(20), Y(20)
N = 10
INCX = 1
INCY = 1
CALL DSWAP (N, X, INCX, Y, INCY)
```

Example 2 Interchange rows 3 and 6 of a 10-by-10 matrix a stored in two-dimensional array A of dimension 20-by-21.

```
INTEGER*4 N, INCA
REAL*8    A(20, 21)
N = 10
INCA = 20
CALL DSWAP (N, A(3, 1), INCA, A(6, 1), INCA)
```
Name

- **SWDOT/DWDOT/CWDOTC/CWDOTU/ZWDOTC/ZWDOTU**

 Weighted dot product

Purpose

Given a real weight vector \(w \) and real or complex data vectors \(x \) and \(y \), all of length \(n \), these subprograms compute the weighted dot products

\[
 s = \sum_{i=1}^{n} w_i x_i y_i \quad \text{and} \quad s = \sum_{i=1}^{n} w_i \bar{x}_i y_i
\]

where \(\bar{x} \) is the complex conjugate of \(x \). The vectors can be stored in one-dimensional arrays or in either rows or columns of two-dimensional arrays, and the indexing through the arrays can be either forward or backward.

Usage

VECLIB:

| INTEGER*4 | n, incw, incx, incy |
| REAL*4 | s, SWDOT, w(lenw), x(lenx), y(leny) |
| s = SWDOT(n, w, incw, x, incx, y, incy) |

| INTEGER*4 | n, incw, incx, incy |
| REAL*8 | s, DWDOT, w(lenw), x(lenx), y(leny) |
| s = DWDOT(n, w, incw, x, incx, y, incy) |

INTEGER*4	n, incw, incx, incy
REAL*4	w(lenw)
COMPLEX*8	s, CWDOTC, x(lenx), y(leny)
s = CWDOTC(n, w, incw, x, incx, y, incy)	

INTEGER*4	n, incw, incx, incy
REAL*4	w(lenw)
COMPLEX*8	s, CWDOTU, x(lenx), y(leny)
s = CWDOTU(n, w, incw, x, incx, y, incy)	

INTEGER*4	n, incw, incx, incy
REAL*8	w(lenw)
COMPLEX*16	s, ZWDOTC, x(lenx), y(leny)
s = ZWDOTC(n, w, incw, x, incx, y, incy)	

INTEGER*4	n, incw, incx, incy
REAL*8	w(lenw)
COMPLEX*16	s, ZWDOTU, x(lenx), y(leny)
s = ZWDOTU(n, w, incw, x, incx, y, incy)	

VECLIB8:

\[
\]
SWDOT/DWDOT/CWDOTC/CWDOTU/ZWDOTC/ZWDOTU

Weighted dot product

INTEGER*8 n, incw, incx, incy
REAL*4 s, SWDOT, w(lenw), x(lenx), y(leny)
 s = SWDOT(n, w, incw, x, incx, y, incy)

INTEGER*8 n, incw, incx, incy
REAL*8 s, DWDOT, w(lenw), x(lenx), y(leny)
 s = DWDOT(n, w, incw, x, incx, y, incy)

INTEGER*8 n, incw, incx, incy
REAL*4 w(lenw)
COMPLEX*8 s, CWDOTC, x(lenx), y(leny)
 s = CWDOTC(n, w, incw, x, incx, y, incy)

INTEGER*8 n, incw, incx, incy
REAL*4 w(lenw)
COMPLEX*8 s, CWDOTU, x(lenx), y(leny)
 s = CWDOTU(n, w, incw, x, incx, y, incy)

INTEGER*8 n, incw, incx, incy
REAL*8 w(lenw)
COMPLEX*16 s, ZWDOTC, x(lenx), y(leny)
 s = ZWDOTC(n, w, incw, x, incx, y, incy)

INTEGER*8 n, incw, incx, incy
REAL*8 w(lenw)
COMPLEX*16 s, ZWDOTU, x(lenx), y(leny)
 s = ZWDOTU(n, w, incw, x, incx, y, incy)
Weighted dot product

SWDOT/DWDOT/CWDOTC/CWDOTU/ZWDOTC/ZWDOTU

Input

- **n**
 Number of elements of vectors w, x, and y to be used in the dot product. If $n \leq 0$, the subprograms do not reference w, x, or y.

- **w**
 Array of length $\text{lenw} = (n-1) \times |\text{incw}| + 1$ containing the n-vector w.

- **incw**
 Increment for the array w:
 - $\text{incw} \geq 0$:
 w is stored forward in array w; that is, w_i is stored in $w((i-1) \times \text{incw} + 1)$.
 - $\text{incw} < 0$:
 w is stored backward in array w; that is, w_i is stored in $w((i-n) \times \text{incw} + 1)$.
 Use $\text{incw} = 1$ if the vector w is stored contiguously in array w; that is, if w_i is stored in $w(i)$. Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

- **x**
 Array of length $\text{lenx} = (n-1) \times |\text{incx}| + 1$ containing the n-vector x. x is used in conjugated form by CWDOTC and ZWDOTC and in unconjugated form by the other subprograms.

- **incx**
 Increment for the array x:
 - $\text{incx} \geq 0$:
 x is stored forward in array x; that is, x_i is stored in $x((i-1) \times \text{incx} + 1)$.
 - $\text{incx} < 0$:
 x is stored backward in array x; that is, x_i is stored in $x((i-n) \times \text{incx} + 1)$.
 Use $\text{incx} = 1$ if the vector x is stored contiguously in array x; that is, if x_i is stored in $x(i)$. Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

- **y**
 Array of length $\text{leny} = (n-1) \times |\text{incy}| + 1$ containing the n-vector y.
Weighted dot product

incy
Increment for the array y:

\[
\text{incy} \geq 0 \quad \text{y is stored forward in array y; that is, } y_i \text{ is stored in } y((i-1) \times \text{incy}+1).
\]

\[
\text{incy} < 0 \quad \text{y is stored backward in array y; that is, } y_i \text{ is stored in } y((i-n) \times \text{incy}+1).
\]

Use $\text{incy} = 1$ if the vector y is stored continuously in array y; that is, if y_i is stored in $y(i)$. Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

Output s
The resulting value of the weighted dot product. If $n \leq 0$, then $s = 0$. Otherwise,

\[
s = \sum_{i=1}^{n} w_i x_i y_i
\]

unless the subprogram name is CWDOTC or ZWDOTC, in which case

\[
s = \sum_{i=1}^{n} w_i x_i y_i
\]

Notes
If $\text{incw} = 0$, then $w_i = w(1)$ for all i. If $\text{incx} = 0$, then $x_i = x(1)$ for all i. If $\text{incy} = 0$, then $y_i = y(1)$ for all i. In any of these cases, another VECLIB dot product subprogram would be more efficient.

Fortran Equivalent

```fortran
REAL*4 FUNCTION SWDOT (N, W,*INCW, X,*INCX, Y,*INCY)  
REAL*4 W(*),X(*),Y(*)  
SWDOT = 0.0  
IF ( N .LE. 0 ) RETURN  
IW = 1  
IX = 1  
IY = 1  
IF ( INCW .LT. 0 ) IW = 1 - (N-1) * INCW  
IF ( INCX .LT. 0 ) IX = 1 - (N-1) * INCX  
IF ( INCY .LT. 0 ) IY = 1 - (N-1) * INCY  
DO 10 I = 1, N  
SWDOT = SWDOT + W(IW) * X(IX) * Y(IY)  
IW = IW + INCW  
IX = IX + INCX  
IY = IY + INCY  
10 CONTINUE  
RETURN  
END
```
Example 1 Compute the REAL*8 weighted dot product

\[s = \sum_{i=1}^{10} w_i x_i y_i, \]

where \(w, x, \) and \(y \) are vectors 10 elements long stored in one-dimensional arrays \(W, X, \) and \(Y, \) of dimension 20.

```fortran
INTEGER*4 N, INCW, INCX, INCY
REAL*8    S, DWDOT, W(20), X(20), Y(20)
N = 10
INCW = 1
INCY = 1
S = DWDOT (N, W, INCW, X, INCX, Y, INCY)
```

Example 2 Compute the REAL*8 weighted dot product

\[s = \sum_{i=1}^{10} w_i x_i y_i, \]

where \(w \) and \(y \) are vectors 10 elements long stored in one-dimensional arrays \(W \) and \(Y, \) of dimension 20, and \(x \) is the 4th row of a 10-by-10 matrix stored in a two-dimensional array \(X \) of dimension 20-by-21.

```fortran
INTEGER*4 N
REAL*8    S, DWDOT, W(20), X(20, 21), Y(20)
N = 10
S = DWDOT (N, W, 1, X(I, 1), 20, Y(1))
```
Name

SZERO/DZERO/IZERO/CZERO/ZZERO
Clear vector

Purpose
These subprograms set all of the elements of a real, integer, or complex n-vector x to zero. The vector can be stored in a one-dimensional array or in either a row or a column of a two-dimensional array.

Usage
VECLIB:

```fortran
INTEGER*4    n, incx
REAL*4       x(lenx)
CALL SZERO(n, x, incx)
INTEGER*4    n, incx
REAL*8       x(lenx)
CALL DZERO(n, x, incx)
INTEGER*4    n, incx
REAL*8       x(lenx)
CALL IZERO(n, x, incx)
INTEGER*4    n, incx
COMPLEX*8    x(lenx)
CALL CZERO(n, x, incx)
INTEGER*4    n, incx
COMPLEX*16   x(lenx)
CALL ZZERO(n, x, incx)
```

VECLIB8:

```fortran
INTEGER*8    n, incx
REAL*4       x(lenx)
CALL SZERO(n, x, incx)
INTEGER*8    n, incx
REAL*8       x(lenx)
CALL DZERO(n, x, incx)
INTEGER*8    n, incx
REAL*8       x(lenx)
CALL IZERO(n, x, incx)
INTEGER*8    n, incx
COMPLEX*8    x(lenx)
CALL CZERO(n, x, incx)
INTEGER*8    n, incx
COMPLEX*16   x(lenx)
CALL ZZERO(n, x, incx)
```
Clear vector

INTEGER*8 n, incx
COMPLEX*16 x(lenx)
CALL ZZERO(n, x, incx)

Input
n
Number of elements of vector x to be set to zero. If n ≤ 0, the subprograms do not reference x.

incx
Increment for the array x, incx ≠ 0. x is stored forward in array x with increment |incx|; that is, x_i is stored in x((i−1)×|incx| +1).
Use incx = 1 if the vector x is stored contiguously in array x; that is, if x_i is stored in x(i). Refer to “BLAS Indexing Conventions” in the introduction to this chapter.

Output
x
Array of length lenx = (n−1)×|incx| +1 containing the n-vector x that has been set to zero. If n ≤ 0, then x is unchanged. Otherwise, x ← 0.

Fortran Equivalent
SUBROUTINE SZERO (N, X,INCX)
REAL*4 X(*)
IF (N .LE. 0) RETURN
IX = 1
INCX = ABS (INCX)
DO 10 I = 1, N
 X(IX) = 0.0
 IX = IX + INCX
10 CONTINUE
RETURN
END

Example
Zero the REAL*8 vector, where x is a vector 10 elements long stored in a one-dimensional array X of dimension 20 (compare with “Example 2” in the description of SCOPY).

INTEGER*4 N,INCX
REAL*8 X(20)
N = 10
INCX = 1
CALL DZERO (N,X,INCX)
BLAS Standard routines
Maximum absolute value and location

Name

F_SAMAX_VAL/F_DAMAX_VAL/F_CAMAX_VAL/F_ZAMAX_VAL

Maximum absolute value and location

Purpose

F_xAMAX_VAL returns the largest component of the vector x with respect to the absolute value, and also returns the offset or index of the largest component of the vector x. When the value of the n argument is less than or equal to zero, the routine should initialize the output scalars k to the largest invalid index (zero) and r to zero. The resulting scalar r is always real.

$$k, x_k \text{ such that } k = \arg_{0 \leq i < n} \max(\|\Re(x_i)\| + |\Im(x_i)|)$$

Usage

VECLIB:

```fortran
INTEGER*4       INCX, K, N
REAL*4          R, X(*)
SUBROUTINE F_SAMAX_VAL (N, X, INCX, K, R)

INTEGER*4       INCX, K, N
REAL*8          R, X(*)
SUBROUTINE F_DAMAX_VAL (N, X, INCX, K, R)

INTEGER*4       INCX, K, N
REAL*4          R
COMPLEX*8       X(*)
SUBROUTINE F_CAMAX_VAL (N, X, INCX, K, R)

INTEGER*4       INCX, K, N
REAL*8          R
COMPLEX*16      X(*)
SUBROUTINE F_ZAMAX_VAL (N, X, INCX, K, R)
```

VECLIB8:

```fortran
INTEGER*8       INCX, K, N
REAL*4          R, X(*)
SUBROUTINE F_SAMAX_VAL (N, X, INCX, K, R)

INTEGER*8       INCX, K, N
REAL*8          R, X(*)
SUBROUTINE F_DAMAX_VAL (N, X, INCX, K, R)

INTEGER*8       INCX, K, N
REAL*4          R
COMPLEX*8       X(*)
SUBROUTINE F_CAMAX_VAL (N, X, INCX, K, R)

INTEGER*8       INCX, K, N
REAL*4          R
COMPLEX*8       X(*)
SUBROUTINE F_ZAMAX_VAL (N, X, INCX, K, R)
```
INTEGR*8 INCX, K, N
REAL*8 R
COMPLEX*16 X(*)

SUBROUTINE F_ZAMAX_VAL (N, X, INCX, K, R)

Input
N
Number of elements of vector x.

X
REAL or COMPLEX array, minimum length
(N - 1) x |incx| + 1.

INCX
Increment for the array x. A vector x having component
x_i, i = 1, ..., n, is stored in an array X() with increment
argument incx. If incx > 0 then x_i is stored in
X (1 + (i - 1) x incx). If incx < 0 then x_i is stored in
X (1 + (N - i) x |incx|). incx = 0 is an illegal value.

Output
K
Displacement returned by the routine. The smallest
offset or index such that

x_k = \max(|Re(x_i)| + |Im(x_i)|) \quad (where \ 0 \leq i < n)

R
REAL scalar. The largest component of the vector x.
Minimum absolute value and location

Name
F_SAMIN_VAL/F_DAMIN_VAL/F_CAMIN_VAL/F_ZAMIN_VAL
Minimum absolute value and location

Purpose
F_xAMIN_VAL returns the smallest component of the vector \(x \) with respect to the absolute value and also returns the offset or index of the smallest component of the vector \(x \). When the value of the \(n \) argument is less than or equal to zero, the routine should initialize the output scalars \(k \) to the largest invalid index (zero), and \(r \) to zero. The resulting scalar \(r \) is always real.

\[
k, x_k \text{ such that } k = \arg_{0 \leq i < n} \min(|Re(x_i)| + |Im(x_i)|)
\]

Usage
VECLIB:

```
INTEGER*4   INCX, K, N
REAL*4       R
REAL*4       X( * )
SUBROUTINE F_SAMIN_VAL (N, X, INCX, K, R)

INTEGER*8   INCX, K, N
REAL*8       R
REAL*8       X( * )
SUBROUTINE F_DAMIN_VAL (N, X, INCX, K, R)

INTEGER*4   INCX, K, N
REAL*4       R
COMPLEX*8    X( * )
SUBROUTINE F_CAMIN_VAL (N, X, INCX, K)

INTEGER*4   INCX, K, N
REAL*8       R
COMPLEX*16   X( * )
SUBROUTINE F_ZAMIN_VAL (N, X, INCX, K)
```

VECLIB8:

```
INTEGER*8   INCX, K, N
REAL*4       R
REAL*4       X( * )
SUBROUTINE F_SAMIN_VAL (N, X, INCX, K, R)

INTEGER*8   INCX, K, N
REAL*8       R
SUBROUTINE F_DAMIN_VAL (N, X, INCX, K, R)

INTEGER*8   INCX, K, N
REAL*8       R
SUBROUTINE F_ZAMIN_VAL (N, X, INCX, K, R)
```
F_SAMIN_VAL/F_DAMIN_VAL/F_CAMIN_VAL/F_ZAMIN_VAL

Minimum absolute value and location

 INTEGER*8 INCX, K, N
 REAL*4 R
 COMPLEX*8 X(*)
 SUBROUTINE F_CAMIN_VAL (N, X, INCX, K)

 INTEGER*8 INCX, K, N
 REAL*8 R
 COMPLEX*16 X(*)
 SUBROUTINE F_ZAMIN_VAL (N, X, INCX, K)

Input

N
Number of elements of vector x.

X
REAL or COMPLEX array, minimum length
(N - 1) x |incx| + 1.

INCX
Increment for the array x. A vector x having component
x_i, i = 1,..., n, is stored in an array X() with increment
argument incx. If incx > 0 then x_i is stored in
X (1 + (i - 1) x incx). If incx < 0 then x_i is stored in
X (1 + (N - i) x |incx|). incx = 0 is an illegal value.
Minimum absolute value and location

Output K
Displacement returned by the routine. The smallest offset or index such that
\[x_k = \min(|Re(x_i)| + |Im(x_i)|) \quad (\text{where } 0 \leq i < n) \]

Output R
REAL scalar. The smallest component of the vector x.
Name
F_SAPPLY_GROT/F_DAPPLY_GROT/F_CAPPLY_GROT/F_ZAPPLY_GROT
Apply plane rotation

Purpose
F_xAPPLY_GROT applies a plane rotation to the vectors x and y. When the vectors x and y are real vectors, the scalars c and s are real scalars. When the vectors x and y are complex vectors, c is a real scalar and s is a complex scalar.

$$\forall i \in [0...n-1], \begin{bmatrix} x_i \\ y_i \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix}$$

If n is less than or equal to zero or if c is one and s is zero, F_xAPPLY_GROT returns immediately.

Usage
VECLIB:

```fortran
INTEGER*4 INCX, INCY, N
REAL*4 C, S, X( * ), Y( * )
SUBROUTINE F_SAPPLY_GROT (N, C, S, X, INCX, Y, INCY)

INTEGER*4 INCX, INCY, N
REAL*8 C, S, X( * ), Y( * )
SUBROUTINE F_DAPPLY_GROT (N, C, S, X, INCX, Y, INCY)

INTEGER*4 INCX, INCY, N
REAL*4 C
COMPLEX*8 S, X( * ), Y( * )
SUBROUTINE F_CAPPLY_GROT (N, C, S, X, INCX, Y, INCY)

INTEGER*4 INCX, INCY, N
REAL*8 C
COMPLEX*16 S, X( * ), Y( * )
SUBROUTINE F_ZAPPLY_GROT (N, C, S, X, INCX, Y, INCY)
```

VECLIB8:

```fortran
INTEGER*8 INCX, INCY, N
REAL*4 C, S, X( * ), Y( * )
SUBROUTINE F_SAPPLY_GROT (N, C, S, X, INCX, Y, INCY)

INTEGER*8 INCX, INCY, N
REAL*8 C, S, X( * ), Y( * )
SUBROUTINE F_DAPPLY_GROT (N, C, S, X, INCX, Y, INCY)
```

VECLIB:

```fortran
INTEGER*8 INCX, INCY, N
REAL*4 C, S, X( * ), Y( * )
SUBROUTINE F_SAPPLY_GROT (N, C, S, X, INCX, Y, INCY)

INTEGER*8 INCX, INCY, N
REAL*8 C, S, X( * ), Y( * )
SUBROUTINE F_DAPPLY_GROT (N, C, S, X, INCX, Y, INCY)
```

158 HP MLIB User's Guide
Apply plane rotation F_{SAPPLY_GROT}/F_{DAPPLY_GROT}/F_{CAPPLY_GROT}/F_{ZAPPLY_GROT}

```fortran
INTEGER*8 INCX, INCY, N
REAL*4 C
COMPLEX*8 S, X( * ), Y( * )
SUBROUTINE F_CAPPLY_GROT (N, C, S, X, INCX, Y, INCY)
INTEGER*8 INCX, INCY, N
REAL*8 C
COMPLEX*16 S, X( * ), Y( * )
SUBROUTINE F_ZAPPLY_GROT (N, C, S, X, INCX, Y, INCY)
```
Apply plane rotation

Input

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of elements of vector x.</td>
</tr>
<tr>
<td>C</td>
<td>REAL scalar.</td>
</tr>
<tr>
<td>S</td>
<td>REAL or COMPLEX scalar.</td>
</tr>
<tr>
<td>X</td>
<td>REAL or COMPLEX array, minimum length ((N - 1) \times</td>
</tr>
<tr>
<td>INCX</td>
<td>Increment for the array x. A vector x having component (x_i, i = 1,..., n,) is stored in an array X() with increment argument \text{incx}. If \text{incx} > 0 then (x_i) is stored in (X(1 + (i - 1) \times \text{incx})). If \text{incx} < 0 then (x_i) is stored in (X(1 + (N - i) \times</td>
</tr>
<tr>
<td>Y</td>
<td>REAL or COMPLEX array, minimum length ((N - 1) \times</td>
</tr>
<tr>
<td>INCY</td>
<td>Increment for the array y. A vector y having component (y_i, i = 1,..., n,) is stored in an array Y() with increment argument \text{incy}. If \text{incy} > 0 then (y_i) is stored in (Y(1 + (i - 1) \times \text{incy})). If \text{incy} < 0 then (y_i) is stored in (Y(1 + (N - i) \times</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>The updated array replaces the input—The plane rotation of input X.</td>
</tr>
<tr>
<td>Y</td>
<td>The updated array replaces the input—The plane rotation of input Y.</td>
</tr>
</tbody>
</table>
Scaled vector accumulation

Name

F_SAXPBY/F_DAXPBY/F_CAXPBY/F_ZAXPBY
Scaled vector accumulation

Purpose

F_xAXPBY scales the vector \(x \) by \(\alpha \) and the vector \(y \) by \(\beta \), adds these two vectors, and stores the result in the vector \(y \). If \(n \) is less than or equal to zero, or if \(\alpha \) is equal to zero and \(\beta \) is equal to one, the routine returns immediately.

\[y \leftarrow \alpha x + \beta y \]

Usage

VECLIB:

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER*4</td>
<td>INCX, INCY, N</td>
<td></td>
</tr>
<tr>
<td>REAL*4</td>
<td>ALPHA, BETA, X(), Y()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBROUTINE F_SAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY)</td>
<td></td>
</tr>
<tr>
<td>INTEGER*4</td>
<td>INCX, INCY, N</td>
<td></td>
</tr>
<tr>
<td>REAL*8</td>
<td>ALPHA, BETA, X(), Y()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBROUTINE F_DAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY)</td>
<td></td>
</tr>
<tr>
<td>INTEGER*4</td>
<td>INCX, INCY, N</td>
<td></td>
</tr>
<tr>
<td>COMPLEX*8</td>
<td>ALPHA, BETA, X(), Y()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBROUTINE F_CAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY)</td>
<td></td>
</tr>
<tr>
<td>INTEGER*4</td>
<td>INCX, INCY, N</td>
<td></td>
</tr>
<tr>
<td>COMPLEX*16</td>
<td>ALPHA, BETA, X(), Y()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBROUTINE F_ZAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY)</td>
<td></td>
</tr>
</tbody>
</table>

VECLIB8:

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER*8</td>
<td>INCX, INCY, N</td>
<td></td>
</tr>
<tr>
<td>REAL*4</td>
<td>ALPHA, BETA, X(), Y()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBROUTINE F_SAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY)</td>
<td></td>
</tr>
<tr>
<td>INTEGER*8</td>
<td>INCX, INCY, N</td>
<td></td>
</tr>
<tr>
<td>REAL*8</td>
<td>ALPHA, BETA, X(), Y()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBROUTINE F_DAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY)</td>
<td></td>
</tr>
<tr>
<td>INTEGER*8</td>
<td>INCX, INCY, N</td>
<td></td>
</tr>
<tr>
<td>COMPLEX*8</td>
<td>ALPHA, BETA, X(), Y()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBROUTINE F_CAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY)</td>
<td></td>
</tr>
<tr>
<td>INTEGER*8</td>
<td>INCX, INCY, N</td>
<td></td>
</tr>
<tr>
<td>COMPLEX*16</td>
<td>ALPHA, BETA, X(), Y()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUBROUTINE F_ZAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY)</td>
<td></td>
</tr>
</tbody>
</table>

Input

N
Number of elements of vector \(x \).
ALPHA
The scalar ALPHA.

X
REAL or COMPLEX array, minimum length
\((N - 1) \times |\text{incx}| + 1.\)

INCX
Increment for the array \(x\). A vector \(x\) having component \(x_i, i = 1,..., n,\) is stored in an array \(X()\) with increment argument \(\text{incx}\). If \(\text{incx} > 0\) then \(x_i\) is stored in \(X(1 + (i - 1) \times \text{incx})\). If \(\text{incx} < 0\) then \(x_i\) is stored in \(X(1 + (N - i) \times |\text{incx}|)\). \(\text{incx} = 0\) is an illegal value.

BETA
The scalar BETA.

Y
REAL or COMPLEX array, minimum length
\((N - 1) \times |\text{incy}| + 1.\)
Scaled vector accumulation $F_{SAXPBY}/F_{DAXPBY}/F_{CAXPBY}/F_{ZAXPBY}$

| INCY | Increment for the array y. A vector y, $i = 1, ..., n$, is stored in an array $Y()$ with increment argument $incy$. If $incy > 0$ then y_i is stored in $Y(1 + (i - 1) \times incy)$. If $incy < 0$ then y_i is stored in $Y(1 + (N - i) \times |incy|)$. $incy = 0$ is an illegal value. |
| Output | Y | The updated array replaces the input. $y \leftarrow \alpha x + \beta y$ |
Name
F_SAXPY_DOT/F_DAXPY_DOT/F_CAXPY_DOT/F_ZAXPY_DOT
Combine AXPY and DOT routines

Purpose
F_xAXPY_DOT combines an AXPY and a DOT product. This routine first decrements \(w \) by a multiple of \(v \), and then computes a dot product using \(w \).

If \(n \) is less than or equal to zero, the routine returns immediately.

\[
\omega \leftarrow w - \omega v \\
\rho \leftarrow w^T u
\]

Combining two BLAS-1 calls reduces overhead and transfer of data in modified Gram-Schmidt orthogonalization.

Usage
VECLIB:

```fortran
INTEGER*4 INCW, INCV, INCU, N
REAL*4 ALPHA, R, W(*), V(*), U(*)
SUBROUTINE F_SAXPY_DOT ( N, ALPHA, W, INCW, V, INCV, U, INCU )
INTEGER*4 INCW, INCV, INCU, N
REAL*8 ALPHA, R, W(*), V(*), U(*)
SUBROUTINE F_DAXPY_DOT ( N, ALPHA, W, INCW, V, INCV, U, INCU )
INTEGER*4 INCW, INCV, INCU, N
COMPLEX*8 ALPHA, R, W(*), V(*), U(*)
SUBROUTINE F_CAXPY_DOT ( N, ALPHA, W, INCW, V, INCV, U, INCU )
INTEGER*4 INCW, INCV, INCU, N
COMPLEX*16 ALPHA, R, W(*), V(*), U(*)
SUBROUTINE F_ZAXPY_DOT ( N, ALPHA, W, INCW, V, INCV, U, INCU )
```

VECLIB8:

```fortran
INTEGER*8 INCW, INCV, INCU, N
REAL*4 ALPHA, R, W(*), V(*), U(*)
SUBROUTINE F_SAXPY_DOT ( N, ALPHA, W, INCW, V, INCV, U, INCU )
INTEGER*8 INCW, INCV, INCU, N
REAL*8 ALPHA, R, W(*), V(*), U(*)
SUBROUTINE F_DAXPY_DOT ( N, ALPHA, W, INCW, V, INCV, U, INCU )
INTEGER*8 INCW, INCV, INCU, N
COMPLEX*8 ALPHA, R, W(*), V(*), U(*)
SUBROUTINE F_CAXPY_DOT ( N, ALPHA, W, INCW, V, INCV, U, INCU )
INTEGER*8 INCW, INCV, INCU, N
COMPLEX*16 ALPHA, R, W(*), V(*), U(*)
SUBROUTINE F_ZAXPY_DOT ( N, ALPHA, W, INCW, V, INCV, U, INCU )
```
Combine AXPY and DOT routines

F_SAXPY_DOT/F_DAXPY_DOT/F_CAXPY_DOT/F_ZAXPY_DOT

| INTEGER*8 INCW, INCV, INCU, N |
| COMPLEX*16 ALPHA, R, W(*), V(*), U(*) |
| SUBROUTINE F_ZAXPY_DOT (N, ALPHA, W, INCW, V, INCV, U, INCU) |

Input

- **N**: Number of elements of vector.
- **ALPHA**: The scalar ALPHA.
- **W**: REAL or COMPLEX array, minimum length \((N - 1) \times |\text{incw}| + 1\).
- **INCW**: Increment for the array \(w\). A vector \(w\) having component \(w_i, i = 1, \ldots, n\), is stored in an array \(W()\) with increment argument \(\text{incw}\). If \(\text{incw} > 0\) then \(w_i\) is stored in \(W(1 + (i - 1) \times \text{incw})\). If \(\text{incw} < 0\) then \(w_i\) is stored in \(W(1 + (N - i) \times |\text{incw}|)\).

 - \(\text{incw} = 0\) is an illegal value.
F_SAXPY_DOT/F_DAXPY_DOT/F_CAXPY_DOT/F_ZAXPY_DOT

Combine AXPY and DOT routines

V
REAL or COMPLEX array, minimum length
\((N - 1) \times |\text{invc}| + 1.\)

INCV
Increment for the array \(v\). A vector \(v\) having component \(v_i, i = 1,\ldots, n\), is stored in an array \(V()\) with increment argument \(\text{invc}\). If \(\text{invc} > 0\) then \(v_i\) is stored in \(V(1 + (i - 1) \times \text{invc})\). If \(\text{invc} < 0\) then \(v_i\) is stored in \(V(1 + (N - i) \times |\text{invc}|)\). \(\text{invc} = 0\) is an illegal value.

U
REAL or COMPLEX array, minimum length
\((N - 1) \times |\text{incu}| + 1.\)

INCU
Increment for the array \(u\). A Vector \(u\) having component \(u_i, i = 1,\ldots, n\), is stored in an array \(U()\) with increment argument \(\text{incu}\). If \(\text{incu} > 0\) then \(u_i\) is stored in \(U(1 + (i - 1) \times \text{incu})\). If \(\text{incu} < 0\) then \(u_i\) is stored in \(U(1 + (N - i) \times |\text{incu}|)\). \(\text{incu} = 0\) is an illegal value.

Output
R
REAL or COMPLEX result of the operation.
Name
F_SCOPY/F_DCOPY/F_CCOPY/F_ZCOPY
Copy vector

Purpose
F_xCOPY copies the vector x into the vector y, that is,
$$y \leftarrow x$$
If n is less than or equal to zero, the routine returns immediately.

Usage
VECLIB:

```fortran
INTEGER INCX, INCY, N
REAL*4 X( * ), Y( * )
SUBROUTINE F_SCOPY (N, X, INCX, Y, INCY)
INTEGER INCX, INCY, N
REAL*8 X( * ), Y( * )
SUBROUTINE F_DCOPY (N, X, INCX, Y, INCY)
INTEGER INCX, INCY, N
COMPLEX*8 X( * ), Y( * )
SUBROUTINE F_CCOPY (N, X, INCX, Y, INCY)
INTEGER INCX, INCY, N
COMPLEX*16 X( * ), Y( * )
SUBROUTINE F_ZCOPY (N, X, INCX, Y, INCY)
```

VECLIB8:

```fortran
INTEGER*8 INCX, INCY, N
REAL*4 X( * ), Y( * )
SUBROUTINE F_SCOPY (N, X, INCX, Y, INCY)
INTEGER*8 INCX, INCY, N
REAL*8 X( * ), Y( * )
SUBROUTINE F_DCOPY (N, X, INCX, Y, INCY)
INTEGER*8 INCX, INCY, N
COMPLEX*8 X( * ), Y( * )
SUBROUTINE F_CCOPY (N, X, INCX, Y, INCY)
INTEGER*8 INCX, INCY, N
COMPLEX*16 X( * ), Y( * )
SUBROUTINE F_ZCOPY (N, X, INCX, Y, INCY)
```

Input
N
Number of elements of vector x.

Chapter 2 Basic Vector Operations 167
F_SCOPY/F_DCOPY/F_CCOPY/F_ZCOPY

Copy vector

X
REAL or COMPLEX array, minimum length
\((N - 1) \times |\text{inex}| + 1\).

INCX
Increment for the array \(x\). A vector \(x\) having component
\(x_i, i = 1, ..., n\), is stored in an array \(X()\) with increment
argument \(\text{inex}\). If \(\text{inex} > 0\) then \(x_i\) is stored in
\(X(1 + (i - 1) \times \text{inex})\). If \(\text{inex} < 0\) then \(x_i\) is stored in
\(X(1 + (N - i) \times |\text{inex}|)\). \(\text{inex} = 0\) is an illegal value.

INCY
Increment for the array \(y\). A vector \(y\) having component
\(y_i, i = 1, ..., n\), is stored in an array \(Y()\) with increment
argument \(\text{incy}\). If \(\text{incy} > 0\) then \(y_i\) is stored in
\(Y(1 + (i - 1) \times \text{incy})\). If \(\text{incy} < 0\) then \(y_i\) is stored in
\(Y(1 + (N - i) \times |\text{incy}|)\). \(\text{incy} = 0\) is an illegal value.

Output
Y
The result of the copy of vector \(x\) to vector \(y\). REAL or
COMPLEX array, minimum length \((N - 1) \times |\text{incy}| + 1\).
Name

F_SDOT/F_DDOT/F_CDOT/F_ZDOT
Add scaled dot product

Purpose

F_xDOT adds the scaled dot product of two vectors \(x \) and \(y \) into a scaled scalar \(r \). The routine returns immediately if \(n \) is less than zero, or, if \(\beta \) is equal to one and either \(\alpha \) or \(n \) is equal to zero. If \(\alpha \) is equal to zero then \(x \) and \(y \) are not read. Similarly, if \(\beta \) is equal to zero, \(r \) is not referenced.

When \(x \) and \(y \) are complex vectors, the vector components \(x_i \) are used unconjugated or conjugated as specified by the operator argument \(\text{conj} \). If \(x \) and \(y \) are real vectors, the operator argument \(\text{conj} \) has no effect.

\[
\begin{align*}
 r & \leftarrow \beta r + \alpha x^T y = \beta r + \alpha \sum_{i=0}^{n-1} x_i y_i \\
 r & \leftarrow \beta r + \alpha x^H y = \beta r + \alpha \sum_{i=0}^{n-1} \bar{x}_i y_i
\end{align*}
\]

Usage

VECLIB:

```fortran
INTEGER*4 CONJ, INCX, INCY, N
REAL*4 ALPHA, BETA, R, X(*), Y(*)
SUBROUTINE F_SDOT (CONJ, N, ALPHA, X, INCX, BETA, Y, INCY, R)

INTEGER*4 CONJ, INCX, INCY, N
REAL*8 ALPHA, BETA, R, X(*), Y(*)
SUBROUTINE F_DDOT (CONJ, N, ALPHA, X, INCX, BETA, Y, INCY, R)

INTEGER*4 CONJ, INCX, INCY, N
COMPLEX*8 ALPHA, BETA, R, X(*), Y(*)
SUBROUTINE F_CDOT (CONJ, N, ALPHA, X, INCX, BETA, Y, INCY, R)

INTEGER*4 CONJ, INCX, INCY, N
COMPLEX*16 ALPHA, BETA, R, X(*), Y(*)
SUBROUTINE F_ZDOT (CONJ, N, ALPHA, X, INCX, BETA, Y, INCY, R)
```

VECLIB8:

```fortran
INTEGER*8 CONJ, INCX, INCY, N
REAL*4 ALPHA, BETA, R, X(*), Y(*)
SUBROUTINE F_SDOT (CONJ, N, ALPHA, X, INCX, BETA, Y, INCY, R)
```
F_SDOT/F_DDOT/F_CDOT/F_ZDOT

Add scaled dot product

INTEGER*8 CONJ, INCX, INCY, N
REAL*8 ALPHA, BETA, R, X(*), Y(*)
SUBROUTINE F_DDOT (CONJ, N, ALPHA, X, INCX, BETA, Y, INCY, R)

INTEGER*8 CONJ, INCX, INCY, N
COMPLEX*8 ALPHA, BETA, R, X(*), Y(*)
SUBROUTINE F_CDOT (CONJ, N, ALPHA, X, INCX, BETA, Y, INCY, R)

INTEGER*8 CONJ, INCX, INCY, N
COMPLEX*16 ALPHA, BETA, R, X(*), Y(*)
SUBROUTINE F_ZDOT (CONJ, N, ALPHA, X, INCX, BETA, Y, INCY, R)
Add scaled dot product

Input

CONJ
Specifies conjugation for vector components in complex routines. Vector components are used conjugated or unconjugated. Use either `BLAS_CONJ` or `BLAS_NO_CONJ`. When x and y are real vectors the `conj` operator argument has no effect.

N
Number of elements of vector x.

ALPHA
The scalar ALPHA.

X
REAL or COMPLEX array, minimum length
\((N - 1) \times |\text{incx}| + 1\).

INCX
Increment for the array x. A vector x having component \(x_i, i = 1, \ldots, n\), is stored in an array X() with increment argument `incx`. If `incx > 0` then \(x_i\) is stored in
\(X(1 + (i - 1) \times \text{incx})\). If `incx < 0` then \(x_i\) is stored in
\(X(1 + (N - i) \times |\text{incx}|)\). `incx = 0` is an illegal value.

BETA
The scalar BETA.

Y
REAL or COMPLEX array, minimum length
\((N - 1) \times |\text{incy}| + 1\).

INCY
Increment for the array y. A vector y having component \(y_i, i = 1, \ldots, n\), is stored in an array Y() with increment argument `incy`. If `incy > 0` then \(y_i\) is stored in
\(Y(1 + (i - 1) \times \text{incy})\). If `incy < 0` then \(y_i\) is stored in
\(Y(1 + (N - i) \times |\text{incy}|)\). `incy = 0` is an illegal value.

Output

R
REAL or COMPLEX scalar. The scaled dot product of the two input vectors x and y.
Name F_SFPINFO/F_DFPINFO
Environmental inquiry

Purpose F_xFPINFO queries for machine-specific floating point characteristics. For BLAS Standard routines, error bounds and limitations due to overflow and underflow depend on details of how floating point numbers are represented. These details are available by calling F_xFPINFO.

Usage VECLIB:
 INTEGER*4 CMACH
 REAL*4 FUNCTION F_SFPINFO (CMACH)

 INTEGER*4 CMACH
 REAL*4 FUNCTION F_DFPINFO (CMACH)

VECLIB8:
 INTEGER*8 CMACH
 REAL*4 FUNCTION F_SFPINFO (CMACH)

 INTEGER*8 CMACH
 REAL*4 FUNCTION F_DFPINFO (CMACH)

Input CMACH
A named integer constant. The names for the CMACH argument are given in the appropriate language's include file.
Table 2-1 describes the CMACH floating point parameters, the corresponding BLAS Standard named constant (from the Fortran 77 include file), and the values returned by F_xFPINFO.
Table 2-1 describes floating point parameters and values returned by FPINFO.

<table>
<thead>
<tr>
<th>Floating point parameter</th>
<th>Fortran77 named constant</th>
<th>Description</th>
<th>Value in IEEE single</th>
<th>Value in IEEE double</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE</td>
<td>BLAS_BASE</td>
<td>Base of machine</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>BLAS_T</td>
<td>Number of digits</td>
<td>24</td>
<td>53</td>
</tr>
<tr>
<td>RND</td>
<td>BLAS_RND</td>
<td>Equals 1 when proper rounding occurs in addition. Otherwise, equals 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IEEE</td>
<td>BLAS_IEEE</td>
<td>Equals 1 when rounding in addition is IEEE style. Otherwise, equals 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EMIN</td>
<td>BLAS_EMIN</td>
<td>Minimum exponent before (gradual) underflow</td>
<td>-126</td>
<td>-1022</td>
</tr>
<tr>
<td>EMAX</td>
<td>BLAS_EMAX</td>
<td>Minimum exponent before overflow</td>
<td>127</td>
<td>1023</td>
</tr>
<tr>
<td>EPS</td>
<td>BLAS_EPS</td>
<td>Machine epsilon (\varepsilon = 0.5 \text{BASE}^{1-T}) if RND = 1; (\varepsilon = \text{BASE}^{1-T}) if RND = 0</td>
<td>(2^{-24} \approx 5e-8)</td>
<td>(2^{-53} \approx 1e-16)</td>
</tr>
<tr>
<td>PREC</td>
<td>BLAS_PREC</td>
<td>(\varepsilon \text{BASE})</td>
<td>(2^{-23})</td>
<td>(2^{-52})</td>
</tr>
<tr>
<td>UN</td>
<td>BLAS_UNDERFLOW</td>
<td>Underflow threshold (= \text{BASE}^{\text{EMIN}})</td>
<td>(2^{-126} \approx 1e-38)</td>
<td>(2^{-1022} \approx 1e-308)</td>
</tr>
<tr>
<td>OV</td>
<td>BLAS_OVERFLOW</td>
<td>Overflow threshold (= \text{BASE}^{\text{EMAX}+1} \times (1 - \varepsilon))</td>
<td>(2^{128} \approx 1e38)</td>
<td>(2^{1024} \approx 1e308)</td>
</tr>
<tr>
<td>SFMIN</td>
<td>BLAS_SFMIN</td>
<td>Safe minimum, such that (\frac{1}{\text{SFMIN}}) does not overflow. If (\frac{1}{\text{OV}} < \text{UN}), SFMIN = UN. Otherwise, SFMIN = ((1+\varepsilon) / \text{OV})</td>
<td>(2^{-126} \approx 1e-38)</td>
<td>(2^{-1022} \approx 1e-308)</td>
</tr>
</tbody>
</table>
Name: F_SGEN_GROT/F_DGEN_GROT/F_CGEN_GROT/F_ZGEN_GROT
Generate Givens rotation

Purpose: F_xGEN_GROT constructs a Givens plane rotation so that
\[
\begin{bmatrix}
c & s \\
-s & c
\end{bmatrix}
\begin{bmatrix}
a \\
b
\end{bmatrix}
= \begin{bmatrix}
r \\
0
\end{bmatrix}
\]

where \(c\) is always a real scalar and
\[c^2 + |s|^2 = 1\]

The scalars \(a\) and \(b\) are unchanged on exit. If \(b\) is equal to zero, then the pair \((c,s)\) is chosen to be equal to \((1, 0)\). Otherwise, when \(a\) and \(b\) are real scalars and \(a\) is equal to zero, the pair \((c,s)\) is chosen to be equal to \((0, 1)\); when \(a\) and \(b\) are complex scalars and \(a\) is equal to zero, \(c\) is chosen to be zero and \(s\) is chosen so that \(r\) is real.

\((c, s, r) \leftarrow \text{rot}(a, b)\)

Usage: VECLIB, VECLIB8

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL*4</td>
<td>C</td>
</tr>
<tr>
<td>REAL*4</td>
<td>A, B, R, S</td>
</tr>
<tr>
<td>SUBROUTINE</td>
<td>F_SGEN_GROT(A, B, C, S, R)</td>
</tr>
<tr>
<td>REAL*8</td>
<td>C</td>
</tr>
<tr>
<td>REAL*8</td>
<td>A, B, R, S</td>
</tr>
<tr>
<td>SUBROUTINE</td>
<td>F_DGEN_GROT(A, B, C, S, R)</td>
</tr>
<tr>
<td>REAL*4</td>
<td>C</td>
</tr>
<tr>
<td>COMPLEX*8</td>
<td>A, B, R, S</td>
</tr>
<tr>
<td>SUBROUTINE</td>
<td>F_CGEN_GROT(A, B, C, S, R)</td>
</tr>
<tr>
<td>REAL*8</td>
<td>C</td>
</tr>
<tr>
<td>COMPLEX*16</td>
<td>A, B, R, S</td>
</tr>
<tr>
<td>SUBROUTINE</td>
<td>F_ZGEN_GROT(A, B, C, S, R)</td>
</tr>
</tbody>
</table>

Input: A REAL or COMPLEX scalar. A is unchanged on exit.
B REAL or COMPLEX scalar. B is unchanged on exit.

Output: C REAL scalar.
R The REAL or COMPLEX product of the operation.
S REAL or COMPLEX scalar.
Name F_SGEN_HOUSE/F_DGEN_HOUSE/F_CGEN_HOUSE/F_ZGEN_HOUSE
Generate Householder transform

Purpose F_xGEN_HOUSE generates an elementary reflector H of order n, s such that

$$H \begin{bmatrix} \alpha \\ x \end{bmatrix} = \begin{bmatrix} \beta \\ 0 \end{bmatrix} \quad \text{and} \quad H^*H = I$$

where α and β are scalars, and x is an $(n - 1)$-element vector. β is always a real scalar. H is represented in the following form:

$$H = I - \tau \begin{bmatrix} 1 \\ v \end{bmatrix} (1 \quad v^T)$$

where τ is a scalar and v is an $(n - 1)$-element vector. τ is called the Householder scalar and $\begin{bmatrix} 1 \\ v \end{bmatrix}$ the Householder vector.

Note that when x is a complex vector, H is not Hermitian. If the elements of x are zero, and α is real, then τ is equal to zero and H is the unit matrix. Otherwise, the real part of τ is greater than or equal to one, and less than or equal to two. Moreover, the absolute value of the quantity $(\tau - 1)$ is less than or equal to one.

On exit, the scalar argument \texttt{alpha} is overwritten with the value of the scalar β. Similarly, the vector argument x is overwritten with the vector v. If n is less than or equal to zero, this function returns immediately with the output scalar \texttt{tau} set to zero.
Usage

VECLIB:

INTEGER*4 INCX, N
REAL*4 ALPHA, TAU
REAL*4 X (*)
SUBROUTINE F_SGEN_HOUSE (N, ALPHA, X, INCX, TAU)

INTEGER*4 INCX, N
REAL*8 ALPHA, TAU
REAL*8 X (*)
SUBROUTINE F_DGEN_HOUSE (N, ALPHA, X, INCX, TAU)

INTEGER*4 INCX, N
COMPLEX*8 ALPHA, TAU
COMPLEX*8 X (*)
SUBROUTINE F_CGEN_HOUSE (N, ALPHA, X, INCX, TAU)

INTEGER*4 INCX, N
COMPLEX*16 ALPHA, TAU
COMPLEX*8 X (*)
SUBROUTINE F_ZGEN_HOUSE (N, ALPHA, X, INCX, TAU)

VECLIB8:

INTEGER*8 INCX, N
REAL*4 ALPHA, TAU
REAL*4 X (*)
SUBROUTINE F_SGEN_HOUSE (N, ALPHA, X, INCX, TAU)

INTEGER*8 INCX, N
REAL*8 ALPHA, TAU
REAL*8 X (*)
SUBROUTINE F_DGEN_HOUSE (N, ALPHA, X, INCX, TAU)

INTEGER*8 INCX, N
COMPLEX*8 ALPHA, TAU
COMPLEX*8 X (*)
SUBROUTINE F_CGEN_HOUSE (N, ALPHA, X, INCX, TAU)

INTEGER*8 INCX, N
COMPLEX*16 ALPHA, TAU
COMPLEX*8 X (*)
SUBROUTINE F_ZGEN_HOUSE (N, ALPHA, X, INCX, TAU)

Input

N
Number of elements of vector x.

ALPHA
REAL or COMPLEX scalar.
Generate Householder transform

\(F_{\text{SGEN_HOUSE}}/F_{\text{DGEN_HOUSE}}/F_{\text{CGEN_HOUSE}}/F_{\text{ZGEN_HOUSE}} \)

| **X** | REAL or COMPLEX array, minimum length \((N - 1) \times |\text{incx}| + 1\). |
|--------|--|
| **INCX** | Increment for the array \(x \). A vector \(x \) having component \(x_i \), \(i = 1, \ldots, n \), is stored in an array \(X() \) with increment argument \(\text{incx} \). If \(\text{incx} > 0 \) then \(x_i \) is stored in \(X(1 + (i - 1) \times \text{incx}) \). If \(\text{incx} < 0 \) then \(x_i \) is stored in \(X(1 + (N - i) \times |\text{incx}|) \). \(\text{incx} = 0 \) is an illegal value. |

| **Output** | **TAU** | REAL or COMPLEX scalar. If \(n = 0 \), \(F_{x\text{GEN_HOUSE}} \) returns immediately with \(\text{TAU} \) set to zero. |

Chapter 2 Basic Vector Operations 177
Name F_SGEN_JROT/F_DGEN_JROT/F_CGEN_JROT/F_ZGEN_JROT
Generate Jacobi rotation

Purpose F_xGEN_JROT constructs a Jacobi rotation so that \((a, b, c, s) \leftarrow jrot(x, y, z)\)

\[
\begin{bmatrix}
a & 0 \\
0 & b \\
\end{bmatrix} = \begin{bmatrix} c & s \\
-s & c \\
\end{bmatrix} \cdot \begin{bmatrix} x & y \\
y & z \\
\end{bmatrix} \cdot \begin{bmatrix} c & -s \\
s & c \\
\end{bmatrix}
\]

Input the \texttt{JROT} parameter to specify whether the rotation generated is outer, inner, or sorted.

- **If** \texttt{JROT = BLAS_INNER_ROTATION}

 then the rotation is chosen so that \(c \geq \frac{1}{\sqrt{2}}\)

- **If** \texttt{JROT = BLAS_OUTER_ROTATION}

 then the rotation is chosen so that \(0 \leq c \leq \frac{1}{\sqrt{2}}\)

- **If** \texttt{JROT = BLAS_SORTED_ROTATION}

 then the rotation is chosen so that \(abs(a) \geq abs(b)\)

Usage VECLIB:

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \texttt{JROT} \\
\text{REAL}^*4 & \quad S, X, Y, Z, C \\
\text{SUBROUTINE F_SGEN_JROT (JROT, X, Y, Z, C, S)}
\end{align*}
\]

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \texttt{JROT} \\
\text{REAL}^*8 & \quad S, X, Y, Z, C \\
\text{SUBROUTINE F_DGEN_JROT (JROT, X, Y, Z, C, S)}
\end{align*}
\]

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \texttt{JROT} \\
\text{REAL}^*4 & \quad X, Z, C \\
\text{COMPLEX}^*8 & \quad S, Y \\
\text{SUBROUTINE F_CGEN_JROT (JROT, X, Y, Z, C, S)}
\end{align*}
\]

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \texttt{JROT} \\
\text{REAL}^*8 & \quad X, Z, C \\
\text{COMPLEX}^*16 & \quad S, Y \\
\text{SUBROUTINE F_ZGEN_JROT (JROT, X, Y, Z, C, S)}
\end{align*}
\]

VECLIB8:
Chapter 2 Basic Vector Operations

Generate Jacobi rotation F_SGEN_JROT/F_DGEN_JROT/F_CGEN_JROT/F_ZGEN_JROT

- **SUBROUTINE F_SGEN_JROT** (JROT, X, Y, Z, C, S)
 - INTEGER*8 JROT
 - REAL*4 S, X, Y, Z, C

- **SUBROUTINE F_DGEN_JROT** (JROT, X, Y, Z, C, S)
 - INTEGER*8 JROT
 - REAL*8 S, X, Y, Z, C

- **SUBROUTINE F_CGEN_JROT** (JROT, X, Y, Z, C, S)
 - INTEGER*8 JROT
 - REAL*4 X, Z, C
 - COMPLEX*8 S, Y

- **SUBROUTINE F_ZGEN_JROT** (JROT, X, Y, Z, C, S)
 - INTEGER*8 JROT
 - REAL*8 X, Z, C
 - COMPLEX*16 S, Y
F_SGEN_JROT/F_DGEN_JROT/F_CGEN_JROT/F_ZGEN_JROT

Generate Jacobi rotation

<table>
<thead>
<tr>
<th>Input</th>
<th>JROT</th>
<th>Specifies whether the Jacobi rotation generated is OUTER, INNER, or SORTED. The following are valid options:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• BLAS_INNER_ROTATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BLAS_OUTER_ROTATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BLAS_SORTED_ROTATION</td>
</tr>
<tr>
<td>X</td>
<td>REAL scalar. X is replaced by A on exit.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>REAL or COMPLEX scalar. Y is unchanged on exit.</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>REAL scalar. Z is replaced by B on exit.</td>
<td></td>
</tr>
</tbody>
</table>

Output	**A**	REAL scalar. Replaces the input X.
	B	REAL scalar. Replaces the input Z.
	C	REAL cosine used to apply the Jacobi rotation.
	S	REAL or COMPLEX sine used to apply the Jacobi rotation.
Name: F_SMAX_VAL/F_DMAX_VAL
Maximum value and location

Purpose: F_xMAX_VAL returns the largest component of a real vector \(x \) and also the smallest offset or index \(k \).

\[
k, x_k \text{ such that } k = \arg_{0 \leq i < n} \max(x_i)
\]

When the value of the \(n \) argument is less than or equal to zero, F_xMAX_VAL initializes the output scalars \(k \) to the largest invalid index (zero) and \(r \) to zero.

The routine F_xMIN_VAL operates strictly on real vectors and is not defined for complex vectors.

Usage:

VECLIB:

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \text{INCX, K, N} \\
\text{REAL}^*4 & \quad \text{R} \\
\text{REAL}^*4 & \quad \text{X(*)}
\end{align*}
\]

SUBROUTINE F_SMAX_VAL (N, X, INCX, K, R)

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \text{INCX, K, N} \\
\text{REAL}^*8 & \quad \text{R} \\
\text{REAL}^*8 & \quad \text{X(*)}
\end{align*}
\]

SUBROUTINE F_DMAX_VAL (N, X, INCX, K, R)

VECLIB8:

\[
\begin{align*}
\text{INTEGER}^*8 & \quad \text{INCX, K, N} \\
\text{REAL}^*4 & \quad \text{R} \\
\text{REAL}^*4 & \quad \text{X(*)}
\end{align*}
\]

SUBROUTINE F_SMAX_VAL (N, X, INCX, K, R)

\[
\begin{align*}
\text{INTEGER}^*8 & \quad \text{INCX, K, N} \\
\text{REAL}^*8 & \quad \text{R} \\
\text{REAL}^*8 & \quad \text{X(*)}
\end{align*}
\]

SUBROUTINE F_DMAX_VAL (N, X, INCX, K, R)

Input:

\(N \) Number of elements of vector \(x \).

\(X \) REAL or COMPLEX array, minimum length \((N - 1) \times |\text{inex}| + 1\).

\(\text{INCX} \) Increment for the array \(x \). A vector \(x \) having component \(x_i, i = 1, \ldots, n \), is stored in an array \(\text{X}() \) with increment argument \(\text{inex} \). If \(\text{inex} > 0 \) then \(x_i \) is stored in
F_SMAX_VAL/F_DMAX_VAL

Maximum value and location

\[X(1 + (i - 1) \times \text{incx}) \]. If \(\text{incx} < 0 \) then \(x_i \) is stored in
\[X(1 + (N - i) \times |\text{incx}|) \]. \(\text{incx} = 0 \) is an illegal value.

Output

K
Displacement returned by the routine. The smallest offset or index such that
\[x_k = max_{0 \leq i < n} x_i \]

R
REAL scalar. The largest component of the REAL vector \(x \).
Name F_SMIN_VAL/F_DMIN_VAL
Minimum value and location

Purpose F_xMIN_VAL returns the smallest component of a real vector x and also the smallest offset or index k.

$$k, x_k \text{ such that } k = \arg_{0 \leq i < n} \min(x_i)$$

When the value of the n argument is less than or equal to zero, F_xMIN_VAL initializes the output scalars k to the largest invalid index (zero) and r to zero. When the value of the n argument is less than or equal to zero, F_xMIN_VAL initializes the output scalars k to the largest invalid index (zero) and r to zero.

The routine F_xMIN_VAL operates strictly on real vectors and is not defined for complex vectors.

Usage VECLIB:

```fortran
INTEGER*4 INCX, K, N
REAL*4 R
REAL*4 X( * )
SUBROUTINE F_SMIN_VAL (N, X, INCX, K, R)

INTEGER*8 INCX, K, N
REAL*8 R
REAL*8 X( * )
SUBROUTINE F_DMIN_VAL (N, X, INCX, K, R)
```

VECLIB8:

```fortran
INTEGER*8 INCX, K, N
REAL*4 R
REAL*4 X( * )
SUBROUTINE F_SMIN_VAL (N, X, INCX, K, R)

INTEGER*8 INCX, K, N
REAL*8 R
REAL*8 X( * )
SUBROUTINE F_DMIN_VAL (N, X, INCX, K, R)
```

Input

- **N**: Number of elements of vector x.
- **X**: REAL array, minimum length $(N - 1) \times |\text{inex}| + 1$.
- **INCX**: Increment for the array x. A vector x having component $x_i, i = 1, ..., n$, is stored in an array $X()$ with increment argument inex. If $\text{inex} > 0$ then x_i is stored in...
F_SMIN_VAL/F_DMIN_VAL

Minimum value and location

\[X (1 + (i - 1) \times \text{incx}) \]. If \text{incx} < 0 then \(x_i \) is stored in \(X (1 + (N - i) \times |\text{incx}|) \). \text{incx} = 0 is an illegal value.

Output

K
Displacement returned by the routine. The smallest offset or index such that \(x_k = \min_{0 \leq i < n} x_i \)

R
REAL scalar. The smallest component of the REAL vector \(x \).
Norm of a vector

F_SNORM/F_DNORM

Name
F_SNORM/F_DNORM
Norm of a vector

Purpose
F_xNORM computes one of the following for a vector \(x \) depending on the value passed as the norm operator argument:

- 1-norm
- Real 1-norm
- 2-norm
- Frobenius-norm
- Max-norm
- Real-max-norm
- Infinity-norm
- Real infinity-norm

\[r \leftarrow \|x\|_1, \|x\|_{1,R}, \|x\|_2, \|x\|_{\infty}, \text{ or } \|x\|_{\infty,R} \]

Refer to **NORM** parameter below for details. If \(n \) is less than or equal to zero, this routine returns immediately with the output scalar \(r \) set to zero. The resulting scalar \(r \) is always real.

Usage

VECLIB:

INTEGER*4	INCX, N, NORM
REAL*4	X(*)
REAL*4	FUNCTION F_SNORM (NORM, N, X, INCX)

VECLIB8:

INTEGER*8	INCX, N, NORM
REAL*8	X(*)
REAL*4	FUNCTION F_SNORM (NORM, N, X, INCX)

INTEGER*8	INCX, N, NORM
REAL*8	X(*)
REAL*4	FUNCTION F_SNORM (NORM, N, X, INCX)
F_SNORM/F_DNORM

Norm of a vector

Input

NORM
Specifies the norm to compute. Seven distinct values are possible, namely the 1-norm, real 1-norm, infinity-norm, and real infinity-norm for vectors and matrices, the 2-norm for vectors, and the Frobenius-norm, max-norm, and real max-norm for matrices. Use one of the following constants:

- BLAS_ONE_NORM
- BLAS_REAL_ONE_NORM
- BLAS_INF_NORM
- BLAS_REAL_INF_NORM
- BLAS_TWO_NORM
- BLAS_FROBENIUS_NORM
- BLAS_MAX_NORM
- BLAS_REAL_MAX_NORM

When you specify NORM = BLAS_FROBENIUS_NORM, an error flag is not raised, and the routine returns the two-norm.

N
Number of elements of vector x.

X
REAL array, minimum length (N-1) x |incx| + 1.

INCX
Increment for the array x. A vector x having component x_i, i = 1,..., n, is stored in an array X() with increment argument incx. If incx > 0 then x_i is stored in X(1 + (i - 1) x incx). If incx < 0 then x_i is stored in X(1 + (N - i) x |incx|). incx = 0 is an illegal value.
Permute vector

F_SPERMUTE/F_DPERMUTE/F_CPERMUTE/F_ZPERMUTE

Name
Permute vector

Purpose
F_xPERMUTE permutes the entries of a vector x according to the permutation vector p. If n is less than or equal to zero, the routine returns immediately.

An n-by-n permutation matrix P is represented as a product of at most n interchange permutations. An interchange permutation E is a permutation obtained by swapping two rows of the identity matrix. An efficient way to represent a general permutation matrix P is with an integer vector p of length n. In other words, $P = E_n...E_1$ and each E_i is the identity with rows i and p_i interchanged:

For $i = n$ to 1 and $incp < 0$, $x(i) \leftrightarrow x(p(i))$

For $i = 1$ to n and $incp > 0$, $x(i) \leftrightarrow x(p(i))$

Usage
VECLIB:

```fortran
INTEGER*4 INCP, INCX, N
INTEGER P( * )
REAL*4 X( * )
SUBROUTINE F_SPERMUTE (N, P , INCP , X, INCX)

INTEGER*4 INCP, INCX, N
INTEGER P( * )
REAL*8 X( * )
SUBROUTINE F_DPERMUTE (N, P , INCP , X, INCX)

INTEGER*4 INCP, INCX, N
INTEGER P( * )
COMPLEX*8 X( * )
SUBROUTINE F_CPERMUTE (N, P , INCP , X, INCX)

INTEGER*4 INCP, INCX, N
INTEGER P( * )
COMPLEX*16 X( * )
SUBROUTINE F_ZPERMUTE (N, P , INCP , X, INCX)
```

VECLIB8:

```fortran
INTEGER*8 INCP, INCX, N
INTEGER P( * )
REAL*4 X( * )
SUBROUTINE F_SPERMUTE (N, P , INCP , X, INCX)
```
F_SPERMUTE/F_DPERMUTE/F_CPERMUTE/F_ZPERMUTE

Permute vector

INTEGER*8 INCP, INCX, N
INTEGER P(*)
REAL*8 X(*)

SUBROUTINE F_DPERMUTE (N, P, INCP, X, INCX)

INTEGER*8 INCP, INCX, N
INTEGER P(*)
COMPLEX*8 X(*)

SUBROUTINE F_CPERMUTE (N, P, INCP, X, INCX)

INTEGER*8 INCP, INCX, N
INTEGER P(*)
COMPLEX*16 X(*)

SUBROUTINE F_ZPERMUTE (N, P, INCP, X, INCX)
Permute vector

F_SPERMUTE/F_DPERMUTE/F_CPERMUTE/F_ZPERMUTE

Input

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of elements of vector (x).</td>
</tr>
<tr>
<td>P</td>
<td>REAL array, minimum length ((N - 1) \times</td>
</tr>
<tr>
<td>INCP</td>
<td>Increment for the array (p). A vector (p) having component (p_i, i = 1, \ldots, n), is stored in an array (P()) with increment argument (\text{incp}). The value of (\text{incp}) can be positive or negative. A negative value of (\text{incp}) applies the permutation in the opposite direction. (\text{incp} = 0) is an illegal value.</td>
</tr>
<tr>
<td>X</td>
<td>REAL array, minimum length ((N - 1) \times</td>
</tr>
<tr>
<td>INCX</td>
<td>Increment for the array (x). A vector (x) having component (x_i, i = 1, \ldots, n), is stored in an array (X()) with increment argument (\text{incx}). If (\text{incx} > 0) then (x_i) is stored in (X(1 + (i - 1) \times \text{incx})). If (\text{incx} < 0) then (x_i) is stored in (X(1 + (N - i) \times</td>
</tr>
</tbody>
</table>
Name
F_SRSCALE/F_DRSSCALE/F_CRSCALE/F_ZRSSCALE
Reciprocal Scale

Purpose
F_xRSSCALE scales the entries of a vector \(x \) by the real scalar \(1 / \alpha \). The scalar \(\alpha \) is always real and should be nonzero. Scaling is done without overflow or underflow as long as the result, \(x / \alpha \), does not overflow or underflow. If \(n \) is less than or equal to zero, this routine returns immediately.

\[x \leftarrow x / \alpha \]

Usage
VECLIB:

```fortran
INTEGER*4 INCX, N
REAL*4 ALPHA, X( * )
SUBROUTINE F_SRSCALE (N, ALPHA, X, INCX)

INTEGER*4 INCX, N
REAL*8 ALPHA, X( * )
SUBROUTINE F_DRSCALE (N, ALPHA, X, INCX)

INTEGER*4 INCX, N
REAL*4 ALPHA
COMPLEX*8 X( * )
SUBROUTINE F_CRSCALE (N, ALPHA, X, INCX)

INTEGER*4 INCX, N
REAL*4 ALPHA
COMPLEX*8 X( * )
SUBROUTINE F_ZRSCALE (N, ALPHA, X, INCX)
```

VECLIB8:

```fortran
INTEGER*8 INCX, N
REAL*4 ALPHA, X( * )
SUBROUTINE F_SRSCALE (N, ALPHA, X, INCX)

INTEGER*8 INCX, N
REAL*8 ALPHA, X( * )
SUBROUTINE F_DRSCALE (N, ALPHA, X, INCX)

INTEGER*8 INCX, N
REAL*4 ALPHA
COMPLEX*8 X( * )
SUBROUTINE F_CRSCALE (N, ALPHA, X, INCX)

INTEGER*8 INCX, N
REAL*4 ALPHA
COMPLEX*8 X( * )
SUBROUTINE F_ZRSCALE (N, ALPHA, X, INCX)
```
SUBROUTINE F_ZRSCALE (N, ALPHA, X, INCX)

Input
N Number of elements of vector x.
ALPHA The scalar ALPHA.
X REAL or COMPLEX array, minimum length
\((N - 1) \times |\text{incx}| + 1\).
INCX Increment for the array x. A vector x having component
\(x_i, i = 1, \ldots, n\), is stored in an array X() with increment
argument incx. If incx > 0 then \(x_i\) is stored in
\(X(1 + (i - 1) \times \text{incx})\). If incx < 0 then \(x_i\) is stored in
\(X(1 + (N - i) \times |\text{incx}|)\). incx = 0 is an illegal value.

Output
X The scaled array replaces the input.
F_SSORT/F_DSORT
Sort vector entries

Name
F_SSORT/F_DSORT
Sort vector entries

Purpose
F_xSORT sorts the entries of a real vector x in increasing or decreasing order and overwrites x with the sorted vector. If n is less than or equal to zero, F_xSORT returns immediately. F_xSORT is not defined for complex vectors; it operates strictly on real vectors.

Usage
VECLIB:

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \text{INCX, N, SORT} \\
\text{REAL}^*4 & \quad x(\,*) \\
\text{SUBROUTINE F_SSORT (SORT, N, X, INCX)}
\end{align*}
\]

VECLIB8:

\[
\begin{align*}
\text{INTEGER}^8 & \quad \text{INCX, N, SORT} \\
\text{REAL}^*4 & \quad x(\,*) \\
\text{SUBROUTINE F_SSORT (SORT, N, X, INCX)}
\end{align*}
\]

\[
\begin{align*}
\text{INTEGER}^8 & \quad \text{INCX, N, SORT} \\
\text{REAL}^*8 & \quad x(\,*) \\
\text{SUBROUTINE F_DSORT (SORT, N, X, INCX)}
\end{align*}
\]

Input
SORT
Specifies whether the data should be sorted in increasing or decreasing order. Use either \text{BLAS_INCREASING_ORDER} or \text{BLAS_DECREASING_ORDER}.

N
Number of elements of vector x.

X
REAL array, minimum length \((N - 1) \times |\text{incx}| + 1\).

INCX
Increment for the array x. A vector x having component \(x_i, i = 1, ..., n\), is stored in an array X() with increment argument incx. If incx > 0 then \(x_i\) is stored in \(X(1 + (i - 1) \times \text{incx})\). If incx < 0 then \(x_i\) is stored in \(X(1 + (N - i) \times |\text{incx}|)\). incx = 0 is an illegal value.

Output
X
The sorted array replaces the input.
Sort vector and return index vector

Name
F_SSORTV/F_DSORTV
Sort vector and return index vector

Purpose
F_xSORTV sorts the entries of a real vector \(x \) in increasing or decreasing order, returns \(p \), the permuted vector, and overwrites the vector \(x \) with the sorted vector \((x = P \ast x) \). If \(n \) is less than or equal to zero, the routine returns immediately.

The permutation vector \(p \) represents a general permutation matrix \(P \). This matrix \(P \) is represented as a product of at most \(n \) interchange permutations. An interchange permutation \(E \) is a permutation obtained by swapping two rows of the identity matrix. In other words, \(P = E_n \ast \ldots \ast E_1 \) and each \(E_i \) is the identity with rows \(i \) and \(p_i \) interchanged.

F_xSORTV, like F_xSORT, strictly operates on real vectors and is not defined for complex vectors.

Usage
VECLIB:

```fortran
INTEGER*4 INCP, INCX, N, SORT
INTEGER P( * )
REAL*4 X( * )
SUBROUTINE F_SSORTV (SORT, N, X, INCX, P, INCP)
INTEGER*4 INCP, INCX, N, SORT
INTEGER P( * )
REAL*8 X( * )
SUBROUTINE F_DSORTV (SORT, N, X, INCX, P, INCP)
```

VECLIB8:

```fortran
INTEGER*8 INCP, INCX, N, SORT
INTEGER P( * )
REAL*4 X( * )
SUBROUTINE F_SSORTV (SORT, N, X, INCX, P, INCP)
INTEGER*8 INCP, INCX, N, SORT
INTEGER P( * )
REAL*8 X( * )
SUBROUTINE F_DSORTV (SORT, N, X, INCX, P, INCP)
```

Input
SORT
Specifies whether the data should be sorted in increasing or decreasing order. Use either **BLAS_INCREASING_ORDER** or **BLAS_DECREASING_ORDER**.

N
Number of elements of vector \(x \).
F_SSORTV/F_DSORTV

Sort vector and return index vector

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>REAL array, minimum length ((N - 1) \times</td>
</tr>
<tr>
<td>INCX</td>
<td>Increment for the array (x). A vector (x) having component (x_i, i = 1, \ldots, n), is stored in an array (X()) with increment argument (\text{INEX}). If (\text{INEX} > 0) then (x_i) is stored in (X(1 + (i - 1) \times \text{INEX})). If (\text{INEX} < 0) then (x_i) is stored in (X(1 + (N - i) \times</td>
</tr>
<tr>
<td>INCP</td>
<td>Increment for the array (p). A vector (p) having component (p_i, i = 1, \ldots, n), is stored in an array (P()) with increment argument (\text{INCP}). If (\text{INCP} > 0) then (p_i) is stored in (P(1 + (i - 1) \times \text{INCP})). If (\text{INCP} < 0) then (p_i) is stored in (P(1 + (N - i) \times</td>
</tr>
</tbody>
</table>

Output

| **X** | Updated (sorted) array replaces the input. |
| **P** | Permutated vector. Array of integers, minimum length \((N - 1) \times |\text{INCP}| + 1. \) |
Sum of entries of a vector

Name F_SSUM/F_DSUM/F_CSUM/F_ZSUM
Sum of entries of a vector

Purpose F_xSUM computes the sum of the entries of a vector \(x \). If \(n \) is less than or equal to zero, F_xSUM returns immediately with the output scalar \(r \) set to zero.

\[
r \leftarrow \sum_{i=0}^{n-1} x_i
\]

Usage VECLIB:

```
INTEGER*4        INCX, N
REAL*4           X( * )
REAL*4           FUNCTION F_SSUM (N, X, INCX)
INTEGER*4        INCX, N
REAL*8           X( * )
REAL*8           FUNCTION F_DSUM (N, X, INCX)
INTEGER*4        INCX, N
COMPLEX*8        X( * )
COMPLEX*8        FUNCTION F_CSUM (N, X, INCX)
INTEGER*4        INCX, N
COMPLEX*16       X( * )
COMPLEX*16       FUNCTION F_ZSUM (N, X, INCX)
```

VECLIB8:

```
INTEGER*8        INCX, N
REAL*4           X( * )
REAL*4           FUNCTION F_SSUM (N, X, INCX)
INTEGER*8        INCX, N
REAL*8           X( * )
REAL*8           FUNCTION F_DSUM (N, X, INCX)
INTEGER*8        INCX, N
COMPLEX*8        X( * )
COMPLEX*8        FUNCTION F_CSUM (N, X, INCX)
INTEGER*8        INCX, N
COMPLEX*16       X( * )
COMPLEX*16       FUNCTION F_ZSUM (N, X, INCX)
```

Input N Number of elements of vector \(x \).
F_SSUM/F_DSUM/F_CSUM/F_ZSUM

Sum of entries of a vector

X
REAL or COMPLEX array, minimum length
(N - 1) x |incx| + 1.

INCX
Increment for the array x. A vector x having component
x_i, i = 1,..., n, is stored in an array X() with increment
argument **incx**. If **incx** > 0 then x_i is stored in
X(1 + (i - 1) x **incx**). If **incx** < 0 then x_i is stored in
X(1 + (N - i) x |**incx**|). **incx** = 0 is an illegal value.

Output
R
REAL scalar. The sum of the entries of vector x.
Sum of squares

Name
F_SSUMSQ/F_DSUMSQ/F_CSUMSQ/F_ZSUMSQ

Sum of squares

Purpose
F_xSUMSQ returns the values scl and ssq such that
\[scl^2 \times ssq = scale^2 \times sumsq + \sum_{i=0}^{n-1} (Re(x_i)^2 + Im(x_i)^2) \]

The value of sumsq should be at least unity and the value of ssq then satisfies
1.0 \leq ssq \leq (sumsq + n) \quad \text{when } x \text{ is a real vector, and}
1.0 \leq ssq \leq (sumsq + 2n) \quad \text{when } x \text{ is a complex vector.}

scale should be non negative and scl returns the value
\[scl = \max_{0 \leq i < n}(scale, \text{abs}(Re(x_i)), \text{abs}(Im(x_i))) \]

Specify scale and sumsq on entry in scl and ssq respectively. scl and ssq are overwritten by scl and ssq respectively. The arguments scl and ssq are therefore always real scalars. If n is less than or equal to zero, the routine returns immediately with scl and ssq unchanged.

Usage
VECLIB:

```fortran
INTEGER*4  INCX, N
REAL*4     SCL, SSQ, X( * )
SUBROUTINE F_SSUMSQ (N, X, INCX, SSQ, SCL)
INTEGER*4  INCX, N
REAL*8     SCL, SSQ, X( * )
SUBROUTINE F_DSUMSQ (N, X, INCX, SSQ, SCL)
INTEGER     INCX, N
REAL*4     SCL, SSQ
COMPLEX*8   X( * )
SUBROUTINE F_CSUMSQ (N, X, INCX, SSQ, SCL)
INTEGER     INCX, N
REAL*8     SCL, SSQ
COMPLEX*16  X( * )
SUBROUTINE F_ZSUMSQ (N, X, INCX, SSQ, SCL)
```

VECLIB8:
F_SSUMSQ/F_DSUMSQ/F_CSUMSQ/F_ZSUMSQ

Sum of squares

- **F_SSUMSQ**
 - `INTEGER*8 INCX, N`
 - `REAL*4 SCL, SSQ, X(*)`
 - **SUBROUTINE F_SSUMSQ** `(N, X, INCX, SSQ, SCL)`

- **F_DSUMSQ**
 - `INTEGER*8 INCX, N`
 - `REAL*8 SCL, SSQ, X(*)`
 - **SUBROUTINE F_DSUMSQ** `(N, X, INCX, SSQ, SCL)`

- **F_CSUMSQ**
 - `INTEGER*8 INCX, N`
 - `REAL*4 SCL, SSQ`
 - `COMPLEX*8 X(*)`
 - **SUBROUTINE F_CSUMSQ** `(N, X, INCX, SSQ, SCL)`

- **F_ZSUMSQ**
 - `INTEGER*8 INCX, N`
 - `REAL*8 SCL, SSQ`
 - `COMPLEX*16 X(*)`
 - **SUBROUTINE F_ZSUMSQ** `(N, X, INCX, SSQ, SCL)`
Input

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of elements of vector (x).</td>
</tr>
<tr>
<td>X</td>
<td>REAL or COMPLEX array, minimum length ((N - 1) \times \left</td>
</tr>
<tr>
<td>INCX</td>
<td>Increment for the array (x). A vector (x) having component (x_i, i = 1,..., n), is stored in an array (X()) with increment argument (\text{incx}). If (\text{incx} > 0) then (x_i) is stored in (X(1 + (i - 1) \times \text{incx})). If (\text{incx} < 0) then (x_i) is stored in (X(1 + (N - i) \times \left</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSQ</td>
<td>REAL scalar—inputs (\text{sumsq}). If (\text{sumsq} < 1), an error flag is set and passed to the error handler.</td>
</tr>
<tr>
<td>SCL</td>
<td>REAL scalar—inputs (\text{scale}). If (\text{scale} < 0), an error flag is set and passed to the error handler.</td>
</tr>
</tbody>
</table>

REAL scalar replaces the input \(\text{ssq} \).
REAL scalar replaces the input \(\text{scl} \).
Name
F_SSWAP/F_DSWAP/F_CSWAP/F_ZSWAP
Interchange vectors

Purpose
F_xSWAP interchanges the vectors x and y, that is, \(x \leftrightarrow y \).
If \(n \) is less than or equal to zero, the routine returns immediately.

Usage
VECLIB:

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \text{INCX, INCY, N} \\
\text{REAL}^*4 & \quad X(*), Y(*) \\
\text{SUBROUTINE} & \quad \text{F_SSWAP} (N, X, \text{INCX}, Y, \text{INCY})
\end{align*}
\]

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \text{INCX, INCY, N} \\
\text{REAL}^*8 & \quad X(*), Y(*) \\
\text{SUBROUTINE} & \quad \text{F_DSWAP} (N, X, \text{INCX}, Y, \text{INCY})
\end{align*}
\]

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \text{INCX, INCY, N} \\
\text{COMPLEX}^*8 & \quad X(*), Y(*) \\
\text{SUBROUTINE} & \quad \text{F_CSWAP} (N, X, \text{INCX}, Y, \text{INCY})
\end{align*}
\]

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \text{INCX, INCY, N} \\
\text{COMPLEX}^*16 & \quad X(*), Y(*) \\
\text{SUBROUTINE} & \quad \text{F_ZSWAP} (N, X, \text{INCX}, Y, \text{INCY})
\end{align*}
\]

VECLIB8:

\[
\begin{align*}
\text{INTEGER}^*8 & \quad \text{INCX, INCY, N} \\
\text{REAL}^*4 & \quad X(*), Y(*) \\
\text{SUBROUTINE} & \quad \text{F_SSWAP} (N, X, \text{INCX}, Y, \text{INCY})
\end{align*}
\]

\[
\begin{align*}
\text{INTEGER}^*8 & \quad \text{INCX, INCY, N} \\
\text{REAL}^*8 & \quad X(*), Y(*) \\
\text{SUBROUTINE} & \quad \text{F_DSWAP} (N, X, \text{INCX}, Y, \text{INCY})
\end{align*}
\]

\[
\begin{align*}
\text{INTEGER}^*8 & \quad \text{INCX, INCY, N} \\
\text{COMPLEX}^*8 & \quad X(*), Y(*) \\
\text{SUBROUTINE} & \quad \text{F_CSWAP} (N, X, \text{INCX}, Y, \text{INCY})
\end{align*}
\]

\[
\begin{align*}
\text{INTEGER}^*8 & \quad \text{INCX, INCY, N} \\
\text{COMPLEX}^*16 & \quad X(*), Y(*) \\
\text{SUBROUTINE} & \quad \text{F_ZSWAP} (N, X, \text{INCX}, Y, \text{INCY})
\end{align*}
\]

Input

\begin{align*}
N & \quad \text{Number of elements of vector } x. \\
X & \quad \text{REAL or COMPLEX array, minimum length } (N - 1) \times |\text{incx}| + 1.
\end{align*}
Interchange vectors F_SSWAP/F_DSWAP/F_CSWAP/F_ZSWAP

INCX
Increment for the array \(x \). A vector \(x \) having component \(x_i, i = 1, \ldots, n \), is stored in an array \(X() \) with increment argument \(\text{incx} \). If \(\text{incx} > 0 \) then \(x_i \) is stored in \(X(1 + (i - 1) \times \text{incx}) \). If \(\text{incx} < 0 \) then \(x_i \) is stored in \(X(1 + (N - i) \times |\text{incx}|) \). \(\text{incx} = 0 \) is an illegal value.

Y
REAL or COMPLEX array, minimum length \((N - 1) \times |\text{incy}| + 1 \).

INCY
Increment for the array \(y \). A vector \(y \) having component \(y_i, i = 1, \ldots, n \), is stored in an array \(Y() \) with increment argument \(\text{incy} \). If \(\text{incy} > 0 \) then \(y_i \) is stored in \(Y(1 + (i - 1) \times \text{incy}) \). If \(\text{incy} < 0 \) then \(y_i \) is stored in \(Y(1 + (N - i) \times |\text{incy}|) \). \(\text{incy} = 0 \) is an illegal value.
Name
F_SWAXPBY/F_DWAXPBY/F_CWAXPBY/F_ZWAXPBY
Scaled vector addition

Purpose
F_xWAXPBY scales the vector x by α and the vector y by β, adds these two vectors, and stores the result in the vector w. If n is less than or equal to zero the routine returns immediately.

\[w \leftarrow \alpha x + \beta y \]

Usage
VECLIB:

```fortran
INTEGER*4 INCW, INCX, INCY, N
REAL*4 ALPHA, BETA, W(*), X(*), Y(*)
SUBROUTINE F_SWAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY, W, INCW)

INTEGER*4 INCW, INCX, INCY, N
REAL*8 ALPHA, BETA, W(*), X(*), Y(*)
SUBROUTINE F_DWAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY, W, INCW)

INTEGER*4 INCW, INCX, INCY, N
COMPLEX*8 ALPHA, BETA, W(*), X(*), Y(*)
SUBROUTINE F_CWAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY, W, INCW)

INTEGER*4 INCW, INCX, INCY, N
COMPLEX*16 ALPHA, BETA, W(*), X(*), Y(*)
SUBROUTINE F_ZWAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY, W, INCW)
```

VECLIB8:

```fortran
INTEGER*8 INCW, INCX, INCY, N
REAL*4 ALPHA, BETA, W(*), X(*), Y(*)
SUBROUTINE F_SWAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY, W, INCW)

INTEGER*8 INCW, INCX, INCY, N
REAL*8 ALPHA, BETA, W(*), X(*), Y(*)
SUBROUTINE F_DWAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY, W, INCW)
```

202 HP MLIB User's Guide
Scaled vector addition

F_SWAXPBY/F_DWAXPBY/F_CWAXPBY/F_ZWAXPBY

INTEGER*8 INCW, INCX, INCY, N
COMPLEX*8 ALPHA, BETA, W(*), X(*), Y(*)

SUBROUTINE F_CWAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY, W, INCW)

INTEGER*8 INCW, INCX, INCY, N
COMPLEX*16 ALPHA, BETA, W(*), X(*), Y(*)

SUBROUTINE F_ZWAXPBY (N, ALPHA, X, INCX, BETA, Y, INCY, W, INCW)

Input

N
Number of elements of vector x.

ALPHA
The scalar ALPHA.

X
REAL or COMPLEX array, minimum length
(N - 1) x |incx| + 1.

INCY
Increment for the array x. A vector x having component
x_i, i = 1,..., n, is stored in an array X() with increment
argument INCX. If INCX > 0 then x_i is stored in
X (1 + (i - 1) x INCX). If INCX < 0 then x_i is stored in
X (1 + (N - i) x |INCX|). INCX = 0 is an illegal value.

BETA
The scalar BETA.
Scaled vector addition

\[Y \]
REAL or COMPLEX array, minimum length \((N - 1) \times |\text{incy}| + 1 \).

\[\text{INCY} \]
Increment for the array \(y \). A vector \(y \) having component \(y_i, i = 1, \ldots, n \), is stored in an array \(Y() \) with increment argument \(\text{incy} \). If \(\text{incy} > 0 \) then \(y_i \) is stored in \(Y(1 + (i - 1) \times \text{incy}) \). If \(\text{incy} < 0 \) then \(y_i \) is stored in \(Y(1 + (N - i) \times |\text{incy}|) \). \(\text{incy} = 0 \) is an illegal value.

\[\text{INCW} \]
Increment for the array \(w \). A vector \(w \) having component \(w_i, i = 1, \ldots, n \), is stored in an array \(W() \) with increment argument \(\text{incw} \). If \(\text{incw} > 0 \) then \(w_i \) is stored in \(W(1 + (i - 1) \times \text{incw}) \). If \(\text{incw} < 0 \) then \(w_i \) is stored in \(W(1 + (N - i) \times |\text{incw}|) \). \(\text{incw} = 0 \) is an illegal value.

Output \[W \]
The result of the addition of the two scaled vectors, \(x \) and \(y \). REAL or COMPLEX array, minimum length \((N - 1) \times |\text{incw}| + 1 \).
3 Basic Matrix Operations

Overview

This chapter describes the subprograms in the Level 2 (two-loop) Basic Linear Algebra Subprograms (BLAS) and the Level 3 (three-loop) BLAS. Collectively, these two sets of subprograms are called the Extended BLAS.

This chapter also describes subprograms from the BLAS Standard. BLAS standardization efforts, supported by software and hardware vendors and university groups, began with a BLAS Technical (BLAST) Forum meeting in November 1995 at the University of Tennessee. The efforts of the BLAST Forum resulted in a BLAS Standard specification in 1999.

This chapter describes the subset of BLAS Standard matrix operations that are supported in HP MLIB. Refer to “BLAS Standard routines” on page 339.

This chapter explains how to use VECLIB matrix subprograms, which perform common computationally-intensive linear algebra operations. The operations described for both the legacy BLAS and BLAS Standard are:

- Basic matrix-vector operations
- Basic matrix-matrix operations

The most important of the Extended BLAS and BLAS Standard subprograms have been coded in highly-tuned assembly language.
Chapter objectives

After reading this chapter you will:

• Be familiar with the Extended BLAS subroutine naming convention
• Know what operations the Extended BLAS performs
• Know how to use the described subprograms
• Be familiar with the BLAS Standard subroutines supported in HP VECLIB

Associated documentation

The following documents provide supplemental material for this chapter:

What you need to know to use these subprograms

The following sections describe overall considerations for using matrix subprograms:

- Subroutine naming convention
- Operator arguments in the BLAS Standard

Subroutine naming convention

The Extended BLAS uses a subroutine naming convention that encodes the function of each subroutine into its name. Extended BLAS subprogram names consist of four, five, or six characters in the form TXXY, TXXYY, or TXXYYY.

The BLAS Standard uses the same naming convention as the Extended BLAS, with the addition of F_- at the beginning of each routine name. That is, BLAS Standard subprogram names take the form $F__TXXY$, $F__TXXYY$, or $F__TXXYYY$.

For example, the legacy BLAS single-precision, triangular-solve routine is named STRSM and its BLAS Standard counterpart is named $F__STRSM$. Refer to “Legacy BLAS routines” on page 211 and “BLAS Standard routines” on page 339.

The first letter, denoted by T, in the naming convention indicates one of the four Fortran data types, as shown in Table 3-1.

Table 3-1 Extended BLAS Naming Convention—Data Type

<table>
<thead>
<tr>
<th>T</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Single Precision REAL</td>
</tr>
<tr>
<td>D</td>
<td>Double Precision REAL</td>
</tr>
<tr>
<td>C</td>
<td>Single Precision COMPLEX</td>
</tr>
<tr>
<td>Z</td>
<td>Double Precision COMPLEX</td>
</tr>
</tbody>
</table>
What you need to know to use these subprograms

The next two letters in the naming convention indicate the form of the matrix, as presented in Table 3-2.

Table 3-2 Extended BLAS Naming Convention—Matrix Form

<table>
<thead>
<tr>
<th>XX</th>
<th>Form of Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE</td>
<td>General</td>
</tr>
<tr>
<td>GB</td>
<td>General band</td>
</tr>
<tr>
<td>HE</td>
<td>Hermitian</td>
</tr>
<tr>
<td>HB</td>
<td>Hermitian band</td>
</tr>
<tr>
<td>HP</td>
<td>Hermitian packed</td>
</tr>
<tr>
<td>SY</td>
<td>Symmetric</td>
</tr>
<tr>
<td>SB</td>
<td>Symmetric band</td>
</tr>
<tr>
<td>SP</td>
<td>Symmetric packed</td>
</tr>
<tr>
<td>TR</td>
<td>Triangular</td>
</tr>
<tr>
<td>TB</td>
<td>Triangular band</td>
</tr>
<tr>
<td>TP</td>
<td>Triangular packed</td>
</tr>
</tbody>
</table>

Table 3-3 lists the final one, two, or three characters in the naming convention, indicating the computation of a particular subroutine.

Table 3-3 Extended BLAS Naming Convention—Computation

<table>
<thead>
<tr>
<th>YY</th>
<th>Subroutine Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Matrix-Matrix multiply</td>
</tr>
<tr>
<td>MV</td>
<td>Matrix-Vector multiply</td>
</tr>
<tr>
<td>R</td>
<td>Rank-1 update</td>
</tr>
<tr>
<td>R2</td>
<td>Rank-2 update</td>
</tr>
<tr>
<td>RK</td>
<td>Rank-k update</td>
</tr>
<tr>
<td>R2K</td>
<td>Rank-2k update</td>
</tr>
<tr>
<td>SM</td>
<td>Solve multiple systems of linear equations</td>
</tr>
<tr>
<td>SV</td>
<td>Solve a system of linear equations</td>
</tr>
</tbody>
</table>

For example, SGBMV multiplies a vector (MV) by a general band matrix (GB) using the single precision REAL data type (S). ZTRSM solves a system of linear equations with one triangular coefficient matrix and a matrix of right-hand sides, using the double precision COMPLEX data type.
Table 3-4 shows the valid combinations of T, XX, and Y, YY, or YYY. Each line indicates the allowable T prefixes and Y, YY, or YYY suffixes for a particular root name XX.

Table 3-4 Extended BLAS Naming Convention—Subprogram Names

<table>
<thead>
<tr>
<th>Valid T</th>
<th>XX</th>
<th>Valid Y, YY, or YYY</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>D</td>
<td>GE MM</td>
</tr>
<tr>
<td>C</td>
<td>Z</td>
<td>GE MM MV R</td>
</tr>
<tr>
<td>S</td>
<td>D</td>
<td>C Z GB MV</td>
</tr>
<tr>
<td>C</td>
<td>Z</td>
<td>HE MM MV R</td>
</tr>
<tr>
<td>C</td>
<td>Z</td>
<td>HB MV</td>
</tr>
<tr>
<td>S</td>
<td>D</td>
<td>SY MM R R2</td>
</tr>
<tr>
<td>C</td>
<td>Z</td>
<td>SY MM R2K</td>
</tr>
<tr>
<td>S</td>
<td>D</td>
<td>SB MV</td>
</tr>
<tr>
<td>S</td>
<td>D</td>
<td>SP MV R R2</td>
</tr>
<tr>
<td>S</td>
<td>D</td>
<td>C Z TR MM</td>
</tr>
<tr>
<td>S</td>
<td>D</td>
<td>C Z TB MV</td>
</tr>
<tr>
<td>S</td>
<td>D</td>
<td>C Z TP MV</td>
</tr>
</tbody>
</table>

The subprograms SGEMMS, DGEMMS, CGEMMS, and ZGEMMS, although not part of the standard Extended BLAS, are consistent with this nomenclature.

Operator arguments in the BLAS Standard

Some routines in the BLAS Standard take input-only arguments called operators. Operators allow for the specification of multiple related operations to be performed by a single function. The BLAS Standard specifies the type and the valid values these arguments should have according to the specific programming language.

Operator arguments used by the BLAS Standard routines are NORM, SORT, SIDE, UPLO, TRANS, CONJ, DIAG, and JROT. Refer to “Operator arguments” on page 25 for explanations of the valid operator values.

In BLAS Standard routines, you specify an operator argument with a named constant value. The actual numeric value assigned to the named constant is defined in the appropriate language’s include file. Operator arguments are represented in the Fortran 77 interface as INTEGRERs. This specification is different from the legacy BLAS, where operator arguments are defined as CHARACTER*1.

Refer to individual routines in “BLAS Standard routines” on page 339 for the named constants you can use to specify operator arguments for basic matrix subprograms.
Subprograms for basic matrix operations

The following sections in this chapter describe the legacy Extended BLAS and BLAS Standard matrix subprograms included with VECLIB:

- Legacy BLAS routines
- BLAS Standard routines

Note that the specification for operator arguments is different in legacy BLAS routines than in BLAS Standard routines. Operator arguments are represented in the BLAS Standard Fortran 77 interface as INTEGERs; in the legacy BLAS they are defined as CHARACTER*1.

In BLAS Standard routines, you specify an operator argument with a named constant value. Refer to the individual routines in “BLAS Standard routines” on page 339 for the named constants you can use to specify operator arguments. The actual numeric value assigned to the named constant is defined in the f77blas.h include file.
Legacy BLAS routines
Name SGBMV/DGBMV/CGBMV/ZGBMV
Matrix-vector multiply

Purpose These subprograms compute the matrix-vector products Ax, $A^T x$, and $A^* x$, where A is an m-by-n band matrix stored in a two-dimensional array, A^T is the transpose of A, and A^* is the conjugate transpose of A.

A band matrix is a matrix whose nonzero elements all are near the principal diagonal. Specifically, $a_{ij} = 0$ if $i - j > kl$ or $j - i > ku$ for some integers kl and ku. The smallest such kl and ku for a given matrix are called the lower and upper bandwidths, respectively, and $k = kl + ku + 1$ is the total bandwidth.

The product can be stored in the result array or optionally added to or subtracted from it. This is handled in a convenient, but general, way by two scalar arguments, α and β, which are used as multipliers of the matrix-vector product and the result vector. Specifically, these subprograms compute matrix-vector products of the forms

$$y \leftarrow aAx + \beta y, \ y \leftarrow aA^T x + \beta y, \ \text{and} \ y \leftarrow aA^* x + \beta y.$$

Refer to “F_SGBMV/F_DGBMV/F_CGBMV/F_ZGBMV” on page 355 for a description of the BLAS Standard subprograms for general matrix-vector multiply.

Matrix Storage Because it is not necessary to store or operate on the zeros outside the band of A, you need only provide the elements within the band of A. The subprograms for general band matrices use less storage than the subprograms for general full matrices if $kl + ku < n$.
The following example illustrates the storage of general band matrices.

Consider the following matrix A of size $m = 9$ by $n = 8$, with lower and upper bandwidths $kl = 2$ and $ku = 3$, respectively:

\[
\begin{array}{cccccccc}
11 & 12 & 13 & 14 & 0 & 0 & 0 & 0 \\
21 & 22 & 23 & 24 & 25 & 0 & 0 & 0 \\
31 & 32 & 33 & 34 & 35 & 36 & 0 & 0 \\
0 & 42 & 43 & 44 & 45 & 46 & 47 & 0 \\
0 & 0 & 53 & 54 & 55 & 56 & 57 & 58 \\
0 & 0 & 0 & 64 & 65 & 66 & 67 & 68 \\
0 & 0 & 0 & 0 & 75 & 76 & 77 & 78 \\
0 & 0 & 0 & 0 & 0 & 86 & 87 & 88 \\
0 & 0 & 0 & 0 & 0 & 0 & 97 & 98 \\
\end{array}
\]

A is given in an array \mathbf{ab} with at least $kl+ku+1$ = 6 rows and $n = 8$ columns as follows:

\[
\begin{array}{cccccccc}
* & * & * & 14 & 25 & 36 & 47 & 58 \\
* & 13 & 24 & 35 & 46 & 57 & 68 \\
* & 12 & 23 & 34 & 45 & 56 & 67 & 78 \\
11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 \\
21 & 32 & 43 & 54 & 65 & 76 & 87 & 98 \\
31 & 42 & 53 & 64 & 75 & 86 & 97 & *
\end{array}
\]

The asterisks in the ku-by-ku triangle at the upper left corner and in the $(kl+n-m)$-by-$(kl+n-m)$ triangle at the lower right corner represent elements of \mathbf{ab} that are not referenced. Thus, if a_{ij} is an element within the band of A, then it is stored in $\mathbf{ab}(ku+1+i-j,j)$. Therefore, the columns of A are stored in the columns of \mathbf{ab}, and the diagonals of A are stored in the rows of \mathbf{ab}, such that the principal diagonal is stored in row $ku+1$ of \mathbf{ab}.

Usage

VECLIB:

- **CHARACTER*1** `trans`
- **INTEGER*4** `m, n, kl, ku, ldab, incx, incy`
- **REAL*4** `alpha, beta, ab(ldab, n), x(lenx), y(leny)`
- **CALL SGBMV**(`trans, m, n, kl, ku, alpha, ab, ldab, n, x, incx, beta, y, incy)`

- **CHARACTER*1** `trans`
- **INTEGER*4** `m, n, kl, ku, ldab, incx, incy`
- **REAL*8** `alpha, beta, ab(ldab, n), x(lenx), y(leny)`
- **CALL DGBMV**(`trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)`

Chapter 3 Basic Matrix Operations 213
CHARACTER*1 trans
INTEGER*4 m, n, kl, ku, ldab, incx, incy
COMPLEX*8 alpha, beta, ab(ldab, n), x(lenx), y(leny)
CALL CGBMV(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)

CHARACTER*1 trans
INTEGER*4 m, n, kl, ku, ldab, incx, incy
COMPLEX*16 alpha, beta, ab(ldab, n), x(lenx), y(leny)
CALL ZGBMV(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)

VECLIB8:
CHARACTER*1 trans
INTEGER*8 m, n, kl, ku, ldab, incx, incy
REAL*4 alpha, beta, ab(ldab, n), x(lenx), y(leny)
CALL SGBMV(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)

CHARACTER*1 trans
INTEGER*8 m, n, kl, ku, ldab, incx, incy
REAL*8 alpha, beta, ab(ldab, n), x(lenx), y(leny)
CALL DGBMV(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)

CHARACTER*1 trans
INTEGER*8 m, n, kl, ku, ldab, incx, incy
COMPLEX*8 alpha, beta, ab(ldab, n), x(lenx), y(leny)
CALL CGBMV(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)

CHARACTER*1 trans
INTEGER*8 m, n, kl, ku, ldab, incx, incy
COMPLEX*16 alpha, beta, ab(ldab, n), x(lenx), y(leny)
CALL ZGBMV(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)

Input

<table>
<thead>
<tr>
<th>trans</th>
<th>Transposition option for A:</th>
</tr>
</thead>
<tbody>
<tr>
<td>'N'</td>
<td>or 'n'</td>
</tr>
<tr>
<td>'T'</td>
<td>or 't'</td>
</tr>
<tr>
<td>'C'</td>
<td>or 'c'</td>
</tr>
</tbody>
</table>

where A^T is the transpose of A and A^* is the conjugate transpose. In the real subprograms, 'C' and 'c' have the same meaning as 'T' and 't'.

m

Number of rows in matrix A, $m \geq 0$. If $m = 0$, the subprograms do not reference ab, x, or y.

n

Number of columns in matrix A, $n \geq 0$. If $n = 0$, the subprograms do not reference ab, x, or y.

214 HP MLIB User's Guide
Matrix-vector multiply

SGBMV/DGBMV/CGBMV/ZGBMV

- **kl**: The lower bandwidth of A, that is, the number of nonzero diagonals below the principal diagonal in the band, $0 \leq kl < n$.
- **ku**: The upper bandwidth of A, that is, the number of nonzero diagonals above the principal diagonal in the band, $0 \leq ku < n$.
- **alpha**: The scalar α. If $\text{alpha} = 0$, the subprograms compute $y \leftarrow \beta y$ without referencing ab or x.
- **ab**: Array containing the m-by-n band matrix A in the compressed form described above. If a_{ij} is in the band, it is stored in $ab(ku+1+i-j,j)$. The columns of A are stored in the columns of ab, and the diagonals of A are stored in rows 1 through $kl+ku+1$.
- **ldab**: The leading dimension of array ab as declared in the calling program unit, with $ldab \geq kl+ku+1$.
Array containing the vector \(x \). The number of elements of \(x \) and the value of \(\text{lenx} \), the dimension of the array \(x \), depend on \(\text{trans} \):

- 'N' or 'n' \(x \) has \(n \) elements: \(\text{lenx} = (n-1)\times|\text{incx}| + 1 \)
- Otherwise \(x \) has \(m \) elements: \(\text{lenx} = (m-1)\times|\text{incx}| + 1 \)

incx

Increment for the array \(x \), \(\text{incx} \neq 0 \):

- \(\text{incx} > 0 \) \(x \) is stored forward in array \(x \); that is, \(x_i \) is stored in \(x((i-1)\times\text{incx}+1) \).
- \(\text{incx} < 0 \) \(x \) is stored backward in array \(x \); that is, if \(\text{trans} = 'N' \) or 'n', then \(x_i \) is stored in \(x((i-n)\times\text{incx}+1) \); otherwise, \(x_i \) is stored in \(x((i-m)\times\text{incx}+1) \).

Use \(\text{incx} = 1 \) if the vector \(x \) is stored contiguously in array \(x \), that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

beta

The scalar \(\beta \).

Array containing the vector \(y \). The number of elements of \(y \) and the value of \(\text{leny} \), the dimension of the array \(y \), depend on \(\text{trans} \):

- 'N' or 'n' \(y \) has \(m \) elements: \(\text{leny} = (m-1)\times|\text{incy}| + 1 \)
- Otherwise \(y \) has \(n \) elements: \(\text{leny} = (n-1)\times|\text{incy}| + 1 \)

Not used as input if \(\beta = 0 \).

incy

Increment for the array \(y \), \(\text{incy} \neq 0 \):

- \(\text{incy} > 0 \) \(y \) is stored forward in array \(y \); that is, \(y_i \) is stored in \(y((i-1)\times\text{incy}+1) \).
- \(\text{incy} < 0 \) \(y \) is stored backward in array \(y \); that is, if \(\text{trans} = 'N' \) or 'n', then \(y_i \) is stored in \(y((i-n)\times\text{incy}+1) \); otherwise, \(y_i \) is stored in \(y((i-m)\times\text{incy}+1) \).

Use \(\text{incy} = 1 \) if the vector \(y \) is stored contiguously in array \(y \), that is, if \(y_i \) is stored in \(y(i) \). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.
Matrix-vector multiply

Output

\[y \]

The updated \(y \) vector replaces the input.

Notes

These subprograms conform to specifications of the Level 2 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are:

\[\text{trans} \neq 'N' \text{ or } 'n' \text{ or } 'T' \text{ or } 't' \text{ or } 'C' \text{ or } 'c' \]
\[m < 0 \]
\[n < 0 \]
\[kl < 0 \]
\[ku < 0 \]
\[ldab < kl+ku+1 \]
\[incx = 0 \]
\[incy = 0 \]

Actual character arguments in a subroutine call may be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement can be improved by coding the \text{trans} argument as 'NORMAL' or 'NONTRANS' for 'N', 'TRANSPOSE' for 'T', or 'CTRANS' for 'C'. Refer to “Example 2.”

Example 1

Form the REAL*4 matrix-vector product \(y = Ax \), where \(A \) is a 9 by 6 real band matrix whose lower bandwidth is 2 and whose upper bandwidth is 3. \(A \) is stored in an array \(AB \) whose dimensions are 10 by 10, \(x \) is a real vector 6 elements long stored in an array \(X \) of dimension 10, and \(y \) is a real vector 9 elements long stored in an array \(Y \), also of dimension 10.

```fortran
CHARACTER*1 TRANS
INTEGER*4   M, N, KL, KU, LDAB, INCX, INCY
REAL*4      ALPHA, BETA, AB(10,10), X(10), Y(10)
TRANS = 'N'
M = 9
N = 6
KL = 2
KU = 3
ALPHA = 1.0
BETA = 0.0
LDAB = 10
INCX = 1
INCY = 1
CALL SGBMV (TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X, INCX, BETA, Y, INCY)
```
Example 2 Form the REAL*8 matrix-vector product \(y = \frac{1}{2} \rho A^T x \), where \(\rho \) is a real scalar, \(A \) is a 6-by-9 real band matrix whose lower bandwidth is 1 and whose upper bandwidth is 2. \(A \) is stored in an array \(AB \) whose dimensions are 10 by 10, \(x \) is a real vector 6 elements long stored in an array \(X \) of dimension 10, and \(y \) is a real vector 9 elements long stored in an array \(Y \), also of dimension 10.

```fortran
INTEGER*4 M,N,KL,KU,LDAB
REAL*8 RHO,AB(10,10),X(10),Y(10)
M = 9
N = 6
KL = 1
KU = 2
LDAB = 10
CALL DGBMV ( 'TRANSPOSE', M, N, KL, KU, -RHO, AB, LDAB, X, 1, 0.5D0, Y, 1)
```
Name
SGECPY/DGECPY/CGECPY/ZGECPY
Copy general matrix

Purpose
These subprograms copy the general matrix A to B, where A and B are m-by-n matrices. Optionally, A^T or A^* can be copied to the n-by-m matrix B.

Refer to “F_SGE_COPY/F_DGE_COPY/F_CGE_COPY/F_ZGE_COPY” on page 358 for a description of the BLAS Standard subprograms for general matrix copy.

Usage
VECLIB:

```fortran
CHARACTER*1  trans  
INTEGER*4  m, n, lda, ldb  
REAL*4  a(lda, *), b(ldb, *)  
CALL SGECPY(trans, m, n, a, lda, b, ldb)
```

```fortran
CHARACTER*1  trans  
INTEGER*4  m, n, lda, ldb  
REAL*8  a(lda, *), b(ldb, *)  
CALL DGECPY(trans, m, n, a, lda, b, ldb)
```

```fortran
CHARACTER*1  trans  
INTEGER*4  m, n, lda, ldb  
COMPLEX*8  a(lda, *), b(ldb, *)  
CALL CGECPY(trans, m, n, a, lda, b, ldb)
```

```fortran
CHARACTER*1  trans  
INTEGER*4  m, n, lda, ldb  
COMPLEX*16  a(lda, *), b(ldb, *)  
CALL ZGECPY(trans, m, n, a, lda, b, ldb)
```

VECLIB8:

```fortran
CHARACTER*1  trans  
INTEGER*8  m, n, lda, ldb  
REAL*4  a(lda, *), b(ldb, *)  
CALL SGECPY(trans, m, n, a, lda, b, ldb)
```

```fortran
CHARACTER*1  trans  
INTEGER*8  m, n, lda, ldb  
REAL*8  a(lda, *), b(ldb, *)  
CALL DGECPY(trans, m, n, a, lda, b, ldb)
```
SGECPY/DGECPY/CGECPY/ZGECPY

Copy general matrix

CHARACTER*1 trans
INTEGER*8 m, n, lda, ldb
COMPLEX*8 a(lda,*), b(ldb,*)
CALL CGECPY(trans, m, n, a, lda, b, ldb)

CHARACTER*1 trans
INTEGER*8 m, n, lda, ldb
COMPLEX*16 a(lda,*), b(ldb,*)
CALL ZGECPY(trans, m, n, a, lda, b, ldb)

Input

trans Transposition option:
trans = 'N' or 'n' Copy A to B
trans = 'T' or 't' Copy A^T to B
trans = 'C' or 'c' Copy A^* to B
In the real subprograms, 'C' and 'c' have the same
meaning as 'T' and 't'.
m Number of rows in matrix A, m ≥ 0. If m = 0, the
subprograms do not reference a or b.
n Number of columns in matrix A, n ≥ 0. If n = 0, the
subprograms do not reference a or b.
a Array containing the m-by-n matrix A.
lda The leading dimension of array a as declared in the
calling program unit, with lda ≥ max (m,1).
b Array containing the matrix B, whose size is indicated
by trans:
trans = 'N' or 'n' B is an m-by-n matrix
otherwise B is an n-by-m matrix
ldb The leading dimension of array b as declared in the
calling program unit, with ldb ≥ max (the number of
rows of B,1).

Output

c The updated C matrix replaces the input.

Notes If an error in the arguments is detected, the subprograms call error handler
XERBLA, which writes an error message onto the standard error file and
terminates execution. The standard version of XERBLA (see xerbla(3m)) can be
replaced with a user-supplied version to change the error procedure. Error
conditions are

trans ≠ 'N' or 'n' or 'T' or 't' or 'C' or 'c'
m < 0
Copy general matrix

SGECPY/DGECPY/CGECPY/ZGECPY

\[n < 0 \]
\[lda < \text{max}(m,1) \]
\[ldb \text{ too small} \]

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement may be improved by coding the `trans` argument as 'NORMAL' or 'NON-TRANSPOSED' for 'N', 'TRANSPOSED' for 'T', or 'CONJUGATE-TRANSPOSED' for 'C'.

Chapter 3 Basic Matrix Operations 221
Name
SGEMM/DGEMM/CGEMM/ZGEMM
Matrix-matrix multiply

Purpose
These subprograms compute the matrix-matrix product \(AB \), where \(A \) is an \(m \)-by-\(k \) matrix, and \(B \) is a \(k \)-by-\(n \) matrix. Optionally, \(A \) can be replaced by \(A^T \) or \(A^* \), where \(A \) is a \(k \)-by-\(m \) matrix, and \(B \) can be replaced by \(B^T \) or \(B^* \), where \(B \) is an \(n \)-by-\(k \) matrix. Here, \(A^T \) and \(B^T \) are the transposes and \(A^* \) and \(B^* \) are the conjugate-transposes of \(A \) and \(B \), respectively. The product can be stored in the result matrix (which is always of size \(m \)-by-\(n \)) or optionally can be added to or subtracted from it. This is handled in a convenient, but general, way by two scalar arguments, \(\alpha \) and \(\beta \), which are used as multipliers of the matrix product and the result matrix. Specifically, these subprograms compute matrix products of the forms:

\[
C \leftarrow \alpha AB + \beta C, \quad C \leftarrow \alpha A^T B + \beta C, \quad C \leftarrow \alpha A^* B + \beta C, \\
C \leftarrow \alpha AB^T + \beta C, \quad C \leftarrow \alpha A^T B^T + \beta C, \quad C \leftarrow \alpha A^* B^* + \beta C.
\]

Refer to “F_SGEMM/F_DGEMM/F_CGEMM/F_ZGEMM” on page 362 for a description of the BLAS Standard subprograms for general matrix-matrix multiply.

Usage
VECLIB:

```
CHARACTER*1  transa, transb
INTEGER*4    m, n, k, lda, ldb, ldc
REAL*4       alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL SGEMM(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1  transa, transb
INTEGER*4    m, n, k, lda, ldb, ldc
REAL*8       alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL DGEMM(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1  transa, transb
INTEGER*4    m, n, k, lda, ldb, ldc
COMPLEX*8    alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL CGEMM(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1  transa, transb
INTEGER*4    m, n, k, lda, ldb, ldc
COMPLEX*16   alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL ZGEMM(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
```

222 HP MLIB User's Guide
VECLIB8:

CHARACTER*1 transa, transb
INTEGER*8 m, n, k, lda, ldb, ldc
REAL*4 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL SGEMM(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1 transa, transb
INTEGER*8 m, n, k, lda, ldb, ldc
REAL*8 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL DGEMM(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1 transa, transb
INTEGER*8 m, n, k, lda, ldb, ldc
COMPLEX*8 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL CGEMM(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1 transa, transb
INTEGER*8 m, n, k, lda, ldb, ldc
COMPLEX*16 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL ZGEMM(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
Input

transa
Transposition option for A:
- 'N' or 'n': Use m-by-k matrix A
- 'T' or 't': Use A^T where A is a k-by-m matrix
- 'C' or 'c': Use A^* where A is a k-by-m matrix

where A^T is the transpose of A and A^* is the conjugate transpose. In the real subprograms, 'C' and 'c' have the same meaning as 'T' and 't'.

transb
Transposition option for B:
- 'N' or 'n': Use k-by-n matrix B
- 'T' or 't': Use B^T where B is an n-by-k matrix
- 'C' or 'c': Use B^* where B is an n-by-k matrix

where B^T is the transpose of B and B^* is the conjugate transpose. In the real subprograms, 'C' and 'c' have the same meaning as 'T' and 't'.

m
Number of rows in matrix C, $m \geq 0$. If $m = 0$, the subprograms do not reference a, b, or c.

n
Number of columns in matrix C, $n \geq 0$. If $n = 0$, the subprograms do not reference a, b, or c.

k
The middle dimension of the matrix multiply, $k \geq 0$. If $k = 0$, the subprograms compute $C \leftarrow \beta C$ without referencing a or b.

alpha
The scalar α. If $\text{alpha} = 0$, the subprograms compute $C \leftarrow \beta C$ without referencing a or b.

a
Array containing the matrix A, whose size is indicated by **transa**:
- 'N' or 'n': A is an m-by-k matrix
- otherwise: A is a k-by-m matrix

lda
The leading dimension of array a as declared in the calling program unit, with $\text{lda} \geq \max$ (the number of rows of $A, 1$).

b
Array containing the matrix B, whose size is indicated by **transb**:
- 'N' or 'n': B is a k-by-n matrix
- otherwise: B is an n-by-k matrix

ldb
The leading dimension of array b as declared in the calling program unit, with $\text{ldb} \geq \max$ (the number of rows of $B, 1$).
Matrix-matrix multiply

SGEMM/DGEMM/CGEMM/ZGEMM

beta
- The scalar \(\beta \).

e
- Array containing the \(m \)-by-\(n \) matrix \(C \). Not used as input if \(\beta = 0 \).

ldc
- The leading dimension of array \(e \) as declared in the calling program unit, with \(\text{ldc} \geq \max(m,1) \).

Output
- \(e \)
 - The updated \(C \) matrix replaces the input.

Notes
- These subprograms conform to specifications of the Level 3 BLAS.
- If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are
 - \(\text{transa} \neq \text{'N'} \) or \(\text{'n'} \) or \(\text{'T'} \) or \(\text{'t'} \) or \(\text{'C'} \) or \(\text{'c'} \)
 - \(\text{transb} \neq \text{'N'} \) or \(\text{'n'} \) or \(\text{'T'} \) or \(\text{'t'} \) or \(\text{'C'} \) or \(\text{'c'} \)
 - \(m < 0 \)
 - \(n < 0 \)
 - \(k < 0 \)
 - \(\text{lda} \) too small
 - \(\text{ldb} \) too small
 - \(\text{ldc} < \max(m,1) \)
- Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement may be improved, for example, by coding the \(\text{transa} \) and \(\text{transb} \) arguments as \('\text{NORMAL}'\) or \('\text{NONTRANS}'\) for \(\text{'N'} \), \('\text{TRANSPOSE}'\) for \(\text{'T'} \), or \('\text{CTRANS}'\) for \(\text{'C'} \). Refer to “Example 2.”
Example 1 Form the REAL*4 matrix product $C = AB$, where A is a 9-by-6 real matrix stored in an array A whose dimensions are 10 by 10, B is a 6-by-8 real matrix stored in an array B of dimension 10 by 10, and C is a 9-by-8 real matrix stored in an array C, also of dimension 10 by 10.

CHARACTER*1 TRANSA,TRANSB
INTEGER*4 M,N,K,LDA,LDB,LDC
REAL*4 ALPHA,BETA,A(10,10),B(10,10),C(10,10)
TRANSA = 'N'
TRANSB = 'N'
M = 9
N = 8
K = 6
ALPHA = 1.0
BETA = 0.0
LDA = 10
LDB = 10
LDC = 10
CALL SGEMM (TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

Example 2 Form the REAL*8 matrix product $C = \frac{1}{2} C + \rho A^T B$, where ρ is a real scalar, A is a 6-by-9 real matrix stored in an array A whose dimensions are 10 by 10, B is a 6-by-8 real matrix stored in an array B of dimension 10 by 10, and C is a 9-by-8 real matrix stored in an array C, also of dimension 10 by 10.

INTEGER*4 M,N,K,LDA,LDB,LDC
REAL*8 RHO,A(10,10),B(10,10),C(10,10)
M = 9
N = 8
K = 6
LDA = 10
LDB = 10
LDC = 10
CALL DGEMM (‘TRAN’, ‘NONTRAN’,M,N,K,RHO,A,LDA,B,LDB,0.5D0,C,LDC)
Strassen matrix-matrix multiply

Name

DGEMMS/ZGEMMS
Strassen matrix-matrix multiply

Purpose

These subprograms use Strassen’s method to compute the matrix-matrix product AB, where A is an m-by-k matrix and B is a k-by-n matrix. Strassen’s method is an algorithm for matrix multiplication that, under certain circumstances, uses fewer than mnk multiplications and additions. These subprograms have argument lists identical to the standard Level 3 BLAS subprograms DGEMM and ZGEMM in VECLIB and CGEMM and SGEMM in VECLIB8. So to convert a program to call a Strassen subprogram instead of a standard matrix multiply, it is only necessary to change the subprogram name. With consistent upper or lower case coding, a simple preprocessor directive can select standard or Strassen matrix multiply calls. Work area management is done by the subprograms.

By using Strassen’s method, these subprograms can be considerably faster than their VECLIB and VECLIB8 counterparts. Refer to “Notes” for details. In addition to computing the matrix-matrix product AB, A can be replaced by A^T or A^*, where A is a k-by-m matrix, and B can be replaced by B^T or B^*, where B is an n-by-k matrix. Here, A^T and B^T are the transposes and A^* and B^* are the conjugate-transposes of A and B, respectively. The product can be stored in the result matrix (which is always of size m-by-n) or optionally can be added to or subtracted from it. This is handled in a convenient, but general, way by two scalar arguments, α and β, which are used as multipliers of the matrix product and the result matrix. Specifically, these subprograms compute matrix products of the forms:

\[
C \leftarrow \alpha AB + \beta C, \quad C \leftarrow \alpha A^T B + \beta C, \quad C \leftarrow \alpha A^* B + \beta C,
\]
\[
C \leftarrow \alpha AB^T + \beta C, \quad C \leftarrow \alpha A^T B^T + \beta C, \quad C \leftarrow \alpha A^* B^* + \beta C.
\]

Refer to “F_SGEMM/F_DGEMM/F_CGEMM/F_ZGEMM” on page 362 for a description of the equivalent BLAS Standard subprograms.

Usage

VECLIB:

<table>
<thead>
<tr>
<th>CHARACTER*1</th>
<th>transa, transb</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER*4</td>
<td>m, n, k, lda, ldb, ldc</td>
</tr>
<tr>
<td>REAL*8</td>
<td>alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)</td>
</tr>
<tr>
<td>CALL DGEMMS(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHARACTER*1</th>
<th>transa, transb</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER*4</td>
<td>m, n, k, lda, ldb, ldc</td>
</tr>
<tr>
<td>COMPLEX*16</td>
<td>alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)</td>
</tr>
<tr>
<td>CALL ZGEMMS(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)</td>
<td></td>
</tr>
</tbody>
</table>
DGEMMS/ZGEMMS

VECLIBS:

CHARACTER*1 transa, transb
INTEGER*8 m, n, k, lda, ldb, ldc
REAL*8 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL DGEMMS(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1 transa, transb
INTEGER*8 m, n, k, lda, ldb, ldc
COMPLEX*16 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL ZGEMMS(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
<table>
<thead>
<tr>
<th>Input</th>
<th>transa</th>
<th>Transposition option for A:</th>
</tr>
</thead>
<tbody>
<tr>
<td>'N' or 'n'</td>
<td>Use m-by-k matrix A</td>
<td></td>
</tr>
<tr>
<td>'T' or 't'</td>
<td>Use A^T where A is a k-by-m matrix</td>
<td></td>
</tr>
<tr>
<td>'C' or 'c'</td>
<td>Use A^* where A is a k-by-m matrix</td>
<td></td>
</tr>
</tbody>
</table>

where A^T is the transpose of A and A^* is the conjugate transpose. In the real subprograms, 'C' and 'c' have the same meaning as 'T' and 't'.

<table>
<thead>
<tr>
<th>Input</th>
<th>transb</th>
<th>Transposition option for B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>'N' or 'n'</td>
<td>Use k-by-n matrix B</td>
<td></td>
</tr>
<tr>
<td>'T' or 't'</td>
<td>Use B^T where B is an n-by-k matrix</td>
<td></td>
</tr>
<tr>
<td>'C' or 'c'</td>
<td>Use B^* where B is an n-by-k matrix</td>
<td></td>
</tr>
</tbody>
</table>

where B^T is the transpose of B and B^* is the conjugate transpose. In the real subprograms, 'C' and 'c' have the same meaning as 'T' and 't'.

<table>
<thead>
<tr>
<th>Input</th>
<th>m</th>
<th>Number of rows in matrix C, $m \geq 0$. If $m = 0$, the subprograms do not reference a, b, or c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>n</td>
<td>Number of columns in matrix C, $n \geq 0$. If $n = 0$, the subprograms do not reference a, b, or c.</td>
</tr>
<tr>
<td>Input</td>
<td>k</td>
<td>The middle dimension of the matrix multiply, $k \geq 0$. If $k = 0$, the subprograms compute $C \leftarrow \beta C$ without referencing a or b.</td>
</tr>
<tr>
<td>Input</td>
<td>alpha</td>
<td>The scalar α. If $\alpha = 0$, the subprograms compute $C \leftarrow \beta C$ without referencing a or b.</td>
</tr>
<tr>
<td>Input</td>
<td>a</td>
<td>Array containing the matrix A, whose size is indicated by transa:</td>
</tr>
<tr>
<td></td>
<td>'N' or 'n'</td>
<td>A is an m-by-k matrix</td>
</tr>
<tr>
<td></td>
<td>otherwise</td>
<td>A is a k-by-m matrix</td>
</tr>
<tr>
<td>Input</td>
<td>lda</td>
<td>The leading dimension of array a as declared in the calling program unit, with $lda \geq \max$ (the number of rows of $A,1$).</td>
</tr>
<tr>
<td>Input</td>
<td>b</td>
<td>Array containing the matrix B, whose size is indicated by transb:</td>
</tr>
<tr>
<td></td>
<td>'N' or 'n'</td>
<td>B is a k-by-n matrix</td>
</tr>
<tr>
<td></td>
<td>otherwise</td>
<td>B is an n-by-k matrix</td>
</tr>
<tr>
<td>Input</td>
<td>ldb</td>
<td>The leading dimension of array b as declared in the calling program unit, with $ldb \geq \max$ (the number of rows of $B,1$).</td>
</tr>
</tbody>
</table>
DGEMMS/ZGEMMS

Strassen matrix-matrix multiply

beta
The scalar β.

c
Array containing the m-by-n matrix C. Not used as input if $\text{beta} = 0$.

ldc
The leading dimension of array c as declared in the calling program unit, with $\text{ldc} \geq \max(m,1)$.

Output
The updated C matrix replaces the input.

Notes
Except for the extra character in the subprogram name, these subprograms conform to specifications of the Level 3 BLAS subprograms DGEMM and ZGEMM.

Because of their use of Strassen’s method DGEMMS and ZGEMMS are asymptotically faster than standard matrix multiply methods such as those employed in the standard routines DGEMM and ZGEMM. In practice, these particular implementations are faster than their standard counterparts if $\min(m,n,k) > 700$ for ZGEMMS, or $\min(m,n,k) > 1500$ for DGEMMS. The speedup in the complex case is much more pronounced. That is due in large part to the complex bilinear reduction technique (implemented underneath Strassen’s method) that allows two complex matrices to be multiplied using only $3/4$ of the multiplications required by the traditional method. Also, the relative cost of data motion is lower in the complex case. The gains in the real case are marginal until n becomes very large.

In the operator norm, Strassen’s method is slightly less stable than traditional matrix multiplication, and the computation of individual elements is unstable. The emerging consensus seems to be that Strassen’s method is sufficiently stable for most applications. Partly for stability reasons, however, only 64-bit Strassen subprograms are available at this time.

For a good overview and bibliography of this subject, see Higham.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are:

- $\text{transa} \neq 'N$ or 'n' or 'T' or 't' or 'C' or 'c'$
- $\text{transb} \neq 'N$ or 'n' or 'T' or 't' or 'C' or 'c'$
- $m < 0$
- $n < 0$
- $k < 0$
- lda too small
- ldb too small
- $\text{ldc} < \max(m,1)$
Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement can be improved, for example, by coding the transa and transb arguments as 'NORMAL' or 'NONTRANS' for 'N', 'TRANSPOSE' for 'T', or 'CTRANS' for 'C'. Refer to “Example 2.”

Example 1
Form the REAL*8 matrix product $C = AB$, where A is a 900-by-600 real matrix stored in an array A whose dimensions are 1000 by 1000, B is a 600-by-800 real matrix stored in an array B of dimension 1000 by 1000, and C is a 900-by-800 real matrix stored in an array C, also of dimension 1000 by 1000.

```fortran
CHARACTER*1 TRANSA, TRANSB
INTEGER*4   M,N,K,LDA,LDB,LDC
REAL*8      ALPHA,BETA,A(1000,1000),B(1000,1000),
            &            C(1000,1000)
TRANSA = 'N'
TRANSB = 'N'
M = 900
N = 800
K = 600
ALPHA = 1.0
BETA = 0.0
LDA = 1000
LDB = 1000
LDC = 1000
CALL DGEMMS (TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,
            &             BETA,C,LDC)
```

Example 2
Form the COMPLEX*16 matrix product $C = \frac{1}{2}C + \rho A^*B$, where ρ is a complex scalar, A is a 600-by-900 complex matrix stored in an array A whose dimensions are 1000 by 1000, B is a 600-by-800 complex matrix stored in an array B of dimension 1000 by 1000, and C is a 900-by-800 complex matrix stored in an array C, also of dimension 1000 by 1000.

```fortran
INTEGER*4   M,N,K,LDA,LDB,LDC
COMPLEX*16  RHO,A(1000,1000),B(1000,1000),C(1000,1000)
M = 900
N = 800
K = 600
LDA = 1000
LDB = 1000
LDC = 1000
CALL ZGEMMS ('CONJ','NORMAL',M,N,K,RHO,A,LDA,B,LDB,
            &             BETA,C,LDC)
```
Name
SGEMV/DGEMV/CGEMV/ZGEMV
Matrix-vector multiply

Purpose
These subprograms compute the matrix-vector products Ax, $A^T x$, and $A^* x$, where A is an m-by-n matrix, A^T is the transpose of A, and A^* is the conjugate transpose of A. The product can be stored in the result array or added to or subtracted from it. This is handled in a convenient, but general, way by two scalar arguments, α and β, which are used as multipliers of the matrix-vector product and the result vector. Specifically, these subprograms compute matrix-vector products of the forms:

$$y \leftarrow \alpha Ax + \beta y,$$
$$y \leftarrow \alpha A^T x + \beta y,$$
$$y \leftarrow \alpha A^* x + \beta y.$$

Refer to “F_SGEMV/F_DGEMV/F_CGEMV/F_ZGEMV” on page 365 for a description of the BLAS Standard subprograms for a triangular matrix-vector multiply.

Usage
VECLIB:

```c

CHARACTER*1 trans
INTEGER*4    m, n, lda, incx, incy
REAL*4       alpha, beta, a(lda, n), x(lenx), y(leny)
CALL SGEMV(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

CHARACTER*1 trans
INTEGER*4    m, n, lda, incx, incy
REAL*8       alpha, beta, a(lda, n), x(lenx), y(leny)
CALL DGEMV(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

CHARACTER*1 trans
INTEGER*4    m, n, lda, incx, incy
COMPLEX*8    alpha, beta, a(lda, n), x(lenx), y(leny)
CALL CGEMV(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

CHARACTER*1 trans
INTEGER*4    m, n, lda, incx, incy
COMPLEX*16   alpha, beta, a(lda, n), x(lenx), y(leny)
CALL ZGEMV(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

VECLIB8:

CHARACTER*1 trans
INTEGER*8    m, n, lda, incx, incy
REAL*4       alpha, beta, a(lda, n), x(lenx), y(leny)
CALL SGEMV(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
```

Refer to “F_SGEMV/F_DGEMV/F_CGEMV/F_ZGEMV” on page 365 for a description of the BLAS Standard subprograms for a triangular matrix-vector multiply.
Matrix-vector multiply

SGEMV/DGEMV/CGEMV/ZGEMV

CHARACTER*1 trans
INTEGER*8 m, n, lda, incx, incy
REAL*8 alpha, beta, a(lda, n), x(lenx), y(leny)
CALL DGEMV(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

CHARACTER*1 trans
INTEGER*8 m, n, lda, incx, incy
COMPLEX*8 alpha, beta, a(lda, n), x(lenx), y(leny)
CALL CGEMV(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

CHARACTER*1 trans
INTEGER*8 m, n, lda, incx, incy
COMPLEX*16 alpha, beta, a(lda, n), x(lenx), y(leny)
CALL ZGEMV(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
SGEMV/DGEMV/CGEMV/ZGEMV
Matrix-vector multiply

Input

trans
Transposition option for A:
'N' or 'n' Compute \(y \leftarrow \alpha A x + \beta y \)
'T' or 't' Compute \(y \leftarrow \alpha A^T x + \beta y \)
'C' or 'c' Compute \(y \leftarrow \alpha A^* x + \beta y \)

where \(A^T \) is the transpose of \(A \) and \(A^* \) is the conjugate transpose. In the real subprograms, 'C' and 'c' have the same meaning as 'T' and 't'.

m
Number of rows in matrix \(A \), \(m \geq 0 \). If \(m = 0 \), the subprograms do not reference \(a, x, \) or \(y \).

n
Number of columns in matrix \(A \), \(n \geq 0 \). If \(n = 0 \), the subprograms do not reference \(a, x, \) or \(y \).

alpha
The scalar \(\alpha \). If \(\alpha = 0 \), the subprograms compute \(y \leftarrow \beta y \) without referencing \(A \) or \(x \).

a
Array containing the \(m \)-by-\(n \) matrix \(A \).

lda
The leading dimension of array \(a \) as declared in the calling program unit, with \(\text{lda} \geq \max(m,1) \).

x
Array containing the vector \(x \). The number of elements of \(x \) and the value of \(\text{lenx} \), the dimension of the array \(x \), depend on \text{trans}:

'N' or 'n' \(x \) has \(n \) elements \(\text{lenx} = (n-1)\times|\text{incx}|+1 \)
otherwise \(x \) has \(m \) elements \(\text{lenx} = (m-1)\times|\text{incx}|+1 \)

incx
Increment for the array \(x \), \(\text{incx} \neq 0 \):

\(\text{incx} > 0 \) \(x \) is stored forward in array \(x \); that is, \(x_i \) is stored in \(x((i-1)\times|\text{incx}|+1) \).
\(\text{incx} < 0 \) \(x \) is stored backward in array \(x \); that is, if \text{trans} = 'N' or 'n', then \(x_i \) is stored in \(x((i-n)\times|\text{incx}|+1) \); otherwise, \(x_i \) is stored in \(x((i-m)\times|\text{incx}|+1) \).

Use \(\text{incx} = 1 \) if the vector \(x \) is stored contiguously in array \(x \), that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

beta
The scalar \(\beta \).
Matrix-vector multiply

SGEMV/DGEMV/CGEMV/ZGEMV

y

Array containing the vector \(y \). The number of elements of \(y \) and the value of \(\text{leny} \), the dimension of the array \(y \), depend on \(\text{trans} \):

- 'N' or 'n' \(y \) has \(m \) elements \(\text{leny} = (m-1) \times |\text{incy}| + 1 \)
- otherwise \(y \) has \(n \) elements \(\text{leny} = (n-1) \times |\text{incy}| + 1 \)

Not used as input if \(\text{beta} = 0 \).

incy

Increment for the array \(y \), \(\text{incy} \neq 0 \):

- \(\text{incy} > 0 \) \(y \) is stored forward in array \(y \); that is, \(y_i \) is stored in \(y((i-1) \times \text{incy}+1) \).
- \(\text{incy} < 0 \) \(y \) is stored backward in array \(y \); that is, if \(\text{trans} = 'N' \) or 'n', then \(y_i \) is stored in \(y((i-m) \times \text{incy}+1) \); otherwise, \(y_i \) is stored in \(y((i-n) \times \text{incy}+1) \).

Use \(\text{incy} = 1 \) if the vector \(y \) is stored contiguously in array \(y \), that is, if \(y_i \) is stored in \(y(i) \). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

Output

\(y \)

The updated \(y \) vector replaces the input.

Notes

These subprograms conform to specifications of the Level 2 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are

- \(\text{trans} \neq 'N' \) or 'n' or 'T' or 't' or 'C' or 'c'
- \(m < 0 \)
- \(n < 0 \)
- \(\text{lda} < \max(m,1) \)
- \(\text{inex} = 0 \)
- \(\text{incy} = 0 \)

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement may be improved by coding the \(\text{trans} \) argument as 'NORMAL' or 'NONTRANS' for 'N', 'TRANSPOSE' for 'T', or 'CTRANS' for 'C'. Refer to “Example 2.”
Example 1 Form the REAL*4 matrix-vector product $y = Ax$, where A is a 9-by-6 real matrix stored in an array A whose dimensions are 10-by-10, x is a real vector 6 elements long stored in an array X of dimension 10, and y is a real vector 9 elements long stored in an array Y, also of dimension 10.

```fortran
CHARACTER*1 TRANS
INTEGER*4   M,N,LDA,INCX,INCY
REAL*4      ALPHA,BETA,A(10,10),X(10),Y(10)
TRANS = 'N'
M = 9
N = 6
ALPHA = 1.0
BETA = 0.0
LDA = 10
INCX = 1
INCY = 1
CALL SGEMV (TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
```

Example 2 Form the REAL*8 matrix-vector product $y = \frac{1}{2} y - \rho A^T x$, where ρ is a real scalar, A is a 6-by-9 real matrix stored in an array A whose dimensions are 10-by-10, x is a real vector 6 elements long stored in an array X of dimension 10, and y is a real vector 9 elements long stored in an array Y, also of dimension 10.

```fortran
INTEGER*4 M,N,LDA
REAL*8    RHO,A(10,10),X(10),Y(10)
M = 9
N = 6
LDA = 10
CALL DGEMV ('TRANSPOSE',M,N,-RHO,A,LDA,X,1,0.5D0,Y,1)
```
Name
SGER/DGER/CGERC/CGERU/ZGERC/ZGERU

Rank-1 update

Purpose
These subprograms compute the rank-1 updates

\[
A \leftarrow axy^T + A \quad \text{and} \quad A \leftarrow axy^* + A,
\]

where \(A \) is an \(m \)-by-\(n \) matrix, \(\alpha \) is a scalar, \(x \) is an \(m \)-vector, \(y \) is an \(n \)-vector, and \(y^T \) and \(y^* \) are the transpose and conjugate transpose of \(y \), respectively.

Refer to “F_SGER/F_DGER/F_CGER/F_ZGER” on page 375 for a description of the BLAS Standard subprograms for general rank-1 update.

Usage
VECLIB:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER*4</td>
<td>(m, n, \text{lda}, \text{inex}, \text{incy})</td>
<td>CALL SGER((m, n, \alpha, x, \text{inex}, y, \text{incy}, a, \text{lda}))</td>
</tr>
<tr>
<td>REAL*4</td>
<td>(\alpha, a(\text{lda}, n), x(\text{lenx}), y(\text{leny}))</td>
<td></td>
</tr>
<tr>
<td>INTEGER*4</td>
<td>(m, n, \text{lda}, \text{inex}, \text{incy})</td>
<td>CALL DGER((m, n, \alpha, x, \text{inex}, y, \text{incy}, a, \text{lda}))</td>
</tr>
<tr>
<td>REAL*8</td>
<td>(\alpha, a(\text{lda}, n), x(\text{lenx}), y(\text{leny}))</td>
<td></td>
</tr>
<tr>
<td>INTEGER*4</td>
<td>(m, n, \text{lda}, \text{inex}, \text{incy})</td>
<td>CALL CGERC((m, n, \alpha, x, \text{inex}, y, \text{incy}, a, \text{lda}))</td>
</tr>
<tr>
<td>COMPLEX*8</td>
<td>(\alpha, a(\text{lda}, n), x(\text{lenx}), y(\text{leny}))</td>
<td></td>
</tr>
<tr>
<td>INTEGER*4</td>
<td>(m, n, \text{lda}, \text{inex}, \text{incy})</td>
<td>CALL CGERU((m, n, \alpha, x, \text{inex}, y, \text{incy}, a, \text{lda}))</td>
</tr>
<tr>
<td>COMPLEX*8</td>
<td>(\alpha, a(\text{lda}, n), x(\text{lenx}), y(\text{leny}))</td>
<td></td>
</tr>
<tr>
<td>INTEGER*4</td>
<td>(m, n, \text{lda}, \text{inex}, \text{incy})</td>
<td>CALL ZGERC((m, n, \alpha, x, \text{inex}, y, \text{incy}, a, \text{lda}))</td>
</tr>
<tr>
<td>COMPLEX*16</td>
<td>(\alpha, a(\text{lda}, n), x(\text{lenx}), y(\text{leny}))</td>
<td></td>
</tr>
<tr>
<td>INTEGER*4</td>
<td>(m, n, \text{lda}, \text{inex}, \text{incy})</td>
<td>CALL ZGERU((m, n, \alpha, x, \text{inex}, y, \text{incy}, a, \text{lda}))</td>
</tr>
<tr>
<td>COMPLEX*16</td>
<td>(\alpha, a(\text{lda}, n), x(\text{lenx}), y(\text{leny}))</td>
<td></td>
</tr>
</tbody>
</table>

VECLIB8:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER*8</td>
<td>(m, n, \text{lda}, \text{inex}, \text{incy})</td>
<td>CALL SGER((m, n, \alpha, x, \text{inex}, y, \text{incy}, a, \text{lda}))</td>
</tr>
<tr>
<td>REAL*4</td>
<td>(\alpha, a(\text{lda}, n), x(\text{lenx}), y(\text{leny}))</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 3 Basic Matrix Operations 237
SGER/DGER/CGER/CGERU/ZGERC/ZGERU

Rank-1 update

INTEGER*8 m, n, lda, incx, incy
REAL*8 alpha, a(lda, n), x(lenx), y(leny)
CALL DGER(m, n, alpha, x, incx, y, incy, a, lda)

INTEGER*8 m, n, lda, incx, incy
COMPLEX*8 alpha, a(lda, n), x(lenx), y(leny)
CALL CGER(m, n, alpha, x, incx, y, incy, a, lda)

INTEGER*8 m, n, lda, incx, incy
COMPLEX*8 alpha, a(lda, n), x(lenx), y(leny)
CALL CGERU(m, n, alpha, x, incx, y, incy, a, lda)

INTEGER*8 m, n, lda, incx, incy
COMPLEX*16 alpha, a(lda, n), x(lenx), y(leny)
CALL ZGERC(m, n, alpha, x, incx, y, incy, a, lda)

INTEGER*8 m, n, lda, incx, incy
COMPLEX*16 alpha, a(lda, n), x(lenx), y(leny)
CALL ZGGERU(m, n, alpha, x, incx, y, incy, a, lda)

Input

m Number of rows in matrix A and elements of vector x, m ≥ 0. If m = 0, the subprograms do not reference a, x, or y.

n Number of columns in matrix A and elements of vector y, n ≥ 0. If n = 0, the subprograms do not reference a, x, or y.

alpha The scalar α. If alpha = 0, the subprograms do not reference A, x, or y.

x Array of length lenx = (m−1)×|incx| + 1 containing the m-vector x.

incx Increment for the array x, incx ≠ 0:

incx > 0 x is stored forward in array x; that is, xᵢ is stored in x((i−1)×incx+1).

incx < 0 x is stored backward in array x; that is, xᵢ is stored in x((i−m)×incx+1).

Use incx = 1 if the vector x is stored contiguously in array x, that is, if xᵢ is stored in x(i). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

y Array of length leny = (n−1)×|incy| + 1 containing the n-vector y. y is used in conjugated form by CGER and
ZGERC, and in unconjugated form by the other subprograms.

incy

Increment for the array \(y \), \(\text{incy} \neq 0 \):

- \(\text{incy} > 0 \)
 - \(y \) is stored forward in array \(y \); that is, \(y_i \) is stored in \(y((i-1)\times\text{incy}+1) \).
- \(\text{incy} < 0 \)
 - \(y \) is stored backward in array \(y \); that is, \(y_i \) is stored in \(y((i-n)\times\text{incy}+1) \).

Use \(\text{incy} = 1 \) if the vector \(y \) is stored contiguously in array \(y \), that is, if \(y_i \) is stored in \(y(i) \). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

a

Array containing the \(m \)-by-\(n \) matrix \(A \).

lda

The leading dimension of array \(a \) as declared in the calling program unit, with \(\text{lda} \geq \text{max}(m,1) \).

Output

a

The updated \(A \) matrix replaces the input.
Notes

These subprograms conform to specifications of the Level 2 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are

\[
\begin{align*}
m &< 0 \\
n &< 0 \\
\text{lda} &< \max(m,1) \\
\text{incx} &= 0 \\
\text{incy} &= 0
\end{align*}
\]

Example 1

Apply a REAL*4 rank-1 update \(xy^T\) to \(A\), where \(A\) is a 6-by-9 real matrix stored in an array \(A\) whose dimensions are 10-by-10, \(x\) is a real vector 6 elements long stored in an array \(X\) of dimension 10, and \(y\) is a real vector 9 elements long stored in an array \(Y\), also of dimension 10.

```fortran
INTEGER*4 M, N, LDA, INCX, INCY
REAL*4     ALPHA, A(10,10), X(10), Y(10)
M = 6
N = 9
ALPHA = 1.0
LDA = 10
INCX = 1
INCY = 1
CALL SGER (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
```

Example 2

Apply a COMPLEX*8 conjugated rank-1 update \(-2xy^*\) to \(A\), where \(A\) is a 6-by-9 complex matrix stored in an array \(A\) whose dimensions are 10 by 10, \(x\) is a complex vector 6 elements long stored in an array \(X\) of dimension 10, and \(y\) is a complex vector 9 elements long stored in an array \(Y\), also of dimension 10.

```fortran
INTEGER*4 M, N, LDA
COMPLEX*8  A(10,10), X(10), Y(10)
M = 6
N = 9
LDA = 10
CALL CGERC (M, N, (-2.0E0, 0.0E0), X, 1, Y, 1, A, LDA)
```
In-place transpose of a general square matrix

Name

SGETRA/DGETRA/CGETRA/ZGETRA

In-place transpose of a general square matrix

Purpose

These subprograms overwrite an n by n matrix A with its transpose.

Usage

VECLIB:

```fortran
INTEGER*4    n, lda
REAL*4       a(lda, n)
CALL SGETRA(n, a, lda)

INTEGER*4    n, lda
REAL*8       a(lda, n)
CALL DGETRA(n, a, lda)

CHARACTER*1  trans
INTEGER*4    n, lda
COMPLEX*8    a(lda, n)
CALL CGETRA(trans, n, a, lda)

CHARACTER*1  trans
INTEGER*4    n, lda
COMPLEX*16   a(lda, n)
CALL ZGETRA(trans, n, a, lda)
```

VECLIB8:

```fortran
INTEGER*8    n, lda
REAL*4       a(lda, n)
CALL SGETRA(n, a, lda)

INTEGER*8    n, lda
REAL*8       a(lda, n)
CALL DGETRA(n, a, lda)

CHARACTER*1  trans
INTEGER*8    n, lda
COMPLEX*8    a(lda, n)
CALL CGETRA(trans, n, a, lda)

CHARACTER*1  trans
INTEGER*8    n, lda
COMPLEX*16   a(lda, n)
CALL ZGETRA(trans, n, a, lda)
```

Input

`trans` Transposition option for A:
SGETRA/DGETRA/CGETRA/ZGETRA In-place transpose of a general square matrix

trans = ‘T’ or ‘t’ Compute $A \leftarrow A$-transpose
trans = ‘C’ or ‘c’ Compute $A \leftarrow A$ conjugate-transpose

n Number of rows and columns in matrix A, $n \geq 0$. If $n = 0$, the subprograms do not reference a.

a Array containing the n-by-n matrix A.

lda The leading dimension of array a as declared in the calling program unit, with $lda \geq \text{max}(n,1)$.

Output

a The result replaces the input.
Notes

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are

\begin{itemize}
 \item \texttt{trans} \neq \texttt{‘T’} or \texttt{‘t’} or \texttt{‘C’} or \texttt{‘c’}
 \item \texttt{n} < 0, and
 \item \texttt{lda} < \max(\texttt{n},1)
\end{itemize}

Actual character arguments in a subroutine call may be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement may be improved by coding the \texttt{trans} argument as ‘Transposed’ for ‘T’, or ‘Conjugate-Transposed’ for ‘C’.
Name
SSBMV/DSBMV/CHBMV/ZHBMV
Matrix-vector multiply

Purpose
These subprograms compute the matrix-vector product Ax, where A is an n-by-n real symmetric or complex Hermitian band matrix and x is a real or complex n-vector. The product can be stored in the result array, or it can be added to or subtracted from it. This is handled in a convenient, but general, way by two scalar arguments, α and β, which are used as multipliers of the matrix-vector product and the result vector. Specifically, these subprograms compute the matrix-vector product of the form:

$$y \leftarrow \alpha Ax + \beta y.$$

The structure of A is indicated by the name of the subprogram used:

- SSBMV or DSBMV: A is a real symmetric band matrix
- CHBMV or ZHBMV: A is a complex Hermitian band matrix

A symmetric or Hermitian band matrix is a symmetric or Hermitian matrix whose nonzero elements all are on, or fairly near, the principal diagonal. Specifically, $a_{ij} \neq 0$ only if $|i-j| \leq kd$ for some integer kd, called the half bandwidth.

Refer to “F_SSBMV/F_DSBMV/F_CHBMV/F_ZHBMV” on page 378 and “F_CHBMV/F_ZHBMV” on page 340 for a description of the equivalent BLAS Standard subprograms.

Matrix Storage
Because it is not necessary to store or operate on the zeros outside the band of A, and because either triangle of A can be obtained from the other, you only need to provide the band within one triangle of A. Compared to storing the entire matrix, this can save memory in two ways: Only the elements within the band are stored and of them only the upper or the lower triangle.

The following examples illustrate the storage of symmetric band matrices. Consider the following matrix A of order $n = 7$ and half bandwidth $kd = 2$:

$$
\begin{bmatrix}
11 & 12 & 13 & 0 & 0 & 0 & 0 \\
12 & 22 & 23 & 24 & 0 & 0 & 0 \\
13 & 23 & 33 & 34 & 35 & 0 & 0 \\
0 & 24 & 34 & 44 & 45 & 46 & 0 \\
0 & 0 & 35 & 45 & 55 & 56 & 57 \\
0 & 0 & 0 & 46 & 56 & 66 & 67 \\
0 & 0 & 0 & 0 & 57 & 67 & 77
\end{bmatrix}
$$
Upper triangular storage

The upper triangle of A is stored in an array ab with at least $kd+1 = 3$ rows and 7 columns as follows:

* * 13 24 35 46 57
* 12 23 34 45 56 67
11 22 33 44 55 66 77

The asterisks represent elements in the kd-by-kd triangle at the upper left corner of ab that are not referenced. Thus, if a_{ij} is an element within the band of the upper triangle of A, it is stored in $ab(kd+1+i-j,j)$. Therefore, the columns of the upper triangle of A are stored in the columns of ab, and the diagonals of the upper triangle of A are stored in the rows of ab, with the principal diagonal in row $kd+1$, the first superdiagonal starting in the second position in row kd, and so on.

Lower triangular storage

The lower triangle of A is stored in the array ab as follows:

11 22 33 44 55 66 77
12 23 34 45 56 67 *
13 24 35 46 57 * *

The asterisks represent elements in the kd-by-kd triangle at the lower right corner of ab that are not referenced. Thus, if a_{ij} is an element within the band of the lower triangle of A, it is stored in $ab(1+i-j,j)$. Therefore, the columns of the lower triangle of A are stored in the columns of ab, and the diagonals of the lower triangle of A are stored in the rows of ab, with the principal diagonal in the first row, the first subdiagonal in the second row, and so on.

Usage

VECLIB:

```fortran
CHARACTER*1    uplo
INTEGER*4      n, kd, ldab, incx, incy
REAL*4         alpha, beta, ab(ldab, n), x(lenx), y(leny)
CALL SSBMV(uplo, n, kd, alpha, ab, ldab, x, incx, beta, y, incy)

CHARACTER*1    uplo
INTEGER*4      n, kd, ldab, incx, incy
REAL*8         alpha, beta, ab(ldab, n), x(lenx), y(leny)
CALL DSBMV(uplo, n, kd, alpha, ab, ldab, x, incx, beta, y, incy)
```
CHARACTER*1 uplo
INTEGER*4 n, kd, ldab, incx, incy
COMPLEX*8 alpha, beta, ab(ldab, n), x(lenx), y(leny)
CALL CHBMV(uplo, n, kd, alpha, ab, ldab, x, incx, beta, y, incy)

CHARACTER*1 uplo
INTEGER*4 n, kd, ldab, incx, incy
COMPLEX*16 alpha, beta, ab(ldab, n), x(lenx), y(leny)
CALL ZHBMV(uplo, n, kd, alpha, ab, ldab, x, incx, beta, y, incy)

VECLIB8:

CHARACTER*1 uplo
INTEGER*8 n, kd, ldab, incx, incy
REAL*4 alpha, beta, ab(ldab, n), x(lenx), y(leny)
CALL SSBMV(uplo, n, kd, alpha, ab, ldab, x, incx, beta, y, incy)

CHARACTER*1 uplo
INTEGER*8 n, kd, ldab, incx, incy
REAL*8 alpha, beta, ab(ldab, n), x(lenx), y(leny)
CALL DSBMV(uplo, n, kd, alpha, ab, ldab, x, incx, beta, y, incy)

CHARACTER*1 uplo
INTEGER*8 n, kd, ldab, incx, incy
COMPLEX*8 alpha, beta, ab(ldab, n), x(lenx), y(leny)
CALL CHBMV(uplo, n, kd, alpha, ab, ldab, x, incx, beta, y, incy)

CHARACTER*1 uplo
INTEGER*8 n, kd, ldab, incx, incy
COMPLEX*16 alpha, beta, ab(ldab, n), x(lenx), y(leny)
CALL ZHBMV(uplo, n, kd, alpha, ab, ldab, x, incx, beta, y, incy)

Input

uplo Upper/lower triangular option for A:
L or l The lower triangle of A is stored.
U or u The upper triangle of A is stored.
n Number of rows and columns in matrix A, n ≥ 0. If
n = 0, the subprograms do not reference ab or x.
kd The number of nonzero diagonals above or below the
principal diagonal.
alpha The scalar α. If alpha = 0, the subprograms compute
y ← βy without referencing ab or x.
ab Array containing the n-by-n symmetric band matrix A
in the compressed form described above. The columns
Chapter 3 Basic Matrix Operations

Matrix-vector multiply

SSBMV/DSBMV/CHBMV/ZHBMV

of the band of \(A \) are stored in the columns of \(ab \), and the diagonals of the band of \(A \) are stored in the rows of \(ab \).

ldab
The leading dimension of array \(ab \) as declared in the calling program unit, with \(ldab \geq kd+1 \).

x
Array of length \(lenx = (n-1) \times |incx| + 1 \) containing the input vector \(x \).

inx
Increment for the array \(x \), \(inx \neq 0 \):
- \(inx > 0 \) \(x \) is stored forward in array \(x \); that is, \(x_i \) is stored in \(x((i-1) \times inx+1) \).
- \(inx < 0 \) \(x \) is stored backward in array \(x \); that is, \(x_i \) is stored in \(x((i-n) \times inx+1) \).

Use \(inx = 1 \) if the vector \(x \) is stored contiguously in array \(x \), that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

beta
The scalar \(\beta \).

y
Array of length \(leny = (n-1) \times |incy| + 1 \) containing the \(n \)-vector \(y \). Not used as input if \(beta = 0 \).

incy
Increment for the array \(y \), \(incy \neq 0 \):
- \(incy > 0 \) \(y \) is stored forward in array \(y \); that is, \(y_i \) is stored in \(y((i-1) \times incy+1) \).
- \(incy < 0 \) \(y \) is stored backward in array \(y \); that is, \(y_i \) is stored in \(y((i-n) \times incy+1) \).

Use \(incy = 1 \) if the vector \(y \) is stored contiguously in array \(y \), that is, if \(y_i \) is stored in \(y(i) \). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

Output

\(y \)
The updated \(y \) vector replaces the input.

Notes
These subprograms conform to specifications of the Level 2 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are:

- \(uplo \neq 'L' \) or \('l' \) or \('U' \) or \('u' \)
SSBMV/DSBMV/CHBMV/ZHBMV

Matrix-vector multiply

n < 0
kd < 0
ldab < kd+1
incx = 0
incy = 0

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement may be improved by coding the uplo argument as 'LOWER' for 'L' or 'UPPER' for 'U'. Refer to “Example 2.”

Example 1 Form the REAL*4 matrix-vector product $y = Ax$, where A is a 75-by-75 real symmetric band matrix with half bandwidth 15 whose lower triangular part is stored in an array AB whose dimensions are 25-by-100, and x and y are real vectors 75 elements long stored in arrays X and Y of dimension 100, respectively.

```fortran
CHARACTER*1 UPLO
INTEGER*4   N,KD,LDAB,INCX,INCY
REAL*4      AB(25,100),X(100),Y(100)
UPLO = 'L'
N = 75
KD = 15
LDAB = 25
INCX = 1
INCY = 1
CALL SSBMV (UPLO, N, KD, 1.0, AB, LDAB, X, INCX, 0.0, Y, INCY)
```

Example 2 Form the REAL*8 matrix-vector product $y = Ax$, where A is a 75-by-75 real symmetric band matrix with half bandwidth 15 whose upper triangle is stored in an array AB whose dimensions are 25-by-100, and x and y are real vectors 75 elements long stored in arrays X and Y of dimension 100, respectively.

```fortran
INTEGER*4 N,KD,LDAB
REAL*4    AB(25,100),X(100),Y(100)
N = 75
KD = 15
LDAB = 25
CALL DSBMV ('UPPER', N, KD, 1.0, AB, LDAB, X, 1, 1.0, Y, 1)
```
Matrix-vector multiply

SSPMV/DSPMV/CHPMV/ZHPMV

Purpose

These subprograms compute the matrix-vector product Ax, where A is an n-by-n real symmetric or complex Hermitian matrix stored in packed form as described in “Matrix Storage,” and x is a real or complex n-vector. The product can be stored in the result array, or, optionally, be added to or subtracted from it. This is handled in a convenient, but general, way by two scalar arguments, α and β, which are used as multipliers of the matrix-vector product and the result vector. Specifically, these subprograms compute the matrix-vector product of the form:

$$ y \leftarrow \alpha Ax + \beta y. $$

The structure of A is indicated by the name of the subprogram used:

- SSPMV or DSPMV: A is a real symmetric matrix
- CHPMV or ZHPMV: A is a complex Hermitian matrix

Refer to “F_SSPMV/F_DSPMV/F_CSPMV/F_ZSPMV” on page 381 and “F_CHPMV/F_ZHPMV” on page 348 for a description of the equivalent BLAS Standard subprograms.

Matrix Storage

Because either triangle of A can be obtained from the other, you only need to provide one triangle of A, either the upper or the lower triangle. Compared to storing the entire matrix, you save memory by supplying that triangle stored column-by-column in packed form in a 1-dimensional array.

The following examples illustrate the packed storage of symmetric or Hermitian matrices.

Upper triangular storage

If the upper triangle of A is

\[
\begin{array}{cccc}
11 & 12 & 13 & 14 \\
22 & 23 & 24 \\
33 & 34 \\
44 \\
\end{array}
\]

then A is packed column-by-column into an array a_p as follows:

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_p(k)$</td>
<td>11</td>
<td>12</td>
<td>22</td>
<td>13</td>
<td>23</td>
<td>33</td>
<td>14</td>
<td>24</td>
<td>34</td>
<td>44</td>
</tr>
</tbody>
</table>

Upper triangular matrix element a_{ij} is stored in array element $a_p(i+(j(j-1))/2)$.
Lower triangular storage

If the lower triangle of A is

\[
\begin{bmatrix}
11 \\
21 & 22 \\
31 & 32 & 33 \\
41 & 42 & 43 & 44
\end{bmatrix}
\]

then A is packed column-by-column into an array \(\text{ap} \) as follows:

\[
\begin{array}{c|cccccccccc}
 k & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
 \text{ap}(k) & 11 & 21 & 31 & 41 & 22 & 32 & 42 & 33 & 43 & 44 \\
\end{array}
\]

Lower triangular matrix element \(a_{ij} \) is stored in array element \(\text{ap}(i+(j-1) \times (2n-j))/2) \).

Usage

VECLIB:

- \text{CHARACTER*:1 } \text{uplo}
- \text{INTEGER*:4 } n, \text{inex, incy}
- \text{REAL*:4 } \alpha, \beta, \text{ap(lenap)}, x(lenx), y(leny)
 - CALL \text{SSPMV}(\text{uplo, n, alpha, ap, x, incy, beta, y, incy})

- \text{CHARACTER*:1 } \text{uplo}
- \text{INTEGER*:4 } n, \text{inex, incy}
- \text{REAL*:8 } \alpha, \beta, \text{ap(lenap)}, x(lenx), y(leny)
 - CALL \text{DSPMV}(\text{uplo, n, alpha, ap, x, incy, beta, y, incy})

- \text{CHARACTER*:1 } \text{uplo}
- \text{INTEGER*:4 } n, \text{inex, incy}
- \text{COMPLEX*:8 } \alpha, \beta, \text{ap(lenap)}, x(lenx), y(leny)
 - CALL \text{CHPMV}(\text{uplo, n, alpha, ap, x, incy, beta, y, incy})

- \text{CHARACTER*:1 } \text{uplo}
- \text{INTEGER*:4 } n, \text{inex, incy}
- \text{COMPLEX*:16 } \alpha, \beta, \text{ap(lenap)}, x(lenx), y(leny)
 - CALL \text{ZHPMV}(\text{uplo, n, alpha, ap, x, incy, beta, y, incy})

VECLIB8:

- \text{CHARACTER*:1 } \text{uplo}
- \text{INTEGER*:8 } n, \text{inex, incy}
- \text{REAL*:4 } \alpha, \beta, \text{ap(lenap)}, x(lenx), y(leny)
 - CALL \text{SSPMV}(\text{uplo, n, alpha, ap, x, incy, beta, y, incy})
Matrix-vector multiply

SSPMV/DSPMV/CHPMV/ZHPMV

CHARACTER*1 uplo
INTEGER*8 n, incx, incy
REAL*8 alpha, beta, ap(lenap), x(lenx), y(leny)
CALL DSPMV(uplo, n, alpha, ap, x, incx, beta, y, incy)

CHARACTER*1 uplo
INTEGER*8 n, incx, incy
COMPLEX*8 alpha, beta, ap(lenap), x(lenx), y(leny)
CALL CHPMV(uplo, n, alpha, ap, x, incx, beta, y, incy)

CHARACTER*1 uplo
INTEGER*8 n, incx, incy
COMPLEX*16 alpha, beta, ap(lenap), x(lenx), y(leny)
CALL ZHPMV(uplo, n, alpha, ap, x, incx, beta, y, incy)
SSPMV/DSPMV/CHPMV/ZHPMV Matrix-vector multiply

Input

uplo

Upper/lower triangular option for \(A \):

'\(L \)' or 'l'

The lower triangle of \(A \) is stored in the packed array.

'\(U \)' or 'u'

The upper triangle of \(A \) is stored in the packed array.

n

Number of rows and columns in matrix \(A \), \(n \geq 0 \). If \(n = 0 \), the subprograms do not reference \(ap, x, \) or \(y \).

alpha

The scalar \(\alpha \). If \(\alpha = 0 \), the subprograms compute \(y \leftarrow \beta y \) without referencing \(ap \) or \(x \).

ap

Array of length \(lenap = n \times (n+1)/2 \) containing the upper or lower triangle, as specified by \(uplo \), of an \(n \)-by-\(n \) real symmetric or complex Hermitian matrix \(A \), stored by columns in the packed form described above.

x

Array of length \(lenx = (n-1) \times |incx| + 1 \) containing the \(n \)-vector \(x \).

incx

Increment for the array \(x \), \(incx \neq 0 \):

\(incx > 0 \)

\(x \) is stored forward in array \(x \); that is, \(x_i \) is stored in \(x((i-1) \times incx+1) \).

\(incx < 0 \)

\(x \) is stored backward in array \(x \); that is, \(x_i \) is stored in \(x((i-n) \times incx+1) \).

Use \(incx = 1 \) if the vector \(x \) is stored contiguously in array \(x \), that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

beta

The scalar \(\beta \).

y

Array of length \(leny = (n-1) \times |incy| + 1 \) containing the \(n \)-vector \(y \). Not used as input if \(\beta = 0 \).

incy

Increment for the array \(y \), \(incy \neq 0 \):

\(incy > 0 \)

\(y \) is stored forward in array \(y \); that is, \(y_i \) is stored in \(y((i-1) \times incy+1) \).

\(incy < 0 \)

\(y \) is stored backward in array \(y \); that is, \(y_i \) is stored in \(y((i-n) \times incy+1) \).

Use \(incy = 1 \) if the vector \(y \) is stored contiguously in array \(y \), that is, if \(y_i \) is stored in \(y(i) \). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.
Matrix-vector multiply

SSPMV/DSPMV/CHPMV/ZHPMV

Output

The updated \(y \) vector replaces the input.

Notes

These subprograms conform to specifications of the Level 2 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are:

- \(\text{uplo} \neq 'L' \) or \('l' \) or \('U' \) or \('u' \)
- \(n < 0 \)
- \(\text{incx} = 0 \)
- \(\text{incy} = 0 \)

Actual character arguments in a subroutine call may be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement may be improved by coding the \(\text{uplo} \) argument as 'LOWER' for \('L' \) or 'UPPER' for \('U' \). Refer to "Example 2."

Example 1

Form the REAL*4 matrix-vector product \(y = Ax \), where \(A \) is a 9-by-9 real symmetric matrix whose upper triangle is stored in packed form in an array \(AP \) of dimension 55, \(x \) is a real vector 9 elements long stored in an array \(X \) of dimension 10, and \(y \) is a real vector 9 elements long stored in an array \(Y \), also of dimension 10.

```fortran
CHARACTER*1 UPLO
INTEGER*4   N, INCX, INCY
REAL*4      ALPHA, BETA, AP(55), X(10), Y(10)
UPLO = 'U'
N = 9
ALPHA = 1.0
BETA = 0.0
INCX = 1
INCY = 1
CALL SSPMV (UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
```

Example 2

Form the COMPLEX*8 matrix-vector product \(y = \frac{1}{2} y - \rho Ax \), where \(\rho \) is a complex scalar, \(A \) is a 9-by-9 complex Hermitian matrix whose lower triangle is stored in packed form in an array \(AP \) of dimension 55, \(x \) is a complex vector 9 elements long stored in an array \(X \) of dimension 10, and \(y \) is a complex vector 9 elements long stored in an array \(Y \), also of dimension 10.

```fortran
INTEGER*4 N
COMPLEX*8 RHO, AP(55), X(10), Y(10)
N = 9
CALL CHPMV ('LOWER',N,-RHO,AP,X,1,(0.5E0,0.0E0),Y,1)
```
Name

SSPR/DSPR/CHPR/ZHPR

Purpose

These subprograms compute the real symmetric or complex Hermitian rank-1 update

\[A \leftarrow \alpha xx^* + A, \]

where \(A \) is an \(n \)-by-\(n \) real symmetric or complex Hermitian matrix stored in packed form as described in “Matrix Storage,” \(\alpha \) is a real scalar, \(x \) is a real or complex \(n \)-vector, and \(x^* \) is the conjugate transpose of \(x \). (The conjugate transpose of a real vector is simply the transpose.)

The structure of \(A \) is indicated by the name of the subprogram used:

- **SSPR** or **DSPR** \(A \) is a real symmetric matrix
- **CHPR** or **ZHPR** \(A \) is a complex Hermitian matrix

Refer to “F_SSPR/F_DSPR/F_CSPR/F_ZSPR” on page 384, and “F_CHPR/F_ZHPR” on page 350 for a description of the equivalent BLAS Standard subprograms.

Matrix Storage

Because either triangle of \(A \) can be obtained from the other, you only need to provide one triangle of \(A \), either the upper or the lower triangle. Compared to storing the entire matrix, you save memory by supplying that triangle stored column-by-column in packed form in a 1-dimensional array.

The following examples illustrate the packed storage of symmetric or Hermitian matrices.

Upper triangular storage

If the upper triangle of \(A \) is

\[
\begin{array}{cccc}
11 & 12 & 13 & 14 \\
22 & 23 & 24 & \\
33 & 34 & & \\
44 & & & \\
\end{array}
\]

then \(A \) is packed column-by-column into an array \(ap \) as follows:

\[
\begin{array}{ccccccccccc}
 k & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
ap(k) & 11 & 12 & 22 & 13 & 23 & 33 & 14 & 24 & 34 & 44 \\
\end{array}
\]

Upper triangular matrix element \(a_{ij} \) is stored in array element \(ap(i+(j(j-1))/2) \).
Lower triangular storage

If the lower triangle of A is

\[
\begin{bmatrix}
11 \\
21 & 22 \\
31 & 32 & 33 \\
41 & 42 & 43 & 44
\end{bmatrix}
\]

then A is packed column-by-column into an array ap as follows:

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ap(k)$</td>
<td>11</td>
<td>21</td>
<td>31</td>
<td>41</td>
<td>22</td>
<td>32</td>
<td>42</td>
<td>33</td>
<td>43</td>
<td>44</td>
</tr>
</tbody>
</table>

Lower triangular matrix element a_{ij} is stored in array element $ap(i+(j-1)(2n-j))/2$.

Usage

VECLIB:

```fortran
CHARACTER*1 uplo
INTEGER*4 n, incx
REAL*4 alpha, ap(lenap), x(lenx)
CALL SSPR(uplo, n, alpha, x, incx, ap)

CHARACTER*1 uplo
INTEGER*4 n, incx
REAL*8 alpha, ap(lenap), x(lenx)
CALL DSPR(uplo, n, alpha, x, incx, ap)

CHARACTER*1 uplo
INTEGER*4 n, incx
REAL*4 alpha
COMPLEX*8 ap(lenap), x(lenx)
CALL CHPR(uplo, n, alpha, x, incx, ap)

CHARACTER*1 uplo
INTEGER*4 n, incx
REAL*8 alpha
COMPLEX*16 ap(lenap), x(lenx)
CALL ZHPR(uplo, n, alpha, x, incx, ap)
```
VECLIB8:

CHARACTER*1 uplo
INTEGER*8 n, inx
REAL*4 alpha, ap(lenap), x(lenx)
CALL SSPR(uplo, n, alpha, x, inx, ap)

CHARACTER*1 uplo
INTEGER*8 n, inx
REAL*8 alpha, ap(lenap), x(lenx)
CALL DSPR(uplo, n, alpha, x, inx, ap)

CHARACTER*1 uplo
INTEGER*8 n, inx
REAL*4 alpha
COMPLEX*8 ap(lenap), x(lenx)
CALL CHPR(uplo, n, alpha, x, inx, ap)

CHARACTER*1 uplo
INTEGER*8 n, inx
REAL*8 alpha
COMPLEX*16 ap(lenap), x(lenx)
CALL ZHPR(uplo, n, alpha, x, inx, ap)
Chapter 3 Basic Matrix Operations

Rank-1 update

SSPR/DSPR/CHPR/ZHPR

Input

<table>
<thead>
<tr>
<th>uplo</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'L' or 'l'</td>
<td>The lower triangle of A is stored in the packed array.</td>
</tr>
<tr>
<td>'U' or 'u'</td>
<td>The upper triangle of A is stored in the packed array.</td>
</tr>
</tbody>
</table>

| **n** | Number of rows and columns in matrix A and elements of vector x, n ≥ 0. If n = 0, the subprograms do not reference ap or x. |

| **alpha** | The scalar α. If α = 0, the subprograms do not reference ap or x. |

| **x** | Array of length \(\text{lenx} = (n-1) \times |\text{incx}| + 1\) containing the n-vector x. |

<table>
<thead>
<tr>
<th>incx</th>
<th>Increment for the array x, incx ≠ 0:</th>
</tr>
</thead>
<tbody>
<tr>
<td>incx > 0</td>
<td>(x_i) is stored forward in array x; that is, (x_i) is stored in (x((i-1)\times\text{incx}+1)).</td>
</tr>
<tr>
<td>incx < 0</td>
<td>(x_i) is stored backward in array x; that is, (x_i) is stored in (x((i-n)\times\text{incx}+1)).</td>
</tr>
</tbody>
</table>

Use \(\text{incx} = 1\) if the vector x is stored contiguously in array x, that is, if \(x_i\) is stored in \(x(i)\). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

| **ap** | Array of length \(\text{lenap} = n \times (n+1)/2\) containing the upper or lower triangle, as specified by uplo, of an n-by-n real symmetric or complex Hermitian matrix A, stored by columns in the packed form described above. |

Output

| **ap** | The upper or lower triangle of the updated A matrix, as specified by uplo, replaces the input. |
Notes

These subprograms conform to specifications of the Level 2 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are:

- `uplo` ≠ 'L' or 'l' or 'U' or 'u'
- `n` < 0
- `incx` = 0

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement may be improved by coding the `uplo` argument as 'LOWER' for 'L' or 'UPPER' for 'U'. Refer to “Example 2.”

Example 1

Apply a REAL*4 symmetric rank-1 update xx^T to A, where A is a 9-by-9 real symmetric matrix whose upper triangle is stored in packed form in an array AP of dimension 55, and x is a real vector 9 elements long stored in an array X of dimension 10.

```fortran
CHARACTER*1 UPLO
INTEGER*4 N, INCX
REAL*4 ALPHA, AP(55), X(10)
UPLO = 'U'
N = 9
ALPHA = 1.0
INCX = 1
CALL SSPR (UPLO,N,ALPHA,X,INCX,AP)
```

Example 2

Apply a COMPLEX*8 Hermitian rank-1 update $-2xx^H$ to A, where A is a 9-by-9 complex Hermitian matrix whose lower triangle is stored in packed form in an array AP of dimension 55, and x is a complex vector 9 elements long stored in an array X of dimension 10.

```fortran
INTEGER*4 N
COMPLEX*8 AP(55), X(10)
N = 9
CALL CHPR ('LOWER',N,-2.0,X,1,AP)
```
Name: SSPR2/DSPR2/CHPR2/ZHPR2
Purpose: These subprograms compute the real symmetric or complex Hermitian rank-2 update

\[A \leftarrow \alpha xy^* + \overline{\alpha} yx^* + A, \]

where \(A \) is an \(n \)-by-\(n \) real symmetric or complex Hermitian matrix stored in packed form as described in “Matrix Storage,” \(\alpha \) is a complex scalar, \(\overline{\alpha} \) is the complex conjugate of \(\alpha \), \(x \) and \(y \) are real or complex \(n \)-vectors, and \(x^* \) and \(y^* \) are the conjugate transposes of \(x \) and \(y \), respectively. (The conjugate of a real scalar is just the scalar, and the conjugate transpose of a real vector is simply the transpose.)

The structure of \(A \) is indicated by the name of the subprogram used:

- SSPR2 or DSPR2: \(A \) is a real symmetric matrix
- CHPR2 or ZHPR2: \(A \) is a complex Hermitian matrix

Refer to “F_SSPR2/F_DSPR2/F_CSPR2/F_ZSPR2” on page 386 and “F_CHPR2/F_ZHPR2” on page 352 for a description of the equivalent BLAS Standard subprograms.

Matrix Storage: Because either triangle of \(A \) can be obtained from the other, you only need to provide one triangle of \(A \), either the upper or the lower triangle. Compared to storing the entire matrix, you save memory by supplying that triangle stored column-by-column in packed form in a 1-dimensional array.

The following examples illustrate the packed storage of symmetric or Hermitian matrices.
Upper triangular storage

If the upper triangle of A is

$$
\begin{array}{cccc}
11 & 12 & 13 & 14 \\
22 & 23 & 24 \\
33 & 34 \\
44 \\
\end{array}
$$

then A is packed column-by-column into an array ap as follows:

\[
\begin{array}{c|cccccccccc}
 k & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
 ap(k) & 11 & 12 & 22 & 13 & 23 & 33 & 14 & 24 & 34 & 44 \\
\end{array}
\]

Upper triangular matrix element a_{ij} is stored in array element $ap(i+(j(j-1))/2)$.

Lower triangular storage

If the lower triangle of A is

$$
\begin{array}{cccc}
11 \\
21 & 22 \\
31 & 32 & 33 \\
41 & 42 & 43 & 44 \\
\end{array}
$$

then A is packed column-by-column into an array ap as follows:

\[
\begin{array}{c|cccccccccc}
 k & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
 ap(k) & 11 & 21 & 31 & 41 & 22 & 32 & 42 & 33 & 43 & 44 \\
\end{array}
\]

Lower triangular matrix element a_{ij} is stored in array element $ap(i+(j-1)(2n-j)/2)$.

Rank-2 update

SSPR2/DSPR2/CHPR2/ZHPR2

Usage

VECLIB:

```plaintext
CHARACTER*1 uplo
INTEGER*4 n, inex, incy
REAL*4 alpha, ap(lenap), x(lenx), y(leny)
CALL SSPR2(uplo, n, alpha, x, inex, y, incy, ap)

CHARACTER*1 uplo
INTEGER*4 n, inex, incy
REAL*8 alpha, ap(lenap), x(lenx), y(leny)
CALL DSPR2(uplo, n, alpha, x, incx, y, incy, ap)

CHARACTER*1 uplo
INTEGER*4 n, inex, incy
COMPLEX*8 alpha, ap(lenap), x(lenx), y(leny)
CALL CHPR2(uplo, n, alpha, x, incx, y, incy, ap)

CHARACTER*1 uplo
INTEGER*4 n, inex, incy
COMPLEX*16 alpha, ap(lenap), x(lenx), y(leny)
CALL ZHPR2(uplo, n, alpha, x, incx, y, incy, ap)
```

VECLIB8:

```plaintext
CHARACTER*1 uplo
INTEGER*8 n, inex, incy
REAL*4 alpha, ap(lenap), x(lenx), y(leny)
CALL SSPR2(uplo, n, alpha, x, inex, y, incy, ap)

CHARACTER*1 uplo
INTEGER*8 n, inex, incy
REAL*8 alpha, ap(lenap), x(lenx), y(leny)
CALL DSPR2(uplo, n, alpha, x, inex, y, incy, ap)

CHARACTER*1 uplo
INTEGER*8 n, inex, incy
COMPLEX*8 alpha, ap(lenap), x(lenx), y(leny)
CALL CHPR2(uplo, n, alpha, x, inex, y, incy, ap)

CHARACTER*1 uplo
INTEGER*8 n, inex, incy
COMPLEX*16 alpha, ap(lenap), x(lenx), y(leny)
CALL ZHPR2(uplo, n, alpha, x, inex, y, incy, ap)
```

Input

`uplo`
Upper/lower triangular option for A:

Chapter 3 Basic Matrix Operations 261
'L' or 'l' The lower triangle of A is stored in the packed array.

'U' or 'u' The upper triangle of A is stored in the packed array.

\mathbf{n} Number of rows and columns in matrix A and elements of vectors x and y, $\mathbf{n} \geq 0$. If $\mathbf{n} = 0$, the subprograms do not reference \mathbf{ap}, \mathbf{x}, or \mathbf{y}.

\mathbf{alpha} The scalar α. If $\mathbf{alpha} = 0$, the subprograms do not reference \mathbf{ap}, \mathbf{x}, or \mathbf{y}.

\mathbf{x} Array of length $\mathbf{lenx} = (\mathbf{n} - 1) \times |\mathbf{incx}| + 1$ containing the n-vector x.
Rank-2 update

SSPR2/DSPR2/CHPR2/ZHPR2

Parameters

- **ex**
 Increment for the array `x`, `ex` ≠ 0:
 - `ex` > 0: `x` is stored forward in array `x`; that is, `xi` is stored in `x((i-1) × ex + 1)`.
 - `ex` < 0: `x` is stored backward in array `x`; that is, `xi` is stored in `x((i-n) × ex + 1)`.

Use `ex` = 1 if the vector `x` is stored contiguously in array `x`, that is, if `xi` is stored in `x(i)`. Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

- **y**
 Array of length `leny = (n-1) × |incy| + 1` containing the `n`-vector `y`.

- **incy**
 Increment for the array `y`, `incy` ≠ 0:
 - `incy` > 0: `y` is stored forward in array `y`; that is, `yi` is stored in `y((i-1) × incy + 1)`.
 - `incy` < 0: `y` is stored backward in array `y`; that is, `yi` is stored in `y((i-n) × incy + 1)`.

Use `incy` = 1 if the vector `y` is stored contiguously in array `y`, that is, if `yi` is stored in `y(i)`. Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

- **ap**
 Array of length `lenap = n(n+1)/2` containing the upper or lower triangle, as specified by `uplo`, of an `n`-by-`n` real symmetric or complex Hermitian matrix `A`, stored by columns in the packed form described above.

Output

- **ap**
 The upper or lower triangle of the updated `A` matrix, as specified by `uplo`, replaces the input.
Notes

These subprograms conform to specifications of the Level 2 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are:

- uplo ≠ 'L' or 'l' or 'U' or 'u'
- n < 0
- incx = 0
- incy = 0

Actual character arguments in a subroutine call may be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement can be improved by coding the uplo argument as 'LOWER' for 'L' or 'UPPER' for 'U'. Refer to “Example 2.”

Example 1
Apply a REAL*4 symmetric rank-2 update $xy^T + x^Ty$ to A, where A is a 9-by-9 real symmetric matrix whose upper triangle is stored in packed form in an array AP of dimension 55, x is a real vector 9 elements long stored in an array X of dimension 10, and y is a real vector 9 elements long stored in an array Y also of dimension 10.

```fortran
CHARACTER*1 UPLO
INTEGER*4   N, INCX, INCY
REAL*4      ALPHA, AP(55), X(10), Y(10)
UPLO = 'U'
N = 9
ALPHA = 1.0
INCX = 1
INCY = 1
CALL SSPR2 (UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
```

Example 2
Apply a COMPLEX*8 Hermitian rank-2 update $\alpha xy^* + \bar{\alpha}yx^*$ to A, where A is a 9-by-9 complex Hermitian matrix whose lower triangle is stored in packed form in an array AP of dimension 55, α is a complex scalar, x is a complex vector 9 elements long stored in an array X of dimension 10, and y is a complex vector 9 elements long stored in an array Y of dimension 10.

```fortran
INTEGER*4 N
COMPLEX*8 ALPHA, AP(55), X(10), Y(10)
N = 9
CALL CHPR2 ('LOWER', N, ALPHA, X, 1, Y, 1, AP)
```
Matrix-matrix multiply

Name

SSYMM/DSYMM/CHemm/CSYMM/ZHEMM/ZSYMM

Matrix-matrix multiply

Purpose

These subprograms compute the matrix-matrix products AB and BA, where A is a real symmetric, complex symmetric, or complex Hermitian matrix, and B is an m-by-n matrix. The size of A, either m-by-m or n-by-n, depends on which matrix product is requested. The product can be stored in the result matrix (which is always of size m-by-n) or, optionally, can be added to or subtracted from it. This is handled in a convenient, but general, way by two scalar arguments, α and β, which are used as multipliers of the matrix product and the result matrix. Specifically, these subprograms compute matrix products of the forms:

$$ C \leftarrow \alpha AB + \beta C \quad \text{and} \quad C \leftarrow \alpha BA + \beta C. $$

The structure of A is indicated by the name of the subprogram used:

- **SSYMM** or **DSYMM**: A is a real symmetric matrix
- **CHEMM** or **ZHEMM**: A is a complex Hermitian matrix
- **CSYMM** or **ZSYMM**: A is a complex symmetric matrix

Matrix Storage

Because either triangle of A can be obtained from the other, you only need to provide one triangle of A, in a two-dimensional array large enough to hold the entire matrix. The other triangle of the array is not referenced.

Usage

VECLIB:

```fortran
CHARACTER*1 side, uplo
INTEGER*4 m, n, lda, ldb, ldc
REAL*4 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL SSYMM(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
CHARACTER*1 side, uplo
INTEGER*4 m, n, lda, ldb, ldc
REAL*8 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL DSYMM(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
CHARACTER*1 side, uplo
INTEGER*4 m, n, lda, ldb, ldc
COMPLEX*8 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL CHEMM(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
```
CHARACTER*1 side, uplo
INTEGER*4 m, n, lda, ldb, ldc
COMPLEX*8 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL CSYMM(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1 side, uplo
INTEGER*4 m, n, lda, ldb, ldc
COMPLEX*16 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL ZHEMM(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1 side, uplo
INTEGER*4 m, n, lda, ldb, ldc
COMPLEX*16 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL ZSYMM(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

VECLIBS:

CHARACTER*1 side, uplo
INTEGER*8 m, n, lda, ldb, ldc
REAL*4 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL SSYMM(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1 side, uplo
INTEGER*8 m, n, lda, ldb, ldc
REAL*8 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL DSYMM(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1 side, uplo
INTEGER*8 m, n, lda, ldb, ldc
COMPLEX*8 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL CHEMM(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1 side, uplo
INTEGER*8 m, n, lda, ldb, ldc
COMPLEX*8 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL CSYMM(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1 side, uplo
INTEGER*8 m, n, lda, ldb, ldc
COMPLEX*16 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL ZHEMM(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1 side, uplo
INTEGER*8 m, n, lda, ldb, ldc
COMPLEX*16 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL ZSYMM(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
Matrix-matrix multiply

SSYMM/DSYMM/CHEMM/CSYMM/ZHEMM/ZSYMM

Input

- **side**

 Specifies whether symmetric or Hermitian matrix A is the left or right matrix operand:

 - 'L' or 'l': A is the left matrix operand, that is, compute $C \leftarrow \alpha AB + \beta C$

 - 'R' or 'r': A is the right matrix operand, that is, compute $C \leftarrow \alpha BA + \beta C$

- **uplo**

 Upper/lower triangular storage option for A:

 - 'L' or 'l': Reference only the lower triangle of A

 - 'U' or 'u': Reference only the upper triangle of A

- **m**

 Number of rows in matrix C, $m \geq 0$. If $m = 0$, the subprograms do not reference a, b, or c.

- **n**

 Number of columns in matrix B, $n \geq 0$. If $n = 0$, the subprograms do not reference a, b, or c.

- **alpha**

 The scalar α. If $\alpha = 0$, the subprograms compute $C \leftarrow \beta C$ without referencing a or b.

- **a**

 Array whose upper or lower triangle, as specified by **uplo**, contains the upper or lower triangle of the matrix A. The other triangle of a is not referenced. The size of A is indicated by **side**:

 - 'L' or 'l': A is m-by-m

 - 'R' or 'r': A is n-by-n

- **lda**

 The leading dimension of array a as declared in the calling program unit, with $\text{lda} \geq \max$ (the number of rows of $A, 1$).

- **b**

 Array containing the m-by-n matrix B.

- ** ldb**

 The leading dimension of array b as declared in the calling program unit, with $\text{ldb} \geq \max(m, 1)$.

- **beta**

 The scalar β.

- **c**

 Array containing the m-by-n matrix C. Not used as input if $\beta = 0$.

- ** ldc**

 The leading dimension of array c as declared in the calling program unit, with $\text{ldc} \geq \max(m, 1)$.

Output

- **c**

 The updated C matrix replaces the input.

Notes

These subprograms conform to specifications of the Level 3 BLAS.
If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are

\[
\begin{align*}
\text{side} & \neq \text{'L'} \text{ or 'L' or 'R' or 'r'} \\
\text{uplo} & \neq \text{'L'} \text{ or 'L' or 'U' or 'u'} \\
m & < 0 \\
n & < 0 \\
\text{lda} & \text{ too small} \\
\text{ldb} & < \max(m,1) \\
\text{ldc} & < \max(m,1)
\end{align*}
\]

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement may be improved, for example, by coding the side argument as 'LEFT' for 'L' or 'RIGHT' for 'R'. Refer to "Example 2."

Example 1 Form the REAL*4 matrix product \(C = AB \), where \(A \) is a 6-by-6 real symmetric real matrix whose upper triangle is stored in the upper triangle of an array \(A \) of dimension 10-by-10, \(B \) is a 6-by-8 real matrix stored in an array \(B \) of dimension 10-by-10, and \(C \) is a 6-by-8 real matrix stored in an array \(C \), also of dimension 10-by-10.

```
CHARACTER*1 SIDE,UPLO
INTEGER*4   M,N,LDA,LDB,LDC
REAL*4      ALPHA,BETA,A(10,10),B(10,10),C(10,10)
SIDE = 'L'
UPLO = 'U'
M = 6
N = 8
ALPHA = 1.0
BETA = 0.0
LDA = 10
LDB = 10
LDC = 10
CALL SSYMM (SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
```

Example 2 Form the COMPLEX*8 matrix-matrix product \(C = \frac{1}{2}RA - \rho C \), where \(\rho \) is a scalar, \(A \) is an 8-by-8 complex Hermitian matrix whose lower triangle is stored in the lower triangle of an array \(A \) of dimension 10-by-10, \(B \) is a 6-by-8 complex matrix stored in an array whose dimensions are 10-by-10, and \(C \) is a 6-by-8 complex matrix stored in an array \(C \), also of dimension 10-by-10.
Matrix-matrix multiply

SSYMM/DSYMM/CHEMM/CSYMM/ZHEMM/ZSYMM

```fortran
INTEGER*4 M, N, LDA, LDB, LDC
COMPLEX*8 HALF, RHO, A(10,10), B(10,10), C(10,10)
M = 6
N = 8
LDA = 10
LDB = 10
LDC = 10
HALF = (0.5, 0.0)
CALL CHEMM ('RIGHT', 'LOWER', M, N, -RHO, A, LDA, B, LDB, HALF, C, LDC)
```
SSYMV/DSYMV/CHEMV/ZHEMV
Matrix-vector multiply

Name
SSYMV/DSYMV/CHEMV/ZHEMV
Matrix-vector multiply

Purpose
These subprograms compute the matrix-vector product Ax, where A is an n-by-n real symmetric or complex Hermitian matrix, and x is a real or complex n-vector. The product can be stored in the result array, or, optionally, be added to or subtracted from it. This is handled in a convenient, but general, way by two scalar arguments, α and β, which are used as multipliers of the matrix-vector product and the result vector. Specifically, these subprograms compute the matrix-vector product of the form

$$y \leftarrow \alpha Ax + \beta y.$$

The structure of A is indicated by the name of the subprogram used:

SSYMV or DSYMV A is a real symmetric matrix
CHEMV or ZHEMV A is a complex Hermitian matrix

Refer to “F_SSYMV/F_DSYMV/F_CSYMV/F_ZSYMV” on page 389 and “F_CHEMV/F_ZHEMV” on page 342 for equivalent BLAS Standard subprograms.

Matrix Storage
Because either triangle of A can be obtained from the other, you only need to provide one triangle of A. You can supply either the upper or the lower triangle of A, in a two-dimensional array large enough to hold the entire matrix. The other triangle of the array is not referenced.

Usage
VECLIB:

CHARACTER*1 uplo
INTEGER*4 n, lda, incx, incy
REAL*4 alpha, beta, a(lda, n), x(lenx), y(leny)
CALL SSYMV(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

CHARACTER*1 uplo
INTEGER*4 n, lda, incx, incy
REAL*8 alpha, beta, a(lda, n), x(lenx), y(leny)
CALL DSYMV(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

CHARACTER*1 uplo
INTEGER*4 n, lda, incx, incy
COMPLEX*8 alpha, beta, a(lda, n), x(lenx), y(leny)
CALL CHEMV(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

CALL ZHEMV(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
Matrix-vector multiply

SSMV/DSMV/CHEMV/ZHEMV

CHARACTER*1 uplo
INTEGER*4 n, lda, incx, incy
COMPLEX*16 alpha, beta, a(lda, n), x(lenx), y(leny)
CALL ZHEMV(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

VECLIBS:

CHARACTER*1 uplo
INTEGER*8 n, lda, incx, incy
REAL*4 alpha, beta, a(lda, n), x(lenx), y(leny)
CALL SSYMV(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

CHARACTER*1 uplo
INTEGER*8 n, lda, incx, incy
REAL*8 alpha, beta, a(lda, n), x(lenx), y(leny)
CALL DSYMV(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

CHARACTER*1 uplo
INTEGER*8 n, lda, incx, incy
COMPLEX*8 alpha, beta, a(lda, n), x(lenx), y(leny)
CALL CHEMV(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

CHARACTER*1 uplo
INTEGER*8 n, lda, incx, incy
COMPLEX*16 alpha, beta, a(lda, n), x(lenx), y(leny)
CALL ZHEMV(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

Input

uplo
Upper/lower triangular option for **A**:

- 'L' or 'l' Reference only the lower triangle of **A**.
- 'U' or 'u' Reference only the upper triangle of **A**.

n
Number of rows and columns in matrix **A**, **n** ≥ 0. If **n** = 0, the subprograms do not reference **a**, **x**, or **y**.

alpha
The scalar **α**. If **alpha** = 0, the subprograms compute **y** ← βy without referencing **a** or **x**.

a
Array whose upper or lower triangle, as specified by **uplo**, contains the upper or lower triangle of an **n**-by-**n** real symmetric or complex Hermitian matrix **A**. The other triangle of **a** is not referenced.

lda
The leading dimension of array **a** as declared in the calling program unit, with **lda** ≥ \text{max}(**n**, 1).

x
Array of length **lenx** = (**n**−1)×|**incx**|+1 containing the **n**-vector **x**.
SSYM/DSYM/CHEM/ZHEMV

Matrix-vector multiply

inex Increment for the array x, **inex ≠ 0**:

- **inex > 0**
 x is stored forward in array x; that is, xᵢ is stored in \(x((i-1) \times \text{inex} + 1)\).

- **inex < 0**
 x is stored backward in array x; that is, xᵢ is stored in \(x((i-n) \times \text{inex} + 1)\).

Use **inex = 1** if the vector x is stored contiguously in array x, that is, if \(xᵢ\) is stored in \(x(i)\). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

beta
The scalar β.

y
Array of length \(\text{leny} = (n-1) \times |\text{inex}| + 1\) containing the n-vector y. Not used as input if **beta = 0**.
Matrix-vector multiply

SSYMV/DSYMV/CHEMV/ZHEMV

incy
Increment for the array \(y \), \(\text{incy} \neq 0 \):

- \(\text{incy} > 0 \) \(y \) is stored forward in array \(y \); that is, \(y_i \) is stored in \(y((i-1)\times\text{incy}+1) \).
- \(\text{incy} < 0 \) \(y \) is stored backward in array \(y \); that is, \(y_i \) is stored in \(y((i-n)\times\text{incy}+1) \).

Use \(\text{incy} = 1 \) if the vector \(y \) is stored contiguously in array \(y \), that is, if \(y_i \) is stored in \(y(i) \). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

Output
\(y \)
The updated \(y \) vector replaces the input.

Notes
These subprograms conform to specifications of the Level 2 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are:

- \(\text{uplo} \neq 'L' \) or 'l' or 'U' or 'u'
- \(n < 0 \)
- \(\text{lda} < \max(n,1) \)
- \(\text{incy} = 0 \)

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the \textbf{CALL} statement may be improved by coding the \textbf{uplo} argument as 'LOWER' for 'L' or 'UPPER' for 'U'. Refer to “Example 2.”
SSYMV/DSYMV/CHEMV/ZHEMV

Matrix-vector multiply

Example 1 Form the REAL*4 matrix-vector product \(y = Ax \), where \(A \) is a 9-by-9 real symmetric matrix whose upper triangle is stored in the upper triangle of an array \(A \) whose dimensions are 10-by-10, \(x \) is a real vector 9 elements long stored in an array \(X \) of dimension 10, and \(y \) is a real vector 9 elements long stored in an array \(Y \), also of dimension 10.

```fortran
CHARACTER*1 UPLO
INTEGER*4 N, LDA, INCX, INCY
REAL*4 ALPHA, BETA, A(10,10), X(10), Y(10)
UPLO = 'U'
N = 9
ALPHA = 1.0
BETA = 0.0
LDA = 10
INCX = 1
INCY = 1
CALL SSYMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
```

Example 2 Form the COMPLEX*8 matrix-vector product \(y = \frac{1}{2}y - \rho Ax \), where \(\rho \) is a complex scalar, \(A \) is a 9-by-9 complex Hermitian matrix whose lower triangle is stored in the lower triangle of an array \(A \) whose dimensions are 10-by-10, \(x \) is a complex vector 9 elements long stored in an array \(X \) of dimension 10, and \(y \) is a complex vector 9 elements long stored in an array \(Y \), also of dimension 10.

```fortran
INTEGER*4 N, LDA
COMPLEX*8 RHO, A(10,10), X(10), Y(10)
N = 9
LDA = 10
CALL CHEMV ('LOWER', N, -RHO, A, LDA, X, 1, (0.5,0.0), Y, 1)
```
Rank-1 update

SSYR/DSYR/CHER/ZHER

Name SSYR/DSYR/CHER/ZHER

Purpose These subprograms compute the real symmetric or complex Hermitian rank-1 update

\[A \leftarrow \alpha xx^* + A, \]

where \(A \) is an \(n \)-by-\(n \) real symmetric or complex Hermitian matrix, \(\alpha \) is a real scalar, \(x \) is a real or complex \(n \)-vector, and \(x^* \) is the conjugate transpose of \(x \). (The conjugate transpose of a real vector is simply the transpose.)

The structure of \(A \) is indicated by the name of the subprogram used:

- **SSYR** or **DSYR**: \(A \) is a real symmetric matrix
- **CHER** or **ZHER**: \(A \) is a complex Hermitian matrix

Refer to “F_SSYR/F_DSYR/F_CSYR/F_ZSYR” on page 392, and “F_CHER/F_ZHER” on page 344 for equivalent BLAS Standard subprograms.

Matrix Storage Because either triangle of \(A \) can be obtained from the other, these subprograms reference and apply the update to only one triangle of \(A \). You can supply either the upper or the lower triangle of \(A \), in a two-dimensional array large enough to hold the entire matrix, and the same triangle of the updated matrix is returned in the array. The other triangle of the array is not referenced.

Usage **VECLIB:**

```fortran
CHARACTER*1 uplo
INTEGER*4 n, lda, incx
REAL*4 alpha, a(lda, n), x(lenx)
CALL SSYR(uplo, n, alpha, x, incx, a, lda)

CHARACTER*1 uplo
INTEGER*4 n, lda, incx
REAL*8 alpha, a(lda, n), x(lenx)
CALL DSYR(uplo, n, alpha, x, incx, a, lda)

CHARACTER*1 uplo
INTEGER*4 n, lda, incx
REAL*4 alpha
CALL CHER(uplo, n, alpha, x, incx, a, lda)

CHARACTER*1 uplo
INTEGER*4 n, lda, incx
COMPLEX*8 a(lda, n), x(lenx)
CALL CHER(uplo, n, alpha, x, incx, a, lda)
```

CHARACTER*1 uplo
INTEGER*4 n, lda, incx
REAL*8 alpha
COMPLEX*16 a(lda, n), x(lenx)
CALL ZHER(uplo, n, alpha, x, incx, a, lda)

VECLIB8:
CHARACTER*1 uplo
INTEGER*8 n, lda, incx
REAL*4 alpha, a(lda, n), x(lenx)
CALL SSYR(uplo, n, alpha, x, incx, a, lda)
CHARACTER*1 uplo
INTEGER*8 n, lda, incx
REAL*8 alpha, a(lda, n), x(lenx)
CALL DSYR(uplo, n, alpha, x, incx, a, lda)
CHARACTER*1 uplo
INTEGER*8 n, lda, incx
REAL*4 alpha
COMPLEX*8 a(lda, n), x(lenx)
CALL CHER(uplo, n, alpha, x, incx, a, lda)
CHARACTER*1 uplo
INTEGER*8 n, lda, incx
REAL*8 alpha
COMPLEX*16 a(lda, n), x(lenx)
CALL ZHER(uplo, n, alpha, x, incx, a, lda)

Input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>uplo</td>
<td>Upper/lower triangular option for A: 'L' or 'l' Reference and update only the lower triangle of A. 'U' or 'u' Reference and update only the upper triangle of A.</td>
</tr>
<tr>
<td>n</td>
<td>Number of rows and columns in matrix A and elements of vector x, n ≥ 0. If n = 0, the subprograms do not reference a or x.</td>
</tr>
<tr>
<td>alpha</td>
<td>The scalar α. If alpha = 0, the subprograms do not reference a or x.</td>
</tr>
<tr>
<td>x</td>
<td>Array of length lenx = (n−1)×</td>
</tr>
<tr>
<td>incx</td>
<td>Increment for the array x, incx ≠ 0:</td>
</tr>
</tbody>
</table>

276 HP MLIB User's Guide
Rank-1 update

SSYR/DSYR/CHER/ZHER

\[\text{incx} > 0 \quad x \text{ is stored forward in array } x; \text{ that is, } \]
\[x_i \text{ is stored in } x((i-1) \times \text{incx}+1). \]

\[\text{incx} < 0 \quad x \text{ is stored backward in array } x; \text{ that is, } x_i \text{ is stored in } \]
\[x((i-n) \times \text{incx}+1). \]

Use \(\text{incx} = 1 \) if the vector \(x \) is stored contiguously in array \(x \), that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

a
Array whose upper or lower triangle, as specified by \(\text{uplo} \), contains the upper or lower triangle of an \(n \)-by-\(n \) real symmetric or complex Hermitian matrix \(A \). The other triangle of \(a \) is not referenced.

lda
The leading dimension of array \(a \) as declared in the calling program unit, with \(\text{lda} \geq \text{max(n,1)} \).

Output
a
The upper or lower triangle of the updated \(A \) matrix, as specified by \(\text{uplo} \), replaces the upper or lower triangle of the input, respectively. The other triangle of \(a \) is unchanged.
Notes

These subprograms conform to specifications of the Level 2 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are

- uplo ≠ 'L' or 'l' or 'U' or 'u'
- n < 0
- lda < max(n,1)
- incx = 0

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement may be improved by coding the uplo argument as 'LOWER' for 'L' or 'UPPER' for 'U'. Refer to “Example 2.”

Example 1 Apply a REAL*4 symmetric rank-1 update xx^T to A, where A is a 9-by-9 real symmetric matrix whose upper triangle is stored in the upper triangle of an array A whose dimensions are 10-by-10, and x is a real vector 9 elements long stored in an array X of dimension 10.

```fortran
CHARACTER*1 UPLO
INTEGER*4 N, LDA, INCX
REAL*4 ALPHA, A(10,10), X(10)
UPLO = 'U'
N = 9
ALPHA = 1.0
LDA = 10
INEX = 1
CALL SSYR (UPLO, N, ALPHA, X, INCX, A, LDA)
```

Example 2 Apply a COMPLEX*8 Hermitian rank-1 update $-2xx^*$ to A, where A is a 9-by-9 complex Hermitian matrix whose lower triangle is stored in the lower triangle of an array A whose dimensions are 10-by-10, and x is a complex vector 9 elements long stored in an array X of dimension 10.

```fortran
INTEGER*4 N, LDA
COMPLEX*8 A(10,10), X(10)
N = 9
LDA = 10
CALL CHER ('LOWER', N, -2.0, X, 1, A, LDA)
```
Rank-2 update

SSYR2/DSYR2/CHER2/ZHER2

Name
SSYR2/DSYR2/CHER2/ZHER2
Rank-2 update

Purpose
These subprograms compute the real symmetric or complex Hermitian rank-2 update

\[A \leftarrow \alpha xy^* + \bar{\alpha}yx^* + A, \]

where \(A \) is an \(n \)-by-\(n \) real symmetric or complex Hermitian matrix, \(\alpha \) is a complex scalar, \(\bar{\alpha} \) is the complex conjugate of \(\alpha \), \(x \) and \(y \) are real or complex \(n \)-vectors, and \(x^* \) and \(y^* \) are the conjugate transposes of \(x \) and \(y \), respectively. (The conjugate of a real scalar is just the scalar, and the conjugate transpose of a real vector is simply the transpose.)

The structure of \(A \) is indicated by the name of the subprogram used:

- \(\text{SSYR2} \) or \(\text{DSYR2} \) \(A \) is a real symmetric matrix
- \(\text{CHER2} \) or \(\text{ZHER2} \) \(A \) is a complex Hermitian matrix

Refer to “F_SSYR2/F_DSYR2/F_CSYR2/F_ZSYR2” on page 394, and “F_CHER2/F_ZHER2” on page 346 for equivalent BLAS Standard subprograms.

Matrix Storage
Because either triangle of \(A \) can be obtained from the other, these subprograms reference and apply the update to only one triangle of \(A \). You can supply either the upper or the lower triangle of \(A \), in a two-dimensional array large enough to hold the entire matrix, and the same triangle of the updated matrix is returned in the array. The other triangle of the array is not referenced.

Usage
VECLIB:

CHARACTER*1 uplo
INTEGER*4 n, lda, incx, incy
REAL*4 alpha, a(lda, n), x(lenx), y(leny)
CALL SSYR2(uplo, n, alpha, x, incx, y, incy, a, lda)

CHARACTER*1 uplo
INTEGER*4 n, lda, incx, incy
REAL*8 alpha, a(lda, n), x(lenx), y(leny)
CALL DSYR2(uplo, n, alpha, x, incx, y, incy, a, lda)

CHARACTER*1 uplo
INTEGER*4 n, lda, incx, incy
COMPLEX*8 alpha, a(lda, n), x(lenx), y(leny)
CALL CHER2(uplo, n, alpha, x, incy, a, lda)
SSYR2/DSYR2/CHER2/ZHER2

Rank-2 update

CHARACTER1 uplo
INTEGER4 n, lda, incx, incy
COMPLEX16 alpha, a(lda, n), x(lenx), y(leny)
CALL ZHER2(uplo, n, alpha, x, incx, y, incy, a, lda)

VECLIB8:

CHARACTER1 uplo
INTEGER8 n, lda, incx, incy
REAL4 alpha, a(lda, n), x(lenx), y(leny)
CALL SSYR2(uplo, n, alpha, x, incx, y, incy, a, lda)

CHARACTER1 uplo
INTEGER8 n, lda, incx, incy
REAL8 alpha, a(lda, n), x(lenx), y(leny)
CALL DSYR2(uplo, n, alpha, x, incx, y, incy, a, lda)

CHARACTER1 uplo
INTEGER8 n, lda, incx, incy
COMPLEX8 alpha, a(lda, n), x(lenx), y(leny)
CALL CHER2(uplo, n, alpha, x, incx, y, incy, a, lda)

CHARACTER1 uplo
INTEGER8 n, lda, incx, incy
COMPLEX16 alpha, a(lda, n), x(lenx), y(leny)
CALL ZHER2(uplo, n, alpha, x, incx, y, incy, a, lda)

Input

uplo
Upper/lower triangular option for A:

- 'L' or 'l' Reference and update only the lower triangle of A.
- 'U' or 'u' Reference and update only the upper triangle of A.

n
Number of rows and columns in matrix A and elements of vectors x and y, n ≥ 0. If n = 0, the subprograms do not reference a, x, or y.

alpha
The scalar α. If alpha = 0, the subprograms do not reference a, x, or y.

x
Array of length lenx = (n−1)×|incx| + 1 containing the n-vector x.

inex
Increment for the array x, inex ≠ 0:

- **inex > 0** x is stored forward in array x; that is, xi is stored in x((i−1)×inex+1).
Rank-2 update

SSYR2/DSYR2/CHER2/ZHER2

- **inex** < 0 \(x \) is stored backward in array \(x \); that is, \(x_i \) is stored in \(x((i-n)\times inx+1) \).

Use **inex** = 1 if the vector \(x \) is stored contiguously in array \(x \), that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

- **y**
 - Array of length **leny** = \((n-1)\times|incy|+1\) containing the \(n \)-vector \(y \).
 - **incy**
 - Increment for the array \(y \), **incy** \(\neq 0 \):
 - **incy** > 0 \(y \) is stored forward in array \(y \); that is, \(y_i \) is stored in \(y((i-1)\times incy+1) \).
 - **incy** < 0 \(y \) is stored backward in array \(y \); that is, \(y_i \) is stored in \(y((i-n)\times incy+1) \).

Use **incy** = 1 if the vector \(y \) is stored contiguously in array \(y \), that is, if \(y_i \) is stored in \(y(i) \). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

- **a**
 - Array whose upper or lower triangle, as specified by **uplo**, contains the upper or lower triangle of an \(n \)-by-\(n \) real symmetric or complex Hermitian matrix \(A \). The other triangle of \(a \) is not referenced.
 - **lda**
 - The leading dimension of array \(a \) as declared in the calling program unit, with **lda** \(\geq \max(n,1) \).

Output

- **a**
 - The upper or lower triangle of the updated \(A \) matrix, as specified by **uplo**, replaces the upper or lower triangle of the input, respectively. The other triangle of \(a \) is unchanged.

Notes

These subprograms conform to specifications of the Level 2 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are

- **uplo** \(\neq \) 'L' or 'l' or 'U' or 'u'
- \(n < 0 \)
- \(lda < \max(n,1) \)
- \(inex = 0 \)
incy = 0

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement may be improved by coding the uplo argument as 'LOWER' for 'L' or 'UPPER' for 'U'.

Example 1 Apply a REAL*4 symmetric rank-2 update \(xy^T + x^T y \) to \(A \), where \(A \) is a 9-by-9 real symmetric matrix whose upper triangle is stored in the upper triangle of an array \(A \) whose dimensions are 10-by-10, \(x \) is a real vector 9 elements long stored in an array \(X \) of dimension 10, and \(y \) is a real vector 9 elements long stored in an array \(Y \) also of dimension 10.

```
CHARACTER*1 UPLO
INTEGER*4   N, LDA, INCX, INCY
REAL*4      ALPHA, A(10,10), X(10), Y(10)
UPLO = 'U'
N = 9
ALPHA = 1.0
LDA = 10
INCX = 1
INCY = 1
CALL SSYR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)
```
Example 2 Apply a COMPLEX*8 Hermitian rank-2 update $\alpha xy^* + \overline{\alpha} yx^*$ to A, where A is a 9-by-9 complex Hermitian matrix whose lower triangle is stored in the lower triangle of an array A whose dimensions are 10-by-10, α is a complex scalar, x is a complex vector 9 elements long stored in an array X of dimension 10, and y is a complex vector 9 elements long stored in an array Y of dimension 10.

```
INTEGER*4 N, LDA
COMPLEX*8 ALPHA, A(10,10), X(10), Y(10)
N = 9
LDA = 10
CALL CHER2 ('LOWER', N, ALPHA, X, 1, Y, 1, A, LDA)
```
Name
SSYR2K/DSYR2K/CHER2K/CSYR2K/ZHER2K/ZSYR2K
Rank-2k update

Purpose
These subprograms apply a symmetric or Hermitian rank-2k update to a real symmetric, complex symmetric, or complex Hermitian matrix; specifically they compute the following operations:

For symmetric C: $C \leftarrow \alpha AB^T + \bar{\alpha} AB^T + \beta C$ and $C \leftarrow \alpha A^T B + \bar{\alpha} B^T A + \beta C$

For Hermitian C: $C \leftarrow \alpha AB^* + \bar{\alpha} BA^* + \beta C$ and $C \leftarrow \alpha A^* B + \bar{\alpha} B^* A + \beta C$

where α and β are scalars, $\bar{\alpha}$ is the complex conjugate of α, C is an n-by-n real symmetric, complex symmetric, or complex Hermitian matrix, and A and B are matrices whose size, either n-by-k or k-by-n, depends on which form of the update is requested. Here, A^T and B^T are the transposes and A^* and B^* are the conjugate transposes of A and B, respectively. (The conjugate of a real scalar is just the scalar, and the conjugate transpose of a real matrix is simply the transpose.)

The structure of C is indicated by the name of the subprogram used:

SSYR2K or DSYR2K
C is a real symmetric matrix

CHER2K or ZHER2K
C is a complex Hermitian matrix

CSYR2K or ZSYR2K
C is a complex symmetric matrix

Matrix Storage
Because either triangle of C can be obtained from the other, these subprograms reference and apply the update to only one triangle of C. You can supply either the upper or the lower triangle of C, in a two-dimensional array large enough to hold the entire matrix, and the same triangle of the updated matrix is returned in the array. The other triangle of the array is not referenced.

Usage
VECLIB:

```plaintext
CHARACTER*1  uplo, trans
INTEGER*4  n, k, lda, ldb, ldc
REAL*4  alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL SSYR2K(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1  uplo, trans
INTEGER*4  n, k, lda, ldb, ldc
REAL*8  alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL DSYR2K(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
```

284 HP MLIB User’s Guide
Rank-2k update

SSY2K/DSY2K/CHER2K/CSY2K/ZHER2K/ZSY2K

```fortran
CHARACTER*1 uplo, trans
INTEGER*4  n, k, lda, ldb, ldc
REAL*4     beta
COMPLEX*8  alpha, a(lda, *), b(ldb, *), c(ldc, n)
CALL CHER2K(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1 uplo, trans
INTEGER*4  n, k, lda, ldb, ldc
COMPLEX*8  alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL CSY2K(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1 uplo, trans
INTEGER*4  n, k, lda, ldb, ldc
REAL*8     beta
COMPLEX*16 alpha, a(lda, *), b(ldb, *), c(ldc, n)
CALL ZHER2K(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1 uplo, trans
INTEGER*4  n, k, lda, ldb, ldc
COMPLEX*16 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL ZSY2K(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

VECLIB8:

CHARACTER*1 uplo, trans
INTEGER*8  n, k, lda, ldb, ldc
REAL*4     beta
COMPLEX*8  alpha, a(lda, *), b(ldb, *), c(ldc, n)
CALL SSY2K(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

CHARACTER*1 uplo, trans
INTEGER*8  n, k, lda, ldb, ldc
REAL*8     beta
COMPLEX*16 alpha, a(lda, *), b(ldb, *), c(ldc, n)
CALL DSY2K(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
```

Chapter 3 Basic Matrix Operations 285
CHARACTER*1 uplo, trans
INTEGER*8 n, k, lda, ldb, ldc
REAL*8 beta
COMPLEX*16 alpha, a(lda, *), b(ldb, *), c(ldc, n)
CALL ZHER2K(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
CHARACTER*1 uplo, trans
INTEGER*8 n, k, lda, ldb, ldc
COMPLEX*16 alpha, beta, a(lda, *), b(ldb, *), c(ldc, n)
CALL ZSYR2K(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

Input

<table>
<thead>
<tr>
<th>uplo</th>
<th>Upper/lower triangular storage option for C:</th>
</tr>
</thead>
<tbody>
<tr>
<td>'L' or 'l'</td>
<td>Reference and update only the lower triangle of C</td>
</tr>
<tr>
<td>'U' or 'u'</td>
<td>Reference and update only the upper triangle of C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>trans</th>
<th>Specifies the operation to be performed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>'N' or 'n'</td>
<td>Compute $C \leftarrow \alpha AB^T + \beta BA^T + \beta C$</td>
</tr>
<tr>
<td>'T' or 't'</td>
<td>Compute $C \leftarrow \alpha A^T B + \beta A B^T + \beta C$</td>
</tr>
<tr>
<td>'C' or 'c'</td>
<td>Compute $C \leftarrow \alpha A^* B + \beta B^* A + \beta C$</td>
</tr>
</tbody>
</table>

'T' and 't' are invalid in subprograms CHER2K and ZHER2K, and 'C' and 'c' are invalid in subprograms CSYR2K and ZSYR2K. In subprograms SSYR2K and DSYR2K, 'C' and 'c' have the same meaning as 'T' and 't'.

| n | Number of rows and columns in matrix C, $n \geq 0$. If $n = 0$, the subprograms do not reference a, b, or c. |
Rank-2k update

SSYR2K/DSYR2K/CHER2K/CSYR2K/ZHER2K/ZSYR2K

\(k \)
Number of rows or columns in matrices \(A \) and \(B \), depending on \text{\texttt{trans}}; refer to the description of \texttt{a} for details. \(k \geq 0 \); if \(k = 0 \), the subprograms do not reference \texttt{a} or \texttt{b}.

\text{\texttt{alpha}}
The scalar \(\alpha \). If \text{\texttt{alpha}} = 0, the subprograms compute \(C \leftarrow \beta C \) without referencing \texttt{a} or \texttt{b}.

\text{\texttt{a}}
Array containing the matrix \(A \), whose size is indicated by \text{\texttt{trans}}:
- 'N' or 'n' \(A \) is \(n \)-by-\(k \)
- otherwise \(A \) is \(k \)-by-\(n \)

\text{\texttt{lda}}
The leading dimension of array \texttt{a} as declared in the calling program unit, with \text{\texttt{lda}} \geq \max (the number of rows of \(A \),1).

\text{\texttt{b}}
Array containing matrix \(B \), which is the same size as matrix \(A \). Refer to the description of \texttt{a} for details.

\text{\texttt{ldb}}
The leading dimension of array \texttt{b} as declared in the calling program unit, with \text{\texttt{ldb}} \geq \max (the number of rows of \(B \),1).

\text{\texttt{beta}}
The scalar \(\beta \).

\text{\texttt{c}}
Array whose upper or lower triangle, as specified by \text{\texttt{uplo}}, contains the upper or lower triangle of the \(n \)-by-\(n \) symmetric or Hermitian matrix \(C \). Not used as input if \text{\texttt{beta}} = 0.

\text{\texttt{ldc}}
The leading dimension of array \texttt{c} as declared in the calling program unit, with \text{\texttt{ldc}} \geq \max (n,1).

\textit{Output}
\text{\texttt{c}}
The upper or lower triangle of the updated matrix \(C \), as specified by \text{\texttt{uplo}}, replaces the upper or lower triangle of the input, respectively. The other triangle of \texttt{c} is unchanged.

\textit{Notes}
These subprograms conform to specifications of the Level 3 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure.
Error conditions are:

- `uplo` ≠ 'L' or 'l' or 'U' or 'u'
- `trans` ≠ 'N' or 'n' or 'T' or 't' or 'C' or 'c'
- `n` < 0
- `k` < 0
- `lda` too small
- `ldb` too small
- `ldc` < `max(m,1)`

Also, note that some of the values of `trans` listed above are invalid in subprograms CHER2K, CSYR2K, ZHER2K, and ZSYR2K.

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the `CALL` statement may be improved, for example, by coding the `uplo` argument as 'LOWER' for 'L' or 'UPPER' for 'U'. Refer to “Example 2.”

Example 1

Apply a REAL*4 rank-6 update $AB^T + BA^T$ to an 8-by-8 real symmetric matrix C whose upper triangle is stored in the upper triangle of an array C of dimension 10-by-10, where A is an 8-by-3 real matrix stored in an array A, also of dimension 10-by-10.

```
CHARACTER*1 UPLO,TRANS
INTEGER*4   N,K,LDA,LDB,LDC
REAL*4      ALPHA,BETA,A(10,10),B(10,10),C(10,10)
UPLO = 'U'
TRANS = 'N'
N = 8
K = 3
ALPHA = 1.0
BETA = 1.0
LDA = 10
LDB = 10
LDC = 10
CALL SSYR2K (UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
```

Example 2

Apply a COMPLEX*8 Hermitian rank-4 update $-2AB^* - 2BA^*$ to a 9-by-9 complex Hermitian matrix C whose lower triangle is stored in the lower triangle of an array C of dimension 10-by-10, where A is a 9-by-2 complex matrix stored in an array A of dimension 10-by-10.

```
INTEGER*4 N,K,LDA,LDB,LDC
COMPLEX*8 A(10,10),B(10,10),C(10,10)
N = 9
K = 2
LDA = 10
LDB = 10
LDC = 10
CALL CHER2K ('LOWER','NONTRANS',N,K,-2.0,A,LDA,B,LDB,
&    1.0,C,LDC)
```
Name

SSYRK/DSYRK/CHERK/CSYRK/ZHERK/ZSYRK
Rank-k update

Purpose

These subprograms apply a rank-\(k \) update to a real symmetric, complex symmetric, or complex Hermitian matrix; specifically they compute

\[
C \leftarrow \alpha AA^T + \beta C, \quad C \leftarrow \alpha A^T A + \beta C, \quad C \leftarrow \alpha AA^* + \beta C, \quad C \leftarrow \alpha A^* A + \beta C,
\]

where \(\alpha \) and \(\beta \) are scalars, \(C \) is an \(n \)-by-\(n \) real symmetric, complex symmetric, or complex Hermitian matrix, and \(A \) is a matrix whose size, either \(n \)-by-\(k \) or \(k \)-by-\(n \), depends on which form of the update is requested. Here, \(A^T \) and \(A^* \) are the transpose and conjugate transpose of \(A \), respectively.

The structure of \(C \) is indicated by the name of the subprogram used:

SSYRK or DSYRK \(C \) is a real symmetric matrix
CHERK or ZHERK \(C \) is a complex Hermitian matrix
CSYRK or ZSYRK \(C \) is a complex symmetric matrix

Matrix Storage

Because either triangle of \(C \) can be obtained from the other, these subprograms reference and apply the update to only one triangle of \(C \). You can supply either the upper or the lower triangle of \(C \), in a two-dimensional array large enough to hold the entire matrix, and the same triangle of the updated matrix is returned in the array. The other triangle of the array is not referenced.

Usage

VECLIB:

CHARACTER*1 uplo, trans
INTEGER*4 n, k, lda, ldc
REAL*4 alpha, beta, a(lda, *), c(ldc, n)
CALL SSYRK(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

CHARACTER*1 uplo, trans
INTEGER*4 n, k, lda, ldc
REAL*8 alpha, beta, a(lda, *), c(ldc, n)
CALL DSYRK(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

CHARACTER*1 uplo, trans
INTEGER*4 n, k, lda, ldc
REAL*4 alpha, beta
COMPLEX*8 a(lda, *), c(ldc, n)
CALL CHERK(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
CHARACTER*1 uplo, trans
INTEGER*4 n, k, lda, ldc
COMPLEX*8 alpha, beta, a(lda, *), c(ldc, n)
CALL CSYRK(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

CHARACTER*1 uplo, trans
INTEGER*4 n, k, lda, ldc
REAL*8 alpha, beta
COMPLEX*16 a(lda, *), c(ldc, n)
CALL ZHERK(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

CHARACTER*1 uplo, trans
INTEGER*4 n, k, lda, ldc
COMPLEX*16 alpha, beta, a(lda, *), c(ldc, n)
CALL ZSYRK(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

VECLIB8:

CHARACTER*1 uplo, trans
INTEGER*8 n, k, lda, ldc
REAL*4 alpha, beta, a(lda, *), c(ldc, n)
CALL SSYRK(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

CHARACTER*1 uplo, trans
INTEGER*8 n, k, lda, ldc
REAL*4 alpha, beta, a(lda, *), c(ldc, n)
CALL DSYRK(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

CHARACTER*1 uplo, trans
INTEGER*8 n, k, lda, ldc
REAL*4 alpha, beta
COMPLEX*8 a(lda, *), c(ldc, n)
CALL CHERK(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

CHARACTER*1 uplo, trans
INTEGER*8 n, k, lda, ldc
COMPLEX*8 alpha, beta, a(lda, *), c(ldc, n)
CALL CSYRK(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

CHARACTER*1 uplo, trans
INTEGER*8 n, k, lda, ldc
REAL*8 alpha, beta
COMPLEX*16 a(lda, *), c(ldc, n)
CALL ZHERK(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
Rank-k update

SSYRK/DSYRK/CHERK/CSYRK/ZHERK/ZSYRK

CHARACTER*1 uplo, trans
INTEGER*8 n, k, lda, ldc
COMPLEX*16 alpha, beta, a(lda, *), c(ldc, n)
CALL ZSYRK(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

Input

uplo
Upper/lower triangular storage option for C:
'U' or 'u'
Reference and update only the upper triangle of C
'U' or 'u'
Reference and update only the lower triangle of C

trans
Specifies the operation to be performed:
'N' or 'n'
Compute \(C \leftarrow \alpha A^T + \beta C \)
'T' or 't'
Compute \(C \leftarrow \alpha A^H + \beta C \)
'C' or 'c'
Compute \(C \leftarrow \alpha A^* A + \beta C \)
'T' and 't' are invalid in subprograms CHERK and ZHERK, and 'C' and 'c' are invalid in subprograms CSYRK and ZSYRK. In subprograms SSYRK and DSYRK, 'C' and 'c' have the same meaning as 'T' and 't'.

n
Number of rows and columns in matrix \(C \), \(n \geq 0 \). If \(n = 0 \), the subprograms do not reference \(a \) or \(c \).

k
Number of rows or columns in matrix \(A \), \(k \geq 0 \), depending on **trans**; refer to description of \(A \) for details. If \(k = 0 \), the subprograms do not reference \(a \).

alpha
The scalar \(\alpha \). If **alpha** = 0, the subprograms compute \(C \leftarrow \beta C \) without referencing \(a \).

a
Array containing the matrix \(A \), whose size is indicated by **trans**:

'N' or 'n'
\(A \) is \(n \)-by-\(k \)
otherwise
\(A \) is \(k \)-by-\(n \)

lda
The leading dimension of array \(a \) as declared in the calling program unit, with \(lda \geq \text{max (the number of rows of } A, 1) \).

beta
The scalar \(\beta \).

c
Array whose upper or lower triangle, as specified by **uplo**, contains the upper or lower triangle of the \(n \)-by-\(n \) symmetric or Hermitian matrix \(C \). Not used as input if **beta** = 0.
SSYRK/DSYRK/CHERK/CSYRK/ZHERK/ZSYRK

Rank-k update

Output

c

The upper or lower triangle of the updated C matrix, as specified by **uplo**, replaces the upper or lower triangle of the input, respectively. The other triangle of c is unchanged.

Notes

These subprograms conform to specifications of the Level 3 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are:

- **uplo** ≠ 'L' or 'l' or 'U' or 'u'
- **trans** ≠ 'N' or 'n' or 'T' or 't' or 'C' or 'c'
- $n < 0$
- $k < 0$
- **lda** too small
- **ldc** < max($m, 1$)

Also, some values of **trans** listed above are invalid in subprograms CHERK, CSYRK, ZHERK, and ZSYRK.

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the **CALL** statement may be improved, for example, by coding the **uplo** argument as 'LOWER' for 'L' or 'UPPER' for 'U'. Refer to “Example 2.”

ldc

The leading dimension of array c as declared in the calling program unit, with $\text{ldc} \geq \max(n, 1)$.
Example 1 Apply a REAL*4 rank-6 update AA^T to an 8-by-8 real symmetric matrix C whose upper triangle is stored in the upper triangle of an array C of dimension 10-by-10, where A is an 8-by-6 real matrix stored in an array A, also of dimension 10-by-10.

```fortran
CHARACTER*1 UPLO, TRANS
INTEGER*4   N, K, LDA, LDC
REAL*4      ALPHA, BETA, A(10, 10), C(10, 10)
UPLO = 'U'
TRANS = 'N'
N = 8
K = 6
ALPHA = 1.0
BETA = 1.0
LDA = 10
LDC = 10
CALL SSYRK (UPLO, TRANS, N, K, ALPHA, A(LDA,:), BETA, C(LDC,:), N)
```

Example 2 Apply a COMPLEX*8 Hermitian rank-2 update $-2AA^*$ to a 9-by-9 complex Hermitian matrix C whose lower triangle is stored in the lower triangle of an array C of dimension 10-by-10, where A is a 9-by-2 complex matrix stored in an array A of dimension 10-by-10.

```fortran
INTEGER*4 N, K, LDA, LDC
COMPLEX*8  A(10, 10), C(10, 10)
N = 9
K = 2
LDA = 10
LDC = 10
CALL CHERK ('LOWER', 'NONTRANS', N, K, -2.0, A(LDA,:), 1.0, C(LDC,:), 10)
```
Name
STBMV/DTBMV/CTBMV/ZTBMV
Matrix-vector multiply

Purpose
Given an n-by-n upper- or lower-triangular band matrix A and an n-vector x, these subprograms compute the matrix-vector products Ax, $A^T x$, and $A^* x$, where A^T is the transpose of A, and A^* is the conjugate transpose. Specifically, these subprograms compute matrix-vector products of the forms

$$x \leftarrow Ax, \quad x \leftarrow A^T x, \quad \text{and} \quad x \leftarrow A^* x.$$

A lower-triangular band matrix is a matrix whose strict upper triangle is zero and whose nonzero lower-triangular elements all are on or fairly near the principal diagonal. Specifically, $a_{ij} \neq 0$ only if $0 \leq i-j \leq kd$ for some integer kd.

In contrast, an upper-triangular band matrix is a matrix whose strict lower triangle is zero and whose nonzero upper-triangular elements all are on or fairly near the principal diagonal, that is, with $a_{ij} \neq 0$ only if $0 \leq j-i \leq kd$.

Refer to “F_STBMV/F_DTBMV/F_CTBMV/F_ZTBMV” on page 397 for a description of the equivalent BLAS Standard subprograms.

Matrix Storage
Triangular band matrices are stored in a compressed form that takes advantage of knowing the positions of the only elements that can be nonzero. The following examples illustrate the storage of triangular band matrices.
Lower triangular storage.

If A is a 9-by-9 lower-triangular band matrix with bandwidth $kd = 3$, for example,

\[
\begin{align*}
11 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
21 & 22 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
31 & 32 & 33 & 0 & 0 & 0 & 0 & 0 & 0 \\
41 & 42 & 43 & 44 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 52 & 53 & 54 & 55 & 0 & 0 & 0 \\
 & 0 & 0 & 63 & 64 & 65 & 66 & 0 & 0 \\
 & 0 & 0 & 0 & 74 & 75 & 76 & 77 & 0 \\
 & 0 & 0 & 0 & 0 & 85 & 86 & 87 & 88 \\
 & 0 & 0 & 0 & 0 & 0 & 96 & 97 & 98 & 99
\end{align*}
\]

the lower triangular band part of A is stored in an array ab with at least $kd+1 = 4$ rows and 9 columns:

\[
\begin{align*}
11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 & 99 \\
21 & 32 & 43 & 54 & 65 & 76 & 87 & 98 & * \\
31 & 42 & 53 & 64 & 75 & 86 & 97 & * & * \\
41 & 52 & 63 & 74 & 85 & 96 & * & * & *
\end{align*}
\]

where asterisks represent elements in the kd-by-kd triangle at the lower-right corner of ab that are not referenced. Thus, if a_{ij} is an element within the band of A, it is stored in $ab(1+i-j)$). Therefore, the columns of A are stored in the columns of ab, and the diagonals of A are stored in the rows of ab, with the principal diagonal in the first row, the first subdiagonal in the second row, and so on.
Upper triangular storage.

If \(A \) is a 9-by-9 upper-triangular band matrix with bandwidth \(kd = 3 \), for example,

\[
\begin{array}{cccccccccc}
11 & 12 & 13 & 14 & 0 & 0 & 0 & 0 & 0 \\
0 & 22 & 23 & 24 & 25 & 0 & 0 & 0 & 0 \\
0 & 0 & 33 & 34 & 35 & 36 & 0 & 0 & 0 \\
0 & 0 & 0 & 44 & 45 & 46 & 47 & 0 & 0 \\
0 & 0 & 0 & 0 & 55 & 56 & 57 & 58 & 0 \\
0 & 0 & 0 & 0 & 0 & 66 & 67 & 68 & 69 \\
0 & 0 & 0 & 0 & 0 & 0 & 77 & 78 & 79 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 88 & 89 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 99 \\
\end{array}
\]

the upper triangular band part of \(A \) is stored in an array \(ab \) with at least \(kd+1 = 4 \) rows and 9 columns:

\[
\begin{array}{cccccccccc}
* & * & * & 14 & 25 & 36 & 47 & 58 & 69 \\
* & * & 13 & 24 & 35 & 46 & 57 & 68 & 79 \\
* & 12 & 23 & 34 & 45 & 56 & 67 & 78 & 89 \\
11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 & 99 \\
\end{array}
\]

where asterisks represent elements in the \(kd \)-by-\(kd \) triangle at the upper-left corner of \(ab \) that are not referenced. Thus, if \(a_{ij} \) is an element within the band of \(A \), it is stored in \(ab(kd+1+i-j,j) \). Therefore, the columns of \(A \) are stored in the columns of \(ab \), and the diagonals of \(A \) are stored in the rows of \(ab \), with the principal diagonal in row \(kd+1 \), the first superdiagonal starting in the second position in row \(kd \), and so on.
Matrix-vector multiply

Usage

VECLIB:

```c
CHARACTER*1 uplo, trans, diag
INTEGER*4  n, kd, ldab, inex
REAL*4     ab(ldab, n), x(lenx)
CALL STBMV(uplo, trans, diag, n, kd, ab, ldab, x, inex)

CHARACTER*1 uplo, trans, diag
INTEGER*4  n, kd, ldab, inex
REAL*8     ab(ldab, n), x(lenx)
CALL DTBMV(uplo, trans, diag, n, kd, ab, ldab, x, inex)

CHARACTER*1 uplo, trans, diag
INTEGER*4  n, kd, ldab, inex
COMPLEX*8  ab(ldab, n), x(lenx)
CALL CTBMV(uplo, trans, diag, n, kd, ab, ldab, x, inex)

CHARACTER*1 uplo, trans, diag
INTEGER*4  n, kd, ldab, inex
COMPLEX*16 ab(ldab, n), x(lenx)
CALL ZTBMV(uplo, trans, diag, n, kd, ab, ldab, x, inex)
```

VECLIB8:

```c
CHARACTER*1 uplo, trans, diag
INTEGER*8  n, kd, ldab, inex
REAL*4     ab(ldab, n), x(lenx)
CALL STBMV(uplo, trans, diag, n, kd, ab, ldab, x, inex)

CHARACTER*1 uplo, trans, diag
INTEGER*8  n, kd, ldab, inex
REAL*8     ab(ldab, n), x(lenx)
CALL DTBMV(uplo, trans, diag, n, kd, ab, ldab, x, inex)

CHARACTER*1 uplo, trans, diag
INTEGER*8  n, kd, ldab, inex
COMPLEX*8  ab(ldab, n), x(lenx)
CALL CTBMV(uplo, trans, diag, n, kd, ab, ldab, x, inex)

CHARACTER*1 uplo, trans, diag
INTEGER*8  n, kd, ldab, inex
COMPLEX*16 ab(ldab, n), x(lenx)
CALL ZTBMV(uplo, trans, diag, n, kd, ab, ldab, x, inex)
```

Input

uplo Upper/lower triangular option for A:
 'L' or 'l' A is lower triangular

Chapter 3 Basic Matrix Operations 297
STBMV/DTBMV/CTBMV/ZTBMV

Matrix-vector multiply

A is upper triangular

\textbf{trans}\n
Transposition option for \(A\):

- 'N' or 'n': Compute \(x \leftarrow Ax\)
- 'T' or 't': Compute \(x \leftarrow A^T x\)
- 'C' or 'c': Compute \(x \leftarrow A^* x\)

where \(A^T\) is the transpose of \(A\), and \(A^*\) is the conjugate transpose. In the real subprograms, 'C' and 'c' have the same meaning as 'T' and 't'.

\textbf{diag}\n
Specifies whether the matrix is unit triangular, that is, \(a_{ii} = 1\), or not:

- 'N' or 'n': The diagonal of \(A\) is stored in the array
- 'U' or 'u': The diagonal of \(A\) consists of unstored ones

When \textbf{diag} is supplied as 'U' or 'u', diagonal elements of \(A\) are not referenced, but space must be reserved for them.

\textbf{n}\n
Number of rows and columns in matrix \(A\), \(n \geq 0\). If \(n = 0\), the subprograms do not reference \(ab\) or \(x\).

\textbf{kd}\n
The number of nonzero diagonals above or below the principal diagonal. If uplo is supplied as 'U' or 'u', \(kd\) specifies the number of nonzero diagonals above the principal diagonal. If uplo is supplied as 'L' or 'l', \(kd\) specifies the number of nonzero diagonals below the principal diagonal.

\textbf{ab}\n
Array containing the \(n\)-by-\(n\) triangular band matrix \(A\) in the compressed form described above. The columns of the band of \(A\) are stored in the columns of \(ab\), and the diagonals of the band of \(A\) are stored in the rows of \(ab\).

\textbf{ldab}\n
The leading dimension of array \(ab\) as declared in the calling program unit, with \(ldab \geq kd+1\).

\textbf{x}\n
Array of length \(lenx = (n-1) \times |incx| + 1\) containing the input vector \(x\).

\textbf{incx}\n
Increment for the array \(x\), \(incx \neq 0\):

- \(incx > 0\): \(x\) is stored forward in array \(x\); that is, \(x_i\) is stored in \(x((i-1) \times incx + 1)\).
Matrix-vector multiply

STBMV/DTBMV/CTBMV/ZTBMV

\[\text{inex} < 0 \quad x \text{ is stored backward in array } \mathbf{x}; \text{ that is, } x_i \text{ is stored in } \mathbf{x}((i-n)\times\text{inex}+1). \]

Use \text{inex} = 1 if the vector \(x \) is stored contiguously in array \(\mathbf{x} \), that is, if \(x_i \) is stored in \(\mathbf{x}(i) \). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

Output\ x
The updated \(x \) vector replaces the input.

Notes
These subprograms conform to specifications of the Level 2 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure.
STBMV/DTBMV/CTBMV/ZTBMV

Matrix-vector multiply

Error conditions are

uplo ≠ 'L' or 'l' or 'U' or 'u'
trans ≠ 'N' or 'n' or 'T' or 't' or 'C' or 'c'
diag ≠ 'N' or 'n' or 'U' or 'u'
n < 0
kd < 0
ldab < k+1
incx = 0

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement can be improved by coding the trans argument as 'NORMAL' or 'NONTRANS' for 'N', 'TRANSPOSE' for 'T', or 'CTRANS' for 'C'. Refer to “Example 2.”

Example 1 Form the REAL*4 matrix-vector product Ax, where A is a 75-by-75 unit-diagonal, lower-triangular real band matrix with bandwidth 15 that is stored in an array AB whose dimensions are 25-by-100, and x is a real vector 75 elements long stored in an array X of dimension 100.

```
CHARACTER*1 UPLO,TRANS,DIAG
INTEGER*4   N,KD,LDAB,INCX
REAL*4      AB(25,100),X(100)
UPLO = 'L'
TRANS = 'N'
DIAG = 'U'
N = 75
KD = 15
LDAB = 25
INCX = 1
CALL STBMV (UPLO,TRANS,DIAG,N,KD,AB,LDAB,X,INCX)
```

Example 2 Form the REAL*8 matrix-vector product ATx, where A is a 75-by-75 nonunit-diagonal, upper-triangular real band matrix with bandwidth 15 that is stored in an array AB whose dimensions are 25-by-100, and x is a real vector 75 elements long stored in an array X of dimension 100.

```
INTEGER*4 N,KD,LDAB
REAL*4    AB(25,100),X(100)
N = 75
KD = 15
LDAB = 25
CALL DTBMV ('UPPER','TRANSPOSE','NONUNIT',N,KD,AB,LDAB,X,1)
```
Name

STBSV/DTBSV/CTBSV/ZTBSV

Solve triangular band system

Purpose

Given an \(n \)-by-\(n \) upper- or lower-triangular band matrix \(A \) and an \(n \)-vector \(x \), these subprograms overwrite \(x \) with the solution \(y \) to the system of linear equations \(Ay = x \). This operation is the forward elimination or back substitution step of Gaussian elimination for band matrices. Optionally, \(A \) can be replaced by \(A^T \), the transpose of \(A \), or by \(A^* \), the conjugate transpose of \(A \).

A lower-triangular band matrix is a matrix whose strict upper triangle is zero and whose nonzero lower-triangular elements all are on, or fairly near, the principal diagonal. Specifically, \(a_{ij} \neq 0 \) only if \(0 \leq i-j \leq kd \) for some integer \(kd \).

In contrast, an upper-triangular band matrix is a matrix whose strict lower triangle is zero and whose nonzero upper-triangular elements all are on, or fairly near, the principal diagonal, but with \(a_{ij} \neq 0 \) only if \(0 \leq j-i \leq kd \).

Specifically, these subprograms compute

\[
x \leftarrow A^{-1} x, \quad x \leftarrow A^{-T} x, \quad \text{and} \quad x \leftarrow A^{-*} x
\]

where \(A^{-T} \) is the inverse of the transpose of \(A \), and \(A^{-*} \) is the inverse of the conjugate transpose of \(A \).

These subprograms are more primitive than the LAPACK band equation solvers. As such, they are intended to supplement the equation solvers but not replace them, serving instead as building blocks in constructing optimized linear algebra software. In fact, many of the LAPACK subprograms have been recoded to call these routines.

Refer to “F_STBSV/F_DTBSV/F_CTBSV/F_ZTBSV” on page 400 for details about the equivalent BLAS Standard subprograms.

Matrix Storage

Triangular band matrices are stored in a compressed form that takes advantage of knowing the positions of the only elements that can be nonzero. The following examples illustrate the storage of triangular band matrices.
Lower triangular storage

If A is a 9-by-9 lower-triangular band matrix with bandwidth $kd = 3$, for example,

$$
\begin{array}{cccccccccc}
11 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
21 & 22 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
31 & 32 & 33 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
41 & 42 & 43 & 44 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 52 & 53 & 54 & 55 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 63 & 64 & 65 & 66 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 74 & 75 & 76 & 77 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 85 & 86 & 87 & 88 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 96 & 97 & 98 & 99 & 99
\end{array}
$$

the lower triangular band part of A is stored in an array ab with at least $kd+1 = 4$ rows and 9 columns:

$$
\begin{array}{cccccccccc}
11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 & 99 & 0 \\
21 & 32 & 43 & 54 & 65 & 76 & 87 & 98 & * & 0 \\
31 & 42 & 53 & 64 & 75 & 86 & 97 & * & * & 0 \\
41 & 52 & 63 & 74 & 85 & 96 & * & * & * & 0
\end{array}
$$

where asterisks represent elements in the kd-by-kd triangle at the lower-right corner of ab that are not referenced. Thus, if a_{ij} is an element within the band of A, it is stored in $ab(1+i-j,j)$. Therefore, the columns of A are stored in the columns of ab, and the diagonals of A are stored in the rows of ab, with the principal diagonal in the first row, the first subdiagonal in the second row, and so on.
Upper triangular storage

If A is a 9-by-9 upper-triangular band matrix with bandwidth $kd = 3$, for example,

\[
\begin{array}{cccccccccc}
11 & 12 & 13 & 14 & 0 & 0 & 0 & 0 & 0 \\
0 & 22 & 23 & 24 & 25 & 0 & 0 & 0 & 0 \\
0 & 0 & 33 & 34 & 35 & 36 & 0 & 0 & 0 \\
0 & 0 & 0 & 44 & 45 & 46 & 47 & 0 & 0 \\
0 & 0 & 0 & 0 & 55 & 56 & 57 & 58 & 0 \\
0 & 0 & 0 & 0 & 0 & 66 & 67 & 68 & 69 \\
0 & 0 & 0 & 0 & 0 & 0 & 77 & 78 & 79 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 88 & 89 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 99 \\
\end{array}
\]

the upper triangular band part of A is stored in an array ab with at least $kd+1 = 4$ rows and 9 columns:

\[
\begin{array}{cccccccc}
* & * & * & 14 & 25 & 36 & 47 & 58 & 69 \\
* & * & 13 & 24 & 35 & 46 & 57 & 68 & 79 \\
* & 12 & 23 & 34 & 45 & 56 & 67 & 78 & 89 \\
11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 & 99 \\
\end{array}
\]

where asterisks represent elements in the kd-by-kd triangle at the upper-left corner of ab that are not referenced. Thus, if a_{ij} is an element within the band of A, it is stored in $ab(kd+1+i-j,j)$. Therefore, the columns of A are stored in the columns of ab, and the diagonals of A are stored in the rows of ab, with the principal diagonal in row $kd+1$, the first superdiagonal starting in the second position in row kd, and so on.

Usage

VECLIB:

```c
CHARACTER*1 uplo, trans, diag
INTEGER*4 n, kd, ldab, inx
REAL*4 ab(ldab, n), x(lenx)
CALL STBSV(uplo, trans, diag, n, kd, ab, ldab, x, inx)

CALL DTBSV(uplo, trans, diag, n, kd, ab, ldab, x, inx)
```
STBSV/DTBSV/CTBSV/ZTBSV
Solve triangular band system

CHARACTER*1 uplo, trans, diag
INTEGER*4 n, kd, ldab, incx
COMPLEX*8 ab(ldab, n), x(lenx)
CALL CTBSV(uplo, trans, diag, n, kd, ab, ldab, x, incx)
CHARACTER*1 uplo, trans, diag
INTEGER*4 n, kd, ldab, incx
COMPLEX*16 ab(ldab, n), x(lenx)
CALL ZTBSV(uplo, trans, diag, n, kd, ab, ldab, x, incx)

VECLIB8:
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, kd, ldab, incx
REAL*4 ab(ldab, n), x(lenx)
CALL STBSV(uplo, trans, diag, n, kd, ab, ldab, x, incx)
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, kd, ldab, incx
REAL*8 ab(ldab, n), x(lenx)
CALL DTBSV(uplo, trans, diag, n, kd, ab, ldab, x, incx)
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, kd, ldab, incx
COMPLEX*8 ab(ldab, n), x(lenx)
CALL CTBSV(uplo, trans, diag, n, kd, ab, ldab, x, incx)
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, kd, ldab, incx
COMPLEX*16 ab(ldab, n), x(lenx)
CALL ZTBSV(uplo, trans, diag, n, kd, ab, ldab, x, incx)

Input
uplo Upper/lower triangular option for A:
 'L' or 'l' Solve lower-triangular band system
 (forward elimination)
 'U' or 'u' Solve upper-triangular band system
 (back substitution)

trans Transposition option for A:
 'N' or 'n' Compute \(x \leftarrow A^{-1} x \)
 'T' or 't' Compute \(x \leftarrow A^{-T} x \)
 'C' or 'c' Compute \(x \leftarrow A^{-*} x \)

where \(A^{-T} \) is the inverse of the transpose of \(A \), and \(A^{-*} \)
is the inverse of the conjugate transpose. In the real
Solve triangular band system

STBSV/DTBSV/CTBSV/ZTBSV

Subprograms, 'C' and 'c' have the same meaning as 'T' and 't'.

diag

Specifies whether the matrix is unit triangular, that is, $a_{ii} = 1$, or not:
- 'N' or 'n' The diagonal of A is stored in the array
- 'U' or 'u' The diagonal of A consists of unstored ones

When **diag** is supplied as 'U' or 'u', diagonal elements of A are not referenced, but space must be reserved for them.

n

Number of rows and columns in matrix A, $n \geq 0$. If $n = 0$, the subprograms do not reference ab or x.

kd

The number of nonzero diagonals above or below the principal diagonal. If **uplo** is supplied as 'U' or 'u', **kd** specifies the number of nonzero diagonals above the principal diagonal. If **uplo** is supplied as 'L' or 'l', **kd** specifies the number of nonzero diagonals below the principal diagonal.
Array containing the \(n \)-by-\(n \) triangular band matrix \(A \) in the compressed form described above. The columns of the band of \(A \) are stored in the columns of \(ab \), and the diagonals of the band of \(A \) are stored in the rows of \(ab \).

The leading dimension of array \(ab \) as declared in the calling program unit, with \(ldab \geq kd+1 \).

Array of length \(lenx = (n-1) \times |incx| + 1 \) containing the right-hand-side \(n \)-vector \(x \).

Increment for the array \(x \), \(incx \neq 0 \):

- \(incx > 0 \) \(x \) is stored forward in array \(x \); that is, \(x_i \) is stored in \(x((i-1) \times incx+1) \).
- \(incx < 0 \) \(x \) is stored backward in array \(x \); that is, \(x_i \) is stored in \(x((i-n) \times incx+1) \).

Use \(incx = 1 \) if the vector \(x \) is stored contiguously in array \(x \), that is, if \(x_i \) is stored in \(x(i) \). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

The solution vector of the triangular band system replaces the input.

These subprograms conform to specifications of the Level 2 BLAS.

The subprograms do not check for singularity of matrix \(A \). \(A \) is singular if \(\text{diag} = \text{‘N’ or ‘n’ and some } a_{ii} = 0 \). This condition causes a division by zero to occur. Therefore, the program must detect singularity and take appropriate action to avoid a problem before calling any of these subprograms.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure.
Solve triangular band system

Error conditions are:
- uplo ≠ 'L' or 'l' or 'U' or 'u'
- trans ≠ 'N' or 'n' or 'T' or 't' or 'C' or 'c'
- diag ≠ 'N' or 'n' or 'U' or 'u'
- n < 0
- kd < 0
- ldab < kd+1
- incx = 0

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement may be improved by coding the trans argument as 'NORMAL' or 'NONTRANS' for 'N', 'TRANSPOSE' for 'T', or 'CTRANS' for 'C'. Refer to “Example 2.”

Example 1 Perform REAL*4 forward elimination using the 75-by-75 unit-diagonal lower-triangular real band matrix with bandwidth 15 that is stored in an array AB whose dimensions are 25-by-100, and x is a real vector 75 elements long stored in an array X of dimension 100.

```fortran
CHARACTER*1 UPLO,TRANS,DIAG
INTEGER*4   N,KD,LDAB,INCX
REAL*4      AB(25,100),X(100)
UPLO = 'L'
TRANS = 'N'
DIAG = 'U'
N = 75
KD = 15
LDAB = 25
INCX = 1
CALL STBSV (UPLO,TRANS,DIAG,N,KD,AB,LDAB,X,INCX)
```

Example 2 Perform REAL*4 back substitution using the 75-by-75 nonunit-diagonal, upper-triangular real band matrix with bandwidth 15 that is stored in an array AB whose dimensions are 25-by-100, and x is a real vector 75 elements long stored in an array X of dimension 100.

```fortran
INTEGER*4 N,KD,LDAB
REAL*4    AB(25,100),X(100)
N = 75
KD = 15
LDAB = 25
CALL STBSV ('UPPER','NONTRANS','NONUNIT',N,KD,AB,LDAB,X,1)
```
Name STPMV/DTPMV/CTPMV/ZTPMV
 Matrix-vector multiply

Purpose Given an \(n \)-by-\(n \) upper- or lower-triangular matrix \(A \) stored in packed form as described in “Matrix Storage” and an \(n \)-vector \(x \), these subprograms compute the matrix-vector products \(Ax \), \(A^T x \), and \(A^* x \), where \(A^T \) is the transpose of \(A \), and \(A^* \) is the conjugate transpose of \(A \). Specifically, these subprograms compute matrix-vector products of the forms

\[x \leftarrow Ax, \quad x \leftarrow A^T x, \quad \text{and} \quad x \leftarrow A^* x. \]

Refer to “F_STPMV/F_DTPMV/F_CTPMV/F_ZTPMV” on page 403 for a description of the equivalent BLAS Standard subprograms.

Matrix Storage

You supply the upper or lower triangle of \(A \), stored column-by-column in packed form in a 1-dimensional array. This saves memory compared to storing the entire matrix.

The following examples illustrate the packed storage of a triangular matrix.

Upper triangular matrix

If \(A \) is

\[
\begin{bmatrix}
11 & 12 & 13 & 14 \\
0 & 22 & 23 & 24 \\
0 & 0 & 33 & 34 \\
0 & 0 & 0 & 44
\end{bmatrix}
\]

then \(A \) is packed column by column into an array \(\text{ap} \) as follows:

<table>
<thead>
<tr>
<th>(k)</th>
<th>(\text{ap}(k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>34</td>
</tr>
</tbody>
</table>

Upper-triangular matrix element \(a_{ij} \) is stored in array element \(\text{ap}(i+(j-(j-1))/2) \).

Lower triangular matrix

If \(A \) is

\[
\begin{bmatrix}
11 & 0 & 0 & 0 \\
21 & 22 & 0 & 0 \\
31 & 32 & 33 & 0 \\
41 & 42 & 43 & 44
\end{bmatrix}
\]
then A is packed column by column into an array ap as follows:

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{ap}(k)$</td>
<td>11</td>
<td>21</td>
<td>31</td>
<td>41</td>
<td>22</td>
<td>32</td>
<td>42</td>
<td>33</td>
<td>43</td>
<td>44</td>
</tr>
</tbody>
</table>

Lower-triangular matrix element a_{ij} is stored in array element $\text{ap}(i+(j-1)\times(2n-j)/2)$.

Usage

VECLIB:

- CHARACTER*1 uplo, trans, diag
- INTEGER*4 n, incx
- REAL*4 ap(lenap), x(lenx)
- CALL STPMV(uplo, trans, diag, n, ap, x, incx)

- CHARACTER*1 uplo, trans, diag
- INTEGER*4 n, incx
- REAL*8 ap(lenap), x(lenx)
- CALL DTPMV(uplo, trans, diag, n, ap, x, incx)

- CHARACTER*1 uplo, trans, diag
- INTEGER*4 n, incx
- COMPLEX*8 ap(lenap), x(lenx)
- CALL CTPMV(uplo, trans, diag, n, ap, x, incx)

- CHARACTER*1 uplo, trans, diag
- INTEGER*4 n, incx
- COMPLEX*16 ap(lenap), x(lenx)
- CALL ZTPMV(uplo, trans, diag, n, ap, x, incx)

VECLIB8:

- CHARACTER*1 uplo, trans, diag
- INTEGER*8 n, incx
- REAL*4 ap(lenap), x(lenx)
- CALL STPMV(uplo, trans, diag, n, ap, x, incx)

- CHARACTER*1 uplo, trans, diag
- INTEGER*8 n, incx
- REAL*8 ap(lenap), x(lenx)
- CALL DTPMV(uplo, trans, diag, n, ap, x, incx)

- CHARACTER*1 uplo, trans, diag
- INTEGER*8 n, incx
- COMPLEX*8 ap(lenap), x(lenx)
- CALL CTPMV(uplo, trans, diag, n, ap, x, incx)
STPMV/DTPMV/CTPMV/ZTPMV

Matrix-vector multiply

CHARACTER*1 uplo, trans, diag
INTEGER*8 n, inex
COMPLEX*16 ap(lenap), x(lenx)
CALL ZTPMV(uplo, trans, diag, n, ap, x, inex)

Input

uplo

Upper/lower triangular option for A:
'L' or 'l' A is lower triangular
'U' or 'u' A is upper triangular

trans

Transposition option for A:
'N' or 'n' Compute $x \leftarrow Ax$
'T' or 't' Compute $x \leftarrow A^T x$
'C' or 'c' Compute $x \leftarrow A^* x$

where A^T is the transpose of A and A^* is the conjugate transpose. In the real subprograms, 'C' and 'c' have the same meaning as 'T' and 't'.

310 HP MLIB User's Guide
Matrix-vector multiply

diag
Specifies whether the matrix is unit triangular, that is, $a_{ii} = 1$, or not:

'N' or 'n' The diagonal of A is stored in the array

'U' or 'u' The diagonal of A consists of unstored ones

When **diag** is supplied as 'U' or 'u', the diagonal elements are not referenced.

n
Number of rows and columns in matrix A, $n \geq 0$. If $n = 0$, the subprograms do not reference ap or x.

ap
Array of length $lenap = n \times (n+1)/2$ containing the n-by-n triangular matrix A, stored by columns in the packed form described above. Space must be left for the diagonal elements of A even when **diag** is supplied as 'U' or 'u'.

x
Array of length $lenx = (n-1) \times |\text{incx}| + 1$ containing the input vector x.

incx
Increment for the array x, $\text{incx} \neq 0$:

$\text{incx} > 0$ x is stored forward in array x; that is, x_i is stored in $x((i-1) \times \text{incx} + 1)$.

$\text{incx} < 0$ x is stored backward in array x; that is, x_i is stored in $x((i-n) \times \text{incx} + 1)$.

Use $\text{incx} = 1$ if the vector x is stored contiguously in array x, that is, if x_i is stored in $x(i)$. Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

Output
x The updated x vector replaces the input.
Notes

These subprograms conform to specifications of the Level 2 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are:

- `uplo ≠ 'L' or 'l' or 'U' or 'u'`
- `trans ≠ 'N' or 'n' or 'T' or 't' or 'C' or 'c'`
- `diag ≠ 'N' or 'n' or 'U' or 'u'`
- `n < 0`
- `incx = 0`

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement can be improved by coding the `trans` argument as 'NORMAL' or 'NONTRANS' for 'N', 'TRANSPOSE' for 'T', or 'CTRANS' for 'C'. Refer to “Example 2.”

Example 1

Form the REAL*4 matrix-vector product \(Ax \), where \(A \) is a 9-by-9 unit-diagonal, lower-triangular real matrix stored in packed form in an array \(AP \) of dimension 55 and \(x \) is a real vector 9 elements long stored in an array \(X \) of dimension 10.

```fortran
CHARACTER*1 UPLO, TRANS, DIAG
INTEGER*4 N, INCX
REAL*4 AP(55), X(10)
UPLO = 'L'
TRANS = 'N'
DIAG = 'U'
N = 9
INCX = 1
CALL STPMV (UPLO, TRANS, DIAG, N, AP, X, INCX)
```

Example 2

Form the REAL*8 matrix-vector product \(A^T x \), where \(A \) is a 9-by-9 nonunit-diagonal, upper-triangular real matrix stored in packed form in an array \(AP \) of dimension 55 and \(x \) is a real vector 9 elements long stored in an array \(X \) of dimension 10.

```fortran
INTEGER*4 N
REAL*8 AP(55), X(10)
N = 6
CALL DTPMV ('UPPER', 'TRANSPOSE', 'NONUNIT', N, AP, X, 1)
```
Solve triangular system

Name

STPSV/DTPSV/CTPSV/ZTPSV

Solve triangular system

Purpose

Given an \(n \)-by-\(n \) upper- or lower-triangular matrix \(A \) stored in packed form as described in “Matrix Storage” and an \(n \)-vector \(x \), these subprograms overwrite \(x \) with the solution \(y \) to the system of linear equations \(Ay = x \). This is the forward elimination or back substitution step of Gaussian elimination. Optionally, \(A \) can be replaced by \(A^T \), the transpose of \(A \), or by \(A^* \), the conjugate transpose of \(A \). Specifically, these subprograms compute

\[
x \leftarrow A^{-1}x, \quad x \leftarrow A^{-T}x, \quad \text{and} \quad x \leftarrow A^{-*}x.
\]

where \(A^{-T} \) is the inverse of the transpose of \(A \), and \(A^{-*} \) is the inverse of the conjugate transpose of \(A \).

These subprograms are more primitive than the LAPACK linear equation solvers. As such, they are intended to supplement but not replace them, serving instead as building blocks in constructing optimized linear algebra software. In fact, many of the LAPACK subprograms have been recoded to call these subprograms.

Refer to “F_STPSV/F_DTPSV/F_CTPSV/F_ZTPSV” on page 406 for a description of the equivalent BLAS Standard subprograms.

Matrix Storage

You supply the upper or lower triangle of \(A \), stored column-by-column in packed form in a 1-dimensional array. This saves memory compared to storing the entire matrix.

The following examples illustrate the packed storage of a triangular matrix.

Upper triangular matrix

If \(A \) is

\[
\begin{bmatrix}
11 & 12 & 13 & 14 \\
0 & 22 & 23 & 24 \\
0 & 0 & 33 & 34 \\
0 & 0 & 0 & 44
\end{bmatrix}
\]

then \(A \) is packed column by column into an array \(ap \) as follows:

\[
\begin{array}{c|ccccccccccc}
 k & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 \hline
 \text{ap}(k) & 11 & 12 & 22 & 13 & 23 & 33 & 14 & 24 & 34 & 44
\end{array}
\]

Upper-triangular matrix element \(a_{ij} \) is stored in array element \(\text{ap}(i+(j×(j−1))/2) \).
Lower triangular matrix

If \(A \) is

\[
\begin{bmatrix}
11 & 0 & 0 & 0 \\
21 & 22 & 0 & 0 \\
31 & 32 & 33 & 0 \\
41 & 42 & 43 & 44 \\
\end{bmatrix}
\]

then \(A \) is packed column by column into an array \(\text{ap} \) as follows:

<table>
<thead>
<tr>
<th>(k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{ap}(k))</td>
<td>11</td>
<td>21</td>
<td>31</td>
<td>41</td>
<td>22</td>
<td>32</td>
<td>42</td>
<td>33</td>
<td>43</td>
<td>44</td>
</tr>
</tbody>
</table>

Lower-triangular matrix element \(a_{ij} \) is stored in array element \(\text{ap}(i+(j-1)(2n-j)/2) \).

Usage

VECLIB:

```plaintext
CHARACTER*1 uplo, trans, diag
INTEGER*4 n, incx
REAL*4 \( \text{ap}(\text{lenap}) \), \( \text{x(lenx}) \)
CALL STPSV(uplo, trans, diag, n, ap, x, incx)
```

```plaintext
CHARACTER*1 uplo, trans, diag
INTEGER*4 n, incx
REAL*8 \( \text{ap}(\text{lenap}) \), \( \text{x(lenx}) \)
CALL DTPSV(uplo, trans, diag, n, ap, x, incx)
```

```plaintext
CHARACTER*1 uplo, trans, diag
INTEGER*4 n, incx
COMPLEX*8 \( \text{ap}(\text{lenap}) \), \( \text{x(lenx}) \)
CALL CTPSV(uplo, trans, diag, n, ap, x, incx)
```

```plaintext
CHARACTER*1 uplo, trans, diag
INTEGER*4 n, incx
COMPLEX*16 \( \text{ap}(\text{lenap}) \), \( \text{x(lenx}) \)
CALL ZTPSV(uplo, trans, diag, n, ap, x, incx)
```

VECLIB8:

```plaintext
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, incx
REAL*4 \( \text{ap}(\text{lenap}) \), \( \text{x(lenx}) \)
CALL STPSV(uplo, trans, diag, n, ap, x, incx)
```
Solve triangular system

\begin{verbatim}
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, incx
REAL*8 ap(lenap), x(lenx)
CALL DTPSV(uplo, trans, diag, n, ap, x, incx)
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, incx
COMPLEX*8 ap(lenap), x(lenx)
CALL CTPSV(uplo, trans, diag, n, ap, x, incx)
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, incx
COMPLEX*16 ap(lenap), x(lenx)
CALL ZTPSV(uplo, trans, diag, n, ap, x, incx)
\end{verbatim}

Input

- **uplo**
 - **Upper/lower triangular option for \(A \):**
 - 'L' or 'l' \(\rightarrow \) Solve lower-triangular system (forward elimination)
 - 'U' or 'u' \(\rightarrow \) Solve upper-triangular system (back substitution)
trans

Transposition option for A:

- 'N' or 'n': Compute \(x \leftarrow A^{-1}x\)
- 'T' or 't': Compute \(x \leftarrow A^{-T}x\)
- 'C' or 'c': Compute \(x \leftarrow A^{-*}x\)

where \(A^{-T}\) is the inverse of the transpose of A, and \(A^{-*}\) is the inverse of the conjugate transpose. In the real subprograms, 'C' and 'c' have the same meaning as 'T' and 't'.

diag

Specifies whether the matrix is unit triangular, that is, \(a_{ii} = 1\), or not:

- 'N' or 'n': The diagonal of A is stored in the array
- 'U' or 'u': The diagonal of A consists of unstored ones

When **diag** is supplied as 'U' or 'u', the diagonal elements are not referenced.

n

Number of rows and columns in matrix A, \(n \geq 0\). If \(n = 0\), the subprograms do not reference \(ap\) or \(x\).

ap

Array of length \(lenap = n \times (n+1)/2\) containing the \(n\)-by-\(n\) triangular matrix A, stored by columns in the packed form described above. Space must be left for the diagonal elements of A even when **diag** is supplied as 'U' or 'u'.

x

Array of length \(lenx = (n-1) \times |\text{inex}| + 1\) containing the right-hand-side \(n\)-vector \(x\).

inex

Increment for the array \(x\), \(\text{inex} \neq 0\):

- \(\text{inex} > 0\): \(x\) is stored forward in array \(x\); that is, \(x_i\) is stored in \(x((i-1)\times\text{inex}+1)\)
- \(\text{inex} < 0\): \(x\) is stored backward in array \(x\); that is, \(x_i\) is stored in \(x((i-n)\times\text{inex}+1)\)

Use \(\text{inex} = 1\) if the vector \(x\) is stored contiguously in array \(x\), that is, if \(x_i\) is stored in \(x(i)\). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

Output

The solution vector of the triangular system replaces the input.
Notes

These subprograms conform to specifications of the Level 2 BLAS.

The subprograms do not check for singularity of matrix A. A is singular if \(\text{diag} = 'N' \) or 'n' and some \(a_{ii} = 0 \). This condition causes a division by zero to occur. Therefore, the program must detect singularity and take appropriate action to avoid a problem before calling any of these subprograms.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are:

- \(\text{uplo} \neq 'L' \) or 'l' or 'U' or 'u'
- \(\text{trans} \neq 'N' \) or 'n' or 'T' or 't' or 'C' or 'c'
- \(\text{diag} \neq 'N' \) or 'n' or 'U' or 'u'
- \(n < 0 \)
- \(\text{incx} = 0 \)

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement may be improved by coding the \(\text{trans} \) argument as 'NORMAL' or 'NONTRANS' for 'N', 'TRANSPOSE' for 'T', or 'CTRANS' for 'C'. Refer to "Example 2."

Example 1

Perform REAL*4 forward elimination using a 75-by-75 unit-diagonal, lower-triangular real matrix stored in packed form in an array \(\text{AP} \) of dimension 5500, and \(x \) is a real vector 75 elements long stored in an array \(X \) of dimension 100.

```fortran
CHARACTER*1 UPLO, TRANS, DIAG
INTEGER*4 N, INCX
REAL*4 AP(5500), X(100)
UPLO = 'L'
TRANS = 'N'
DIAG = 'U'
N = 75
INCX = 1
CALL STPSV (UPLO, TRANS, DIAG, N, AP, X, INCX)
```

Example 2

Perform REAL*4 back substitution using a 75-by-75 nonunit-diagonal, upper-triangular real matrix stored in packed form in an array \(\text{AP} \) of dimension 5500, and \(x \) is a real vector 75 elements long stored in an array \(X \) of dimension 100.

```fortran
INTEGER*4 N
REAL*4 AP(5500), X(100)
N = 75
CALL STPSV ('UPPER', 'NONTRANS', 'NONUNIT', N, AP, X, 1)
```
STRMM/DTRMM/CTRMM/ZTRMM

Triangular matrix-matrix multiply

Name

STRMM/DTRMM/CTRMM/ZTRMM

Triangular matrix-matrix multiply

Purpose

Given a scalar α, an m-by-n matrix B, and an upper- or lower-triangular matrix A, these subprograms compute either of the matrix-matrix products αAB or αBA. The size of A, either m-by-m or n-by-n, depends on which matrix product is requested. Optionally, A can be replaced by A^T, the transpose of A, or by A^*, the conjugate transpose of A. The resulting matrix product overwrites the input B matrix. Specifically, these subprograms compute matrix products of the forms

\[
B \leftarrow \alpha AB, \quad B \leftarrow \alpha A^T B, \quad B \leftarrow \alpha A^* B, \\
B \leftarrow \alpha BA, \quad B \leftarrow \alpha BA^T, \quad B \leftarrow \alpha BA^*.
\]

Matrix Storage

For these subprograms, you supply A in a two-dimensional array large enough to hold a square matrix. The other triangle of the array is not referenced. If A has an unstored unit diagonal (see input argument diag), then the diagonal elements of the array also are not referenced.

Usage

VECLIB:

```c
CHARACTER*1 side, uplo, transa, diag
INTEGER*4 m, n, lda, ldb
REAL*4 alpha, a(lda, *), b(ldb, *)
CALL STRMM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

CHARACTER*1 side, uplo, transa, diag
INTEGER*4 m, n, lda, ldb
REAL*8 alpha, a(lda, *), b(ldb, *)
CALL DTRMM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

CHARACTER*1 side, uplo, transa, diag
INTEGER*4 m, n, lda, ldb
COMPLEX*8 alpha, a(lda, *), b(ldb, *)
CALL CTRMM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

CHARACTER*1 side, uplo, transa, diag
INTEGER*4 m, n, lda, ldb
COMPLEX*16 alpha, a(lda, *), b(ldb, *)
CALL ZTRMM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
```
VECLIB8:

CHARACTER*1 side, uplo, transa, diag
INTEGER*8 m, n, lda, ldb
REAL*4 alpha, a(lda, *), b(ldb, *)
CALL STRMM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

CHARACTER*1 side, uplo, transa, diag
INTEGER*8 m, n, lda, ldb
REAL*8 alpha, a(lda, *), b(ldb, *)
CALL DTRMM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

CHARACTER*1 side, uplo, transa, diag
INTEGER*8 m, n, lda, ldb
COMPLEX*8 alpha, a(lda, *), b(ldb, *)
CALL CTRMM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

CHARACTER*1 side, uplo, transa, diag
INTEGER*8 m, n, lda, ldb
COMPLEX*16 alpha, a(lda, *), b(ldb, *)
CALL ZTRMM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
Input

<table>
<thead>
<tr>
<th>side</th>
<th>Specifies whether triangular matrix A is the left or right matrix operand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>'L' or 'l'</td>
<td>A is the left matrix operand: for example, $B \leftarrow \alpha AB$</td>
</tr>
<tr>
<td>'R' or 'r'</td>
<td>A is the right matrix operand: for example, $B \leftarrow \alpha BA$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uplo</th>
<th>Upper/lower triangular option for A:</th>
</tr>
</thead>
<tbody>
<tr>
<td>'L' or 'l'</td>
<td>A is a lower-triangular matrix</td>
</tr>
<tr>
<td>'U' or 'u'</td>
<td>A is an upper-triangular matrix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>transa</th>
<th>Transposition option for A:</th>
</tr>
</thead>
<tbody>
<tr>
<td>'N' or 'n'</td>
<td>Use matrix A directly</td>
</tr>
<tr>
<td>'T' or 't'</td>
<td>Use A^T, the transpose of A</td>
</tr>
<tr>
<td>'C' or 'c'</td>
<td>Use A^*, the conjugate transpose of A</td>
</tr>
</tbody>
</table>

In the real subprograms, 'C' and 'c' have the same meaning as 'T' and 't'.

<table>
<thead>
<tr>
<th>diag</th>
<th>Specifies whether the A matrix is unit triangular, that is, $a_{ii} = 1$, or not:</th>
</tr>
</thead>
<tbody>
<tr>
<td>'N' or 'n'</td>
<td>The diagonal of A is stored in the array</td>
</tr>
<tr>
<td>'U' or 'u'</td>
<td>The diagonal of A consists of unstored ones</td>
</tr>
</tbody>
</table>

When diag is supplied as 'U' or 'u', the diagonal elements of A are not referenced.

| m | Number of rows in matrix B, $m \geq 0$. If $m = 0$, the subprograms do not reference a or b. |
| n | Number of columns in matrix B, $n \geq 0$. If $n = 0$, the subprograms do not reference a or b. |

| alpha | The scalar α. If alpha = 0, the subprograms compute $B \leftarrow 0$ without referencing a. |

<table>
<thead>
<tr>
<th>a</th>
<th>Array whose upper or lower triangle, as specified by uplo, contains the upper- or lower-triangular matrix A, whose size is indicated by side:</th>
</tr>
</thead>
<tbody>
<tr>
<td>'L' or 'l'</td>
<td>A is m-by-m</td>
</tr>
<tr>
<td>'R' or 'r'</td>
<td>A is n-by-n</td>
</tr>
</tbody>
</table>

The other triangle of a is not referenced. Not used as input if alpha = 0.
Triangular matrix-matrix multiply

lda

The leading dimension of array **a** as declared in the calling program unit, with \(\text{lda} \geq \text{max (the number of rows of } A, 1) \).

b

Array containing the \(m \)-by-\(n \) matrix \(B \). Not used as input if \(\alpha = 0 \).

ldb

The leading dimension of array **b** as declared in the calling program unit, with \(\text{ldb} \geq \text{max(m,1)} \).

Output

b

The indicated matrix product replaces the input.

Notes

These subprograms conform to specifications of the Level 3 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are:

- \(\text{side} \neq 'L' \) or \('L' \) or \('R' \) or \('r' \)
- \(\text{uplo} \neq 'L' \) or \('L' \) or \('U' \) or \('u' \)
- \(\text{transa} \neq 'N' \) or \('N' \) or \('T' \) or \('t' \) or \('C' \) or \('c' \)
- \(\text{diag} \neq 'N' \) or \('N' \) or \('U' \) or \('u' \)
- \(m < 0 \)
- \(n < 0 \)
- \(\text{lda} \) too small
- \(\text{ldb} < \text{max(m,1)} \)

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the CALL statement may be improved, for example, by coding the \(\text{transa} \) argument as \'NORMAL' or \'NONTRANS' for \'N', \'TRANSPOSE' for \'T', or \'CTRANS' for \'C'. Refer to “Example 2.”

Chapter 3 Basic Matrix Operations 321
Example 1 Form the REAL*4 matrix product AB, where A is a 6-by-6 nonunit-diagonal, upper-triangular real matrix stored in an array A whose dimensions are 10-by-10 and B is a 6-by-8 real matrix stored in an array B of dimension 10-by-10. The matrix product overwrites the input B matrix.

```fortran
CHARACTER*1 SIDE,UPLO,TRANSA,DIAG
INTEGER*4   M,N,LDA,LDB
REAL*4      ALPHA,A(10,10),B(10,10)
SIDE = 'L'
UPLO = 'U'
TRANSA = 'N'
DIAG = 'N'
M = 6
N = 8
ALPHA = 1.0
LDA = 10
LDB = 10
CALL STRMM (SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
```

Example 2 Form the REAL*8 matrix product qBA^T, where q is a real scalar, B is a 6-by-8 real matrix stored in an array B of dimension 10-by-10, and A is a 8-by-8 unit-diagonal lower-triangular real matrix stored in an array A whose dimensions are 10-by-10. The matrix product overwrites the input B matrix.

```fortran
INTEGER*4 M,N,LDA,LDB
REAL*8    Q,A(10,10),B(10,10)
M = 6
N = 8
LDA = 10
LDB = 10
CALL DTRMM ('RIGHT','LOWER','TRANS','UNIT',M,N,Q,A,LDA,B,LDB)
```
Matrix-vector multiply

Name

STRMV/DTRMV/CTRMV/ZTRMV
Matrix-vector multiply

Purpose

Given an \(n \)-by-\(n \) upper- or lower-triangular matrix \(A \) and an \(n \)-vector \(x \), these subprograms compute the matrix-vector products \(Ax \), \(A^T x \), and \(A^* x \), where \(A^T \) is the transpose of \(A \), and \(A^* \) is the conjugate transpose of \(A \). Specifically, these subprograms compute matrix-vector products of the forms

\[
x \leftarrow Ax, \ x \leftarrow A^T x, \ \text{and} \ x \leftarrow A^* x.
\]

Refer to “F_STRMV/F_DTRMV/F_CTRMV/F_ZTRMV” on page 408 for a description of the equivalent BLAS Standard subprograms.

Matrix Storage

For these subprograms, you supply \(A \) in a two-dimensional array large enough to hold a square matrix. The other triangle of the array is not referenced. If \(A \) has an unstored unit diagonal (see input argument \(\text{diag} \)), then the diagonal elements of the array also is not referenced.

Usage

VECLIB:

```c
CHARACTER*1 uplo, trans, diag
INTEGER*4 n, lda, incx
REAL*4 a(lda, n), x(lenx)
CALL STRMV(uplo, trans, diag, n, a, lda, x, incx)

CHARACTER*1 uplo, trans, diag
INTEGER*4 n, lda, incx
REAL*8 a(lda, n), x(lenx)
CALL DTRMV(uplo, trans, diag, n, a, lda, x, incx)

CHARACTER*1 uplo, trans, diag
INTEGER*4 n, lda, incx
COMPLEX*8 a(lda, n), x(lenx)
CALL CTRMV(uplo, trans, diag, n, a, lda, x, incx)

CHARACTER*1 uplo, trans, diag
INTEGER*4 n, lda, incx
COMPLEX*16 a(lda, n), x(lenx)
CALL ZTRMV(uplo, trans, diag, n, a, lda, x, incx)
```

VECLIB8:

```c
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, lda, incx
REAL*4 a(lda, n), x(lenx)
CALL STRMV(uplo, trans, diag, n, a, lda, x, incx)
```
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, lda, incx
REAL*8 a(lda, n), x(lenx)
CALL DTRMV(uplo, trans, diag, n, a, lda, x, incx)
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, lda, incx
COMPLEX*8 a(lda, n), x(lenx)
CALL CTRMV(uplo, trans, diag, n, a, lda, x, incx)
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, lda, incx
COMPLEX*16 a(lda, n), x(lenx)
CALL ZTRMV(uplo, trans, diag, n, a, lda, x, incx)

Input uplo
Upper/lower triangular option for A:
‘L’ or ‘l’ A is lower triangular
‘U’ or ‘u’ A is upper triangular
The other triangle of the array a is not referenced.
Matrix-vector multiply

trans

Transposition option for A:
- 'N' or 'n' Compute $x \leftarrow Ax$
- 'T' or 't' Compute $x \leftarrow A^T x$
- 'C' or 'c' Compute $x \leftarrow A^* x$

where A^T is the transpose of A and A^* is the conjugate transpose. In the real subprograms, 'C' and 'c' have the same meaning as 'T' and 't'.

diag

Specifies whether the matrix is unit triangular, that is, $a_{ii} = 1$, or not:
- 'N' or 'n' The diagonal of A is stored in the array
- 'U' or 'u' The diagonal of A consists of unstored ones

When **diag** is supplied as 'U' or 'u', the diagonal elements are not referenced.

n

Number of rows and columns in matrix A, $n \geq 0$. If $n = 0$, the subprograms do not reference a or x.

a

Array containing the n-by-n triangular matrix A.

lda

The leading dimension of array a as declared in the calling program unit, with $lda \geq \max(n,1)$.

x

Array of length $\text{lenx} = (n-1) \times |\text{incx}| + 1$ containing the input vector x.

incx

Increment for the array x, $\text{incx} \neq 0$:
- $\text{incx} > 0$ x is stored forward in array x; that is, x_i is stored in $x((i-1) \times \text{incx} + 1)$.
- $\text{incx} < 0$ x is stored backward in array x; that is, x_i is stored in $x((i-n) \times \text{incx} + 1)$.

Use $\text{incx} = 1$ if the vector x is stored contiguously in array x, that is, if x_i is stored in $x(i)$. Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

Output

x

The updated x vector replaces the input.
Notes

These subprograms conform to specifications of the Level 2 BLAS.

If an error in the arguments is detected, the subprograms call error handler
XERBLA, which writes an error message onto the standard error file and
terminates execution. The standard version of XERBLA (refer to the end of this
chapter) can be replaced with a user-supplied version to change the error
procedure. Error conditions are:

- \texttt{uplo} ≠ 'L' or 'l' or 'U' or 'u'
- \texttt{trans} ≠ 'N' or 'n' or 'T' or 't' or 'C' or 'c'
- \texttt{diag} ≠ 'N' or 'n' or 'U' or 'u'
- \texttt{n} < 0
- \texttt{lda} < max(\texttt{n},1)
- \texttt{incx} = 0

Actual character arguments in a subroutine call can be longer than the
corresponding dummy arguments. Therefore, readability of the \texttt{CALL}
statement can be improved by coding the \texttt{trans} argument as 'NORMAL' or
'NONTRANS' for 'N', 'TRANSPOSE' for 'T', or 'CTRANS' for 'C'. Refer to
"Example 2."

Example 1

Form the REAL*4 matrix-vector product \(Ax\), where \(A\) is a 9-by-9 unit-diagonal
lower-triangular real matrix stored in an array \(A\) whose dimensions are
10-by-10, and \(x\) is a real vector 9 elements long stored in an array \(X\) of
dimension 10.

```fortran
CHARACTER*1 UPLO,TRANS,DIAG
INTEGER*4   N,LDA,INCX
REAL*4      A(10,10),X(10)
UPLO = 'L'
TRANS = 'N'
DIAG = 'U'
N = 9
LDA = 10
INCX = 1
CALL STRMV (UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
```

Example 2

Form the REAL*8 matrix-vector product \(A^T x\), where \(A\) is a 9-by-9
nonunit-diagonal, upper-triangular real matrix stored in an array \(A\) whose
dimensions are 10-by-10, and \(x\) is a real vector 9 elements long stored in an
array \(X\) of dimension 10.

```fortran
INTEGER*4 N,LDA
REAL*8    A(10,10),X(10)
N = 6
LDA = 10
CALL DTRMV (‘UPPER’, ‘TRANSPOSE’, ‘NONUNIT’, N, A, LDA, X, 1)
```
Solve triangular systems

STRSM/DTRSM/CTRSM/ZTRSM

Name
Solve triangular systems

Purpose
Given a scalar α, an upper- or lower-triangular matrix A and an m-by-n matrix B, these subprograms compute either of the matrix solutions $\alpha A^{-1}B$ or αBA^{-1}. The size of A, either m-by-m or n-by-n, depends on which matrix solution is requested. Optionally, A^{-1} can be replaced by A^{-T}, the inverse of the transpose of A, or by A^{-*}, the inverse of the conjugate transpose of A. The resulting matrix solution overwrites the input B matrix. Specifically, these subprograms compute matrix solutions of the forms

$B \leftarrow \alpha A^{-1}B, \quad B \leftarrow \alpha A^{-T}B, \quad B \leftarrow \alpha A^{-*}B,$

$B \leftarrow \alpha BA^{-1}, \quad B \leftarrow \alpha BA^{-T}, \quad B \leftarrow \alpha BA^{-*}.$

Refer to “F_STRSM/F_DTRSM/F_CTRSM/F_ZTRSM” on page 414 for a description of the equivalent BLAS Standard subprograms.

Matrix Storage
For these subprograms, you supply A in a two-dimensional array large enough to hold a square matrix. The other triangle of the array is not referenced. If A has an unstored unit diagonal (see input argument `diag`), then the diagonal elements of the array also is not referenced.

Usage
VECLIB:

```c
CHARACTER*1 side, uplo, transa, diag
INTEGER*4  m, n, lda, ldb
REAL*4      alpha, a(lda, *), b(ldb, *)
CALL STRSM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

CHARACTER*1 side, uplo, transa, diag
INTEGER*4  m, n, lda, ldb
REAL*8      alpha, a(lda, *), b(ldb, *)
CALL DTRSM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

CHARACTER*1 side, uplo, transa, diag
INTEGER*4  m, n, lda, ldb
COMPLEX*8   alpha, a(lda, *), b(ldb, *)
CALL CTRSM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

CHARACTER*1 side, uplo, transa, diag
INTEGER*4  m, n, lda, ldb
COMPLEX*16  alpha, a(lda, *), b(ldb, *)
CALL ZTRSM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
```
VECLIBS:

- **CHARACTER*1** side, uplo, transa, diag
- **INTEGER*8** m, n, lda, ldb
- **REAL*4** alpha, a(lda, *), b(ldb, *)

 CALL STRSM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

- **CHARACTER*1** side, uplo, transa, diag
- **INTEGER*8** m, n, lda, ldb
- **REAL*8** alpha, a(lda, *), b(ldb, *)

 CALL DTRSM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

- **CHARACTER*1** side, uplo, transa, diag
- **INTEGER*8** m, n, lda, ldb
- **COMPLEX*8** alpha, a(lda, *), b(ldb, *)

 CALL CTRSM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

- **CHARACTER*1** side, uplo, transa, diag
- **INTEGER*8** m, n, lda, ldb
- **COMPLEX*16** alpha, a(lda, *), b(ldb, *)

 CALL ZTRSM(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
Solve triangular systems

Input

- **side**: Specifies whether triangular matrix A is the left or right matrix operand:
 - 'L' or 'l': A is the left matrix operand: for example, $B \leftarrow \alpha A^{-1}B$
 - 'R' or 'r': A is the right matrix operand: for example, $B \leftarrow \alpha BA^{-1}$

- **uplo**: Upper/lower triangular option for A:
 - 'L' or 'l': A is a lower-triangular matrix
 - 'U' or 'u': A is an upper-triangular matrix

- **transa**: Transposition option for A:
 - 'N' or 'n': Use matrix A^{-1}
 - 'T' or 't': Use A^{-T}, the inverse of the transpose of A
 - 'C' or 'c': Use A^{-c}, the inverse of the conjugate transpose of A

In the real subprograms, 'C' and 'c' have the same meaning as 'T' and 't'.

- **diag**: Specifies whether the A matrix is unit triangular, that is, $a_{ii} = 1$, or not:
 - 'N' or 'n': The diagonal of A is stored in the array
 - 'U' or 'u': The diagonal of A consists of unstored ones

When **diag** is supplied as 'U' or 'u', the diagonal elements of A are not referenced.

- **m**: Number of rows in matrix B, $m \geq 0$. If $m = 0$, the subprograms do not reference a or b.

- **n**: Number of columns in matrix B, $n \geq 0$. If $n = 0$, the subprograms do not reference a or b.

- **alpha**: The scalar α. If **alpha** = 0, the subprograms compute $B \leftarrow 0$ without referencing a.
STRSM/DTRSM/CTRSM/ZTRSM

Solve triangular systems

Array whose upper or lower triangle, as specified by `uplo`, contains the upper- or lower-triangular matrix `A`, whose size is indicated by `side`:

- 'L' or 'l'
 - `A` is `m`-by-`m`
- 'R' or 'r'
 - `A` is `n`-by-`n`

The other triangle of `a` is not referenced. Not used as input if `alpha = 0`.

lda

The leading dimension of array `a` as declared in the calling program unit, with `lda ≥ max (the number of rows of `A`, 1)`.

b

Array containing the `m`-by-`n` matrix `B`. Not used as input if `alpha = 0`.

ldb

The leading dimension of array `b` as declared in the calling program unit, with `ldb ≥ max(m,1)`.

Output

- `b`
 - The indicated matrix solution replaces the input.

Notes

These subprograms conform to specifications of the Level 3 BLAS.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are:

- `side ≠ 'L' or 'l' or 'R' or 'r'`
- `uplo ≠ 'L' or 'l' or 'U' or 'u'`
- `transa ≠ 'N' or 'n' or 'T' or 't' or 'C' or 'c'`
- `diag ≠ 'N' or 'n' or 'U' or 'u'`
- `m < 0`
- `n < 0`
- `lda too small`
- `ldb < max(m,1)`

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the `CALL` statement may be improved, for example, by coding the `transa` argument as 'NORMAL' or 'NONTRANS' for 'N', 'TRANSPOSE' for 'T', or 'CTRANS' for 'C'. Refer to “Example 2.”
Solve triangular systems

Example 1 Form the REAL*4 matrix solution $A^{-1}B$, where A is a 6-by-6 nonunit-diagonal, upper-triangular real matrix stored in an array A whose dimensions are 10-by-10 and B is a 6-by-8 real matrix stored in an array B of dimension 10-by-10. The matrix solution overwrites the input B matrix.

```fortran
CHARACTER*1 SIDE,UPLO,TRANSA,DIAG
INTEGER*4   M,N,LDA,LDB
REAL*4      ALPHA,A(10,10),B(10,10)
SIDE = 'L'
UPLO = 'U'
TRANSA = 'N'
DIAG = 'N'
M = 6
N = 8
ALPHA = 1.0
LDA = 10
LDB = 10
CALL STRSM (SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
```

Example 2 Form the REAL*8 matrix solution qBA^{-T}, where q is a real scalar, B is a 6-by-8 real matrix stored in an array B of dimension 10-by-10, and A is a 8-by-8 unit-diagonal lower-triangular real matrix stored in an array A whose dimensions are 10-by-10. The matrix solution overwrites the input B matrix.

```fortran
INTEGER*4 M,N,LDA,LDB
REAL*8    Q,A(10,10),B(10,10)
M = 6
N = 8
LDA = 10
LDB = 10
CALL DTRSM ('RIGHT','LOWER','TRANS','UNIT',M,N,Q,A,LDA,B,LDB)
```
Name
STRSV/DTRSV/CTRSV/ZTRSV
Solve triangular system

Purpose
Given an \(n\)-by-\(n\) upper- or lower-triangular matrix \(A\) and an \(n\)-vector \(x\), these subprograms overwrite \(x\) with the solution \(y\) to the system of linear equations \(Ay = x\). This is the forward elimination or back substitution step of Gaussian elimination. Optionally, \(A\) can be replaced by \(A^T\), the transpose of \(A\), or by \(A^*\), the conjugate transpose of \(A\). Specifically, these subprograms compute

\[
x \leftarrow A^{-1}x, \quad x \leftarrow A^{-T}x, \quad \text{and} \quad x \leftarrow A^{-*}x.
\]

where \(A^{-T}\) is the inverse of the transpose of \(A\), and \(A^{-*}\) is the inverse of the conjugate transpose of \(A\).

These subprograms are more primitive than the LAPACK linear equation solvers. As such, they are intended to supplement but not replace them, serving instead as building blocks in constructing optimized linear algebra software. In fact, many of the LAPACK subprograms have been recoded to call these subprograms.

Refer to “F_STRSV/F_DTRSV/F_CTRSV/F_ZTRSV” on page 417 for details of the equivalent BLAS Standard subprograms.

Matrix Storage
For these subprograms, you supply \(A\) in a two-dimensional array large enough to hold a square matrix. The other triangle of the array is not referenced. If \(A\) has an unstored unit diagonal (see input argument `diag`), then the diagonal elements of the array also are not referenced.

Usage
VECLIB:

```c
CHARACTER*1 uplo, trans, diag
INTEGER*4  n, lda, incx
REAL*4  a(lda, n), x(lenx)
CALL STRSV(uplo, trans, diag, n, a, lda, x, incx)

CHARACTER*1 uplo, trans, diag
INTEGER*4  n, lda, incx
REAL*8  a(lda, n), x(lenx)
CALL DTRSV(uplo, trans, diag, n, a, lda, x, incx)

CHARACTER*1 uplo, trans, diag
INTEGER*4  n, lda, incx
COMPLEX*8  a(lda, n), x(lenx)
CALL CTRSV(uplo, trans, diag, n, a, lda, x, incx)

CHARACTER*1 uplo, trans, diag
INTEGER*4  n, lda, incx
COMPLEX*8  a(lda, n), x(lenx)
CALL ZTRSV(uplo, trans, diag, n, a, lda, x, incx)
```
Solve triangular system

\texttt{Solve triangular system STRSV/DTRSV/CTRSV/ZTRSV}

\begin{verbatim}
CHARACTER*1 uplo, trans, diag
INTEGER*4 n, lda, incx
COMPLEX*16 a(lda, n), x(lenx)
CALL ZTRSV(uplo, trans, diag, n, a, lda, x, incx)

VECLIB8:
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, lda, incx
REAL*4 a(lda, n), x(lenx)
CALL STRSV(uplo, trans, diag, n, a, lda, x, incx)
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, lda, incx
REAL*8 a(lda, n), x(lenx)
CALL DTRSV(uplo, trans, diag, n, a, lda, x, incx)
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, lda, incx
COMPLEX*8 a(lda, n), x(lenx)
CALL CTRSV(uplo, trans, diag, n, a, lda, x, incx)
CHARACTER*1 uplo, trans, diag
INTEGER*8 n, lda, incx
COMPLEX*16 a(lda, n), x(lenx)
CALL ZTRSV(uplo, trans, diag, n, a, lda, x, incx)
\end{verbatim}

\textbf{Input}

uplo

Upper/lower triangular option for A:

- 'L' or 'l': Solve lower-triangular system (forward elimination)
- 'U' or 'u': Solve upper-triangular system (back substitution)

The other triangle of the array a is not referenced.

trans

Transposition option for A:

- 'N' or 'n': Compute $x \leftarrow A^{-1}x$
- 'T' or 't': Compute $x \leftarrow A^{T}x$
- 'C' or 'c': Compute $x \leftarrow A^{*}x$

where A^{-T} is the inverse of the transpose of A, and A^{-*} is the inverse of the conjugate transpose. In the real subprograms, 'C' and 'c' have the same meaning as 'T' and 't'.

\texttt{Chapter 3 Basic Matrix Operations 333}
Solve triangular system

diag

Specifies whether the matrix is unit triangular, that is, $a_{ii} = 1$, or not:

‘N’ or ‘n’ The diagonal of A is stored in the array

‘U’ or ‘u’ The diagonal of A consists of unstored ones

When **diag** is supplied as ‘U’ or ‘u’, the diagonal elements are not referenced.

n

Number of rows and columns in matrix A, $n \geq 0$. If $n = 0$, the subprograms do not reference a or x.

a

Array containing the n-by-n triangular matrix A.

lda

The leading dimension of array a as declared in the calling program unit, with $lda \geq \max(n,1)$.

x

Array of length $\text{lenx} = (n-1)\times |\text{incx}| + 1$ containing the right-hand-side n-vector x.
Solve triangular system

\textbf{STRSV/DTRSV/CTRSV/ZTRSV}

\begin{itemize}
 \item \textbf{\texttt{incx}}\hspace{0.5cm} Increment for the array \texttt{x}, \texttt{incx} $\neq 0$:
 \begin{itemize}
 \item \texttt{incx} > 0 \hspace{0.5cm} \texttt{x} is stored forward in array \texttt{x}; that is, \texttt{x}$_i$ is stored in \texttt{x}((\texttt{i}-1)\times\texttt{incx}+1).
 \item \texttt{incx} < 0 \hspace{0.5cm} \texttt{x} is stored backward in array \texttt{x}; that is, \texttt{x}$_i$ is stored in \texttt{x}((\texttt{i}-\texttt{n})\times\texttt{incx}+1).
 \end{itemize}
 \end{itemize}

Use \texttt{incx} = 1 if the vector \texttt{x} is stored contiguously in array \texttt{x}, that is, if \texttt{x}$_i$ is stored in \texttt{x}(\texttt{i}). Refer to “BLAS Indexing Conventions” in the introduction to Chapter 2.

\textbf{Output} \hspace{0.5cm} \texttt{x} \hspace{0.5cm} The solution vector of the triangular system replaces the input.

\textbf{Notes} \hspace{0.5cm} These subprograms conform to specifications of the Level 2 BLAS.

The subprograms do not check for singularity of matrix \texttt{A}. \texttt{A} is singular if \texttt{diag} = 'N' or 'n' and some \texttt{a}$_{ii}$ = 0. This condition causes a division by zero to occur. Therefore, the program must detect singularity and take appropriate action to avoid a problem before calling any of these subprograms.

If an error in the arguments is detected, the subprograms call error handler XERBLA, which writes an error message onto the standard error file and terminates execution. The standard version of XERBLA (refer to the end of this chapter) can be replaced with a user-supplied version to change the error procedure. Error conditions are

\begin{itemize}
 \item \texttt{uplo} \neq 'L' or 'l' or 'U' or 'u'
 \item \texttt{trans} \neq 'N' or 'n' or 'T' or 't' or 'C' or 'c'
 \item \texttt{diag} \neq 'N' or 'n' or 'U' or 'u'
 \item \texttt{n} < 0
 \item \texttt{lda} $< \max(\texttt{n},1)$
 \item \texttt{incx} $= 0$
\end{itemize}

Actual character arguments in a subroutine call can be longer than the corresponding dummy arguments. Therefore, readability of the \texttt{CALL} statement may be improved by coding the \texttt{trans} argument as 'NORMAL' or 'NONTRANS' for 'N', 'TRANSPOSE' for 'T', or 'CTRANS' for 'C'. Refer to “Example 2.”
Example 1 Perform REAL*4 forward elimination using the 75-by-75 unit-diagonal lower-triangular real matrix stored in an array A whose dimensions are 100-by-100, and x is a real vector 75 elements long stored in an array X of dimension 100.

```
CHARACTER*1 UPLO, TRANS, DIAG
INTEGER*4 N, LDA, INCX
REAL*4 A(100,100), X(100)
UPLO = 'L'
TRANS = 'N'
DIAG = 'U'
N = 75
LDA = 100
INCX = 1
CALL STRSV (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
```

Example 2 Perform REAL*4 back substitution using the 75-by-75 nonunit-diagonal, upper-triangular real matrix stored in an array A whose dimensions are 100-by-100, and x is a real vector 75 elements long stored in an array X of dimension 100.

```
INTEGER*4 N, LDA
REAL*4 A(100,100), X(100)
N = 75
LDA = 100
CALL STRSV ('UPPER', 'NONTRANS', 'NONUNIT', N, A, LDA, X, 1)
```
Name

XERBLA

Error handler

Purpose

This subprogram is the error handler for many of the subprograms in this chapter, as indicated in the “Notes” section in the applicable subprogram descriptions. As supplied in VECLIB, XERBLA writes the following error message onto the standard error file:

```
***************************************************************************
* XERBLA: subprogram name called with invalid value of argument number iarg *
***************************************************************************
```

where name is the name of the subprogram in which the error was detected, and iarg is the argument number of the offending argument. For example, in SGEMV, trans is argument number 1 and m is argument number 2. XERBLA then terminates execution with a nonzero exit status.

You can supply a version of XERBLA that alters this action. Be aware that other subprograms, including many in LAPACK, also call XERBLA. All BLAS, VECLIB and LAPACK subprograms that call XERBLA follow the `CALL XERBLA` statement with a `RETURN` statement, so your version of XERBLA can exit with a `RETURN` statement. However, many of those subprograms do not have a status response variable in their argument list that could be used to alert the caller. If you write an XERBLA that does not end with a `STOP` statement, you need some other mechanism to detect errors occurring in those subprograms. One such mechanism is a flag in a common block that is set by your XERBLA and tested by the calling program after calls where errors could be detected.

Usage

VECLIB:

```
CHARACTER*6   name
INTEGER*4    iarg
CALL XERBLA(name, iarg)
```

VECLIB8:

```
CHARACTER*6   name
INTEGER*8    iarg
CALL XERBLA(name, iarg)
```

Input

name

The name of the subprogram in which the error was detected.

iarg

The number of the argument that was found to be in error.

Notes

This subprogram conforms to specifications of the Level 2 and 3 BLAS and LAPACK.
XERBLA

Error handler
BLAS Standard routines
Name

F_CHBMV/F_ZHBMV
Hermitian banded matrix-vector multiply

Purpose

F_xHBMV multiplies a vector \(x \) by a Hermitian banded matrix \(A \), scales the resulting vector and adds it to the scaled vector operand \(y \). If \(n \) is less than or equal to zero, or if \(\beta \) is equal to one and \(\alpha \) is equal to zero, this routine returns immediately. The imaginary part of the diagonal entries of the matrix operand are supposed to be zero and should not be referenced.

\[
y \leftarrow \alpha Ax + \beta y \quad \text{with} \quad A = A^* \]

Refer to “SSBMV/DSBMV/CHBMV/ZHBMV” on page 244 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Matrix Storage

Because it is not necessary to store or operate on the zeros outside the band of \(A \), and because either triangle of \(A \) can be obtained from the other, you only need to provide the band within one triangle of \(A \). Compared to storing the entire matrix, this can save memory in two ways: only the elements within the band are stored and of them only the upper or the lower triangle. Refer to “SSBMV/DSBMV/CHBMV/ZHBMV” on page 244 for an example of the storage of symmetric band matrices.

Usage

VECLIB

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \text{INCX, INCY, K, LDA, N, UPLO} \\
\text{COMPLEX}^*8 & \quad \text{ALPHA, BETA} \\
\text{COMPLEX}^*8 & \quad A(\ LDA, *), X(*), Y(*) \\
\text{SUBROUTINE} & \quad \text{F_CHBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)}
\end{align*}
\]

VECLIB8

\[
\begin{align*}
\text{INTEGER}^*8 & \quad \text{INCX, INCY, K, LDA, N, UPLO} \\
\text{COMPLEX}^*16 & \quad \text{ALPHA, BETA} \\
\text{COMPLEX}^*16 & \quad A(\ LDA, *), X(*), Y(*) \\
\text{SUBROUTINE} & \quad \text{F_CHBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)}
\end{align*}
\]
Hermitian banded matrix-vector multiply

F_CHBMV/F_ZHBMV

INTEGER*8	INCX, INCY, K, LDA, N, UPLO
COMPLEX*16	ALPHA, BETA
COMPLEX*16	A(LDA, *), X(*), Y(*)

SUBROUTINE F_ZHBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

Input

- **UPLO**
 Specifies whether a triangular matrix is upper or lower triangular. Use either **BLAS_UPPER** or **BLAS_LOWER**.

- **N**
 Number of columns in matrix A, \(n > 0 \). If \(n \leq 0 \), the subprograms do not reference A, X, or Y.

- **K**
 The number of non zero diagonals above or below the principal diagonal.

- **ALPHA**
 The scalar ALPHA.

- **A**
 COMPLEX array, dimension (LDA, N).

- **LDA**
 Leading dimension of array A. If \(\text{lda} < 1 \) or \(\text{lda} < k+1 \), an error condition is generated.

- **X**
 COMPLEX array, minimum length (N - 1) x \(|\text{inex}| + 1 \).

- **INCX**
 Increment for the array x. A vector x having component \(x_i, i = 1,..., n \), is stored in an array X() with increment argument **inex**. If **inex** > 0 then \(x_i \) is stored in \(X (1 + (i - 1) x \text{inex}) \). If **inex** < 0 then \(x_i \) is stored in \(X (1 + (N - i) x \text{inex}) \). **inex** = 0 is an illegal value.

- **BETA**
 The scalar BETA.

- **Y**
 COMPLEX array, minimum length (N - 1) x \(|\text{incy}| + 1 \).

- **INCY**
 Increment for the array y. A vector y having component \(y_i, i = 1,..., n \), is stored in an array Y() with increment argument **incy**. If **incy** > 0 then \(y_i \) is stored in \(Y (1 + (i - 1) x \text{incy}) \). If **incy** < 0 then \(y_i \) is stored in \(Y (1 + (N - i) x \text{incy}) \). **incy** = 0 is an illegal value.

Output

- **Y**
 The updated Y vector replaces the input.

\[
y \leftarrow \alpha Ax + \beta y \quad \text{with} \quad A = A^* \]
Name

F_CHEMV/F_ZHEMV

Hermitian matrix-vector multiply

Purpose

F_xHEMV multiplies a vector x by a Hermitian matrix A, scales the resulting vector and adds it to the scaled vector operand y. If n is less than or equal to zero or if β is equal to one and α is equal to zero, this routine returns immediately. The imaginary part of the diagonal entries of the matrix operand are supposed to be zero and should not be referenced.

\[y \leftarrow \alpha A x + \beta y \quad \text{with} \quad A = A^* \]

Refer to “SSYMV/DSYMV/CHEMV/ZHEMV” on page 270 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Matrix Storage

Because either triangle of A can be obtained from the other, you only need to provide one triangle of A. You can supply either the upper or the lower triangle of A, in a two-dimensional array large enough to hold the entire matrix. The other triangle of the array is not referenced.

Usage

VECLIB

\[
\begin{align*}
\text{INTEGER}^4 & \quad \text{INCX, INCY, LDA, N, UPLO} \\
\text{COMPLEX}^8 & \quad \text{ALPHA, BETA} \\
\text{COMPLEX}^8 & \quad A(\text{LDA, }\ast), \text{X(}\ast\text{)}, \text{Y(}\ast\text{)} \\
\text{SUBROUTINE} & \quad \text{F_CHEMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)}
\end{align*}
\]

VECLIBS

\[
\begin{align*}
\text{INTEGER}^8 & \quad \text{INCX, INCY, LDA, N, UPLO} \\
\text{COMPLEX}^8 & \quad \text{ALPHA, BETA} \\
\text{COMPLEX}^8 & \quad A(\text{LDA, }\ast), \text{X(}\ast\text{)}, \text{Y(}\ast\text{)} \\
\text{SUBROUTINE} & \quad \text{F_CHEMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)}
\end{align*}
\]

\[
\begin{align*}
\text{INTEGER}^8 & \quad \text{INCX, INCY, LDA, N, UPLO} \\
\text{COMPLEX}^16 & \quad \text{ALPHA, BETA} \\
\text{COMPLEX}^16 & \quad A(\text{LDA, }\ast), \text{X(}\ast\text{)}, \text{Y(}\ast\text{)} \\
\text{SUBROUTINE} & \quad \text{F_ZHEMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)}
\end{align*}
\]
Hermitian matrix-vector multiply

F_CHEMV/F_ZHEMV

Input

<table>
<thead>
<tr>
<th>UPLO</th>
<th>Specifies whether a triangular matrix is upper or lower triangular. Use either BLAS_UPPER or BLAS_LOWER.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of columns in matrix A, (n > 0). If (n \leq 0), the subprograms do not reference A, X, or Y.</td>
</tr>
<tr>
<td>ALPHA</td>
<td>The scalar ALPHA.</td>
</tr>
<tr>
<td>A</td>
<td>COMPLEX array, dimension (LDA, N).</td>
</tr>
<tr>
<td>LDA</td>
<td>Leading dimension of array A. If (lda < 1) or (lda < n), an error condition is generated.</td>
</tr>
<tr>
<td>X</td>
<td>COMPLEX array, minimum length ((N - 1) \times</td>
</tr>
<tr>
<td>INCX</td>
<td>Increment for the array x. A vector x having component (x_i, i = 1, \ldots, n), is stored in an array X() with increment argument (incx). If (incx > 0) then (x_i) is stored in (X(1 + (i - 1) \times incx)). If (incx < 0) then (x_i) is stored in (X(1 + (N - i) \times</td>
</tr>
<tr>
<td>BETA</td>
<td>The scalar BETA.</td>
</tr>
<tr>
<td>Y</td>
<td>COMPLEX array, minimum length ((N - 1) \times</td>
</tr>
<tr>
<td>INCY</td>
<td>Increment for the array y. A vector y having component (y_i, i = 1, \ldots, n), is stored in an array Y() with increment argument (incy). If (incy > 0) then (y_i) is stored in (Y(1 + (i - 1) \times incy)). If (incy < 0) then (y_i) is stored in (Y(1 + (N - i) \times</td>
</tr>
</tbody>
</table>

Output

| Y | The updated Y vector replaces the input. \(y \leftarrow \alpha A x + \beta y \) with \(A = A^* \) |

\[y \leftarrow \alpha A x + \beta y \] with \(A = A^* \)
F_CHER/F_ZHER
Hermitian rank-1 update

Name
F_CHER/F_ZHER
Hermitian rank-1 update

Purpose
F_xHER performs the Hermitian rank-1 update

\[A \leftarrow \alpha xx^* + \beta A^* \quad \text{with} \quad A = A^* \]

where \(A \) is an \(n \)-by-\(n \) complex Hermitian matrix, \(\alpha \) is a real scalar, \(x \) is a complex \(n \)-vector, and \(x^* \) is the conjugate transpose of \(x \). The routine returns immediately if \(n \) is less than or equal to zero.

Refer to “SSYR/DSYR/CHER/ZHER” on page 275 for a description of the HP MLIB legacy BLAS subprogram for rank-1 update.

Matrix Storage
Because either triangle of \(A \) can be obtained from the other, these subprograms reference and apply the update to only one triangle of \(A \). You can supply either the upper or the lower triangle of \(A \), in a two-dimensional array large enough to hold the entire matrix, and the same triangle of the updated matrix is returned in the array. The other triangle of the array is not referenced.

Usage
VECLIB

\[
\begin{align*}
\text{INTEGER}^4 & \quad \text{INCX, LDA, N, UPLO} \\
\text{REAL}^4 & \quad \text{ALPHA, BETA} \\
\text{COMPLEX}^8 & \quad A(LDA, *), X(*) \\
\end{align*}
\]

SUBROUTINE F_CHER (UPLO, N, ALPHA, X, INCX, BETA, A, LDA)

\[
\begin{align*}
\text{INTEGER}^4 & \quad \text{INCX, LDA, N, UPLO} \\
\text{REAL}^8 & \quad \text{ALPHA, BETA} \\
\text{COMPLEX}^{16} & \quad A(LDA, *), X(*) \\
\end{align*}
\]

SUBROUTINE F_ZHER (UPLO, N, ALPHA, X, INCX, BETA, A, LDA)

VECLIB8

\[
\begin{align*}
\text{INTEGER}^8 & \quad \text{INCX, LDA, N, UPLO} \\
\text{REAL}^4 & \quad \text{ALPHA, BETA} \\
\text{COMPLEX}^8 & \quad A(LDA, *), X(*) \\
\end{align*}
\]

SUBROUTINE F_CHER (UPLO, N, ALPHA, X, INCX, BETA, A, LDA)

\[
\begin{align*}
\text{INTEGER}^8 & \quad \text{INCX, LDA, N, UPLO} \\
\text{REAL}^8 & \quad \text{ALPHA, BETA} \\
\text{COMPLEX}^{16} & \quad A(LDA, *), X(*) \\
\end{align*}
\]

SUBROUTINE F_ZHER (UPLO, N, ALPHA, X, INCX, BETA, A, LDA)

Input
UPLO
Specifies whether a triangular matrix is upper or lower triangular. Use either BLAS_UPPER or BLAS_LOWER.
Hermitian rank-1 update

\[F_{\text{CHER}} / F_{\text{ZHER}} \]

\[N \]
Number of elements of vector \(x \).

\[\text{ALPHA} \]
The scalar \(\text{ALPHA} \).

\[X \]
COMPLEX array, minimum length \((N - 1) \times |\text{incx}| + 1\).

\[\text{INCX} \]
Increment for the array \(x \). A vector \(x \) having component \(x_i, i = 1, ..., n \), is stored in an array \(X() \) with increment argument \(\text{inex} \). If \(\text{inex} > 0 \) then \(x_i \) is stored in \(X (1 + (i - 1) \times \text{inex}) \). If \(\text{inex} < 0 \) then \(x_i \) is stored in \(X (1 + (N - i) \times |\text{inex}|) \). \(\text{inex} = 0 \) is an illegal value.

\[\text{BETA} \]
The scalar \(\text{BETA} \).

\[A \]
COMPLEX array, dimension (LDA, N).

\[\text{LDA} \]
Leading dimension of array \(A \). If \(\text{lda} < 1 \) or \(\text{lda} < n \), an error condition is generated.

Output

\[A \]
The upper or lower triangle of the updated \(A \) matrix, as specified by \(\text{uplo} \), replaces the upper or lower triangle of the input, respectively. The other triangle of \(A \) is unchanged.

\[
A \leftarrow \alpha x^* + \beta A^* \quad \text{with} \quad A = A^*
\]
Name
F_CHER2/F_ZHER2
Hermitian rank-2 update

Purpose
F_xHER2 performs the Hermitian rank-2 update

\[A \leftarrow \alpha x^* y + \alpha^* y x^* + \beta A \] with \(A = A^* \)

where \(A \) is a complex Hermitian matrix, \(\alpha \) is a complex scalar, \(\alpha^* \) is the complex conjugate of \(\alpha \), \(x \) and \(y \) are complex \(n \)-vectors, and \(x^* \) and \(y^* \) are the conjugate transposes of \(x \) and \(y \), respectively. \(\beta \) is a real scalar. The routine returns immediately if \(n \) is less than or equal to zero.

Refer to “SSYR2/DSYR2/CHER2/ZHER2” on page 279 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Matrix Storage
Because either triangle of \(A \) can be obtained from the other, these subprograms reference and apply the update to only one triangle of \(A \). You can supply either the upper or the lower triangle of \(A \), in a two-dimensional array large enough to hold the entire matrix, and the same triangle of the updated matrix is returned in the array. The other triangle of the array is not referenced.

Usage
VECLIB

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \text{INCX, INCY, LDA, N, UPLO} \\
\text{REAL}^*4 & \quad BETA \\
\text{COMPLEX}^*8 & \quad \text{ALPHA, A(LDA,*), X(*), Y(*)} \\
\text{SUBROUTINE F_CHER2} & \quad \text{(UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)} \\
\text{INTEGER}^*4 & \quad \text{INCX, INCY, LDA, N, UPLO} \\
\text{REAL}^*8 & \quad BETA \\
\text{COMPLEX}^*16 & \quad \text{ALPHA, A(LDA,*), X(*), Y(*)} \\
\text{SUBROUTINE F_ZHER2} & \quad \text{(UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)}
\end{align*}
\]

VECLIB8

\[
\begin{align*}
\text{INTEGER}^8 & \quad \text{INCX, INCY, LDA, N, UPLO} \\
\text{REAL}^*4 & \quad BETA \\
\text{COMPLEX}^*8 & \quad \text{ALPHA, A(LDA,*), X(*), Y(*)} \\
\text{SUBROUTINE F_CHER2} & \quad \text{(UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)}
\end{align*}
\]
Hermitian rank-2 update

F_CHER2/F_ZHER2

INTEGER*8 INCX, INCY, LDA, N, UPLO
REAL*8 BETA
COMPLEX*16 ALPHA, A(LDA, *), X(*), Y(*)

SUBROUTINE F_ZHER2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

Input

UPLO Specifies whether a triangular matrix is upper or lower triangular. Use either BLAS_UPPER or BLAS_LOWER.
N Number of elements of vector x.
ALPHA The scalar ALPHA.
X COMPLEX array, minimum length
(N - 1) x |incx| + 1.
INCX Increment for the array x. A vector x having component x_i, i = 1,..., n, is stored in an array X() with increment argument incx. If incx > 0 then x_i is stored in X(1 + (i - 1) x incx). If incx < 0 then x_i is stored in X(1 + (N - i) x |incx|). incx = 0 is an illegal value.
Y COMPLEX array, minimum length
(N - 1) x |incy| + 1.
INCY Increment for the array y. A vector y having component y_i, i = 1,..., n, is stored in an array Y() with increment argument incy. If incy > 0 then y_i is stored in Y(1 + (i - 1) x incy). If incy < 0 then y_i is stored in Y(1 + (N - i) x |incy|). incy = 0 is an illegal value.
BETA The scalar BETA.
A COMPLEX array, dimension (LDA, N).
LDA Leading dimension of array A. If lda < 1 or lda < n, an error condition is generated.

Output

A The upper or lower triangle of the updated A matrix, as specified by uplo, replaces the upper or lower triangle of the input, respectively. The other triangle of A is unchanged.

\[A = \alpha x y^* + \bar{\alpha} y x^* + \beta A \] with \[A = A^* \]
F_CHPMV/F_ZHPMV
Hermitian packed matrix-vector multiply

Name
F_CHPMV/F_ZHPMV

Purpose
F_xHPMV multiplies a vector \(x \) by a Hermitian packed matrix \(A \), scales the resulting vector and adds it to the scaled vector operand \(y \). If \(n \) is less than or equal to zero, or if \(\beta \) is equal to one and \(\alpha \) is equal to zero, this routine returns immediately. The imaginary part of the diagonal entries of the matrix operand are supposed to be zero and should not be referenced.

\[
y \leftarrow \alpha Ax + \beta y \quad \text{with} \quad A=A^*
\]

Refer to “SSPMV/DSPMV/CHPMV/ZHPMV” on page 249 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Matrix Storage

Because either triangle of \(A \) can be obtained from the other, you only need to provide one triangle of \(A \), either the upper or the lower triangle. Compared to storing the entire matrix, you save memory by supplying that triangle stored column-by-column in packed form in a 1-dimensional array. Refer to “SSPMV/DSPMV/CHPMV/ZHPMV” on page 249 for an example of the packed storage of symmetric or Hermitian matrices.

Usage
VECLIB

```plaintext
INTEGER*4 INCX, INCY, N, UPLO  
COMPLEX*8 ALPHA, BETA  
COMPLEX*8 AP(*), X(*), Y(*)  
SUBROUTINE F_CHPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
```

VECLIB8

```plaintext
INTEGER*8 INCX, INCY, N, UPLO  
COMPLEX*16 ALPHA, BETA  
COMPLEX*16 AP(*), X(*), Y(*)  
SUBROUTINE F_CHPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
```
Hermitian packed matrix-vector multiply

F_CHPMV/F_ZHPMV

INTEGER*8 INCX, INCY, N, UPLO
COMPLEX*16 ALPHA, BETA
COMPLEX*16 AP(*), X(*), Y(*)
SUBROUTINE F_ZHPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)

Input
UPLO Specifies whether a triangular matrix is upper or lower triangular. Use either BLAS_UPPER or BLAS_LOWER.
N Number of columns in matrix A, $n > 0$. If $n \leq 0$, the subprograms do not reference A, X, or Y.
ALPHA The scalar ALPHA.
AP Array containing the upper or lower triangle, as specified by uplo of an n-by-n complex Hermitian matrix A, stored by columns in packed form.
X COMPLEX array, minimum length $(N - 1) \times |\text{incx}| + 1$.
INCX Increment for the array x. A vector x having component x_i, $i = 1, \ldots, n$, is stored in an array $X()$ with increment argument inx. If inx > 0 then x_i is stored in $X(1 + (i - 1) \times \text{inex})$. If inx < 0 then x_i is stored in $X(1 + (N - i) \times |\text{inex}|)$. inx = 0 is an illegal value.
BETA The scalar BETA.
Y COMPLEX array, minimum length $(N - 1) \times |\text{incy}| + 1$.
INCY Increment for the array y. A vector y having component y_i, $i = 1, \ldots, n$, is stored in an array $Y()$ with increment argument iny. If iny > 0 then y_i is stored in $Y(1 + (i - 1) \times \text{incy})$. If iny < 0 then y_i is stored in $Y(1 + (N - i) \times |\text{incy}|)$. iny = 0 is an illegal value.

Output
Y The updated Y vector replaces the input.
\[y \leftarrow \alpha A x + \beta y \quad \text{with} \quad A = A^* \]
F_CHPR/F_ZHPR

Hermitian rank-1 update

Name

F_CHPR/F_ZHPR

Hermitian rank-1 update

Purpose

F_xHPR performs the Hermitian rank-1 update

\[A \leftarrow \alpha xx^* + \beta A^* \text{ with } A=A^* \]

where \(A \) is an Hermitian matrix stored in packed form, \(\alpha \) and \(\beta \) are real scalars, \(x \) is a complex \(n \)-vector, and \(x^* \) is the conjugate transpose of \(x \).

Refer to “SSPR/DSPR/CHPR/ZHPR” on page 254 for a description of the equivalent HP MLIB legacy BLAS subprograms and an illustration of the packed storage of symmetric or Hermitian matrices.

Matrix Storage

Because either triangle of \(A \) can be obtained from the other, you only need to provide one triangle of \(A \), either the upper or the lower triangle. Compared to storing the entire matrix, you save memory by supplying that triangle stored column-by-column in packed form in a 1-dimensional array (refer to the \(AP \) matrix).

Usage

VECLIB

```plaintext
INTEGER*4 INCX, N, UPLO
REAL*4 ALPHA, BETA
COMPLEX*8 AP( * ), X( * )
SUBROUTINE F_CHPR (UPLO, N, ALPHA, X, INCX, BETA, AP)
INTGNER*8 INCX, N, UPLO
REAL*8 ALPHA, BETA
COMPLEX*16 AP( * ), X( * )
SUBROUTINE F_ZHPR (UPLO, N, ALPHA, X, INCX, BETA, AP)
```

VECLIBS

```plaintext
INTEGER*8 INCX, N, UPLO
REAL*4 ALPHA, BETA
COMPLEX*8 AP( * ), X( * )
SUBROUTINE F_CHPR (UPLO, N, ALPHA, X, INCX, BETA, AP)
INTEGER*8 INCX, N, UPLO
REAL*8 ALPHA, BETA
COMPLEX*16 AP( * ), X( * )
SUBROUTINE F_ZHPR (UPLO, N, ALPHA, X, INCX, BETA, AP)
```

Input

UPLO

Specifies whether a triangular matrix is upper or lower triangular. Use either **BLAS_UPPER** or **BLAS_LOWER**.
Hermitian rank-1 update

\[A \leftarrow \alpha xx^* + \beta A^* \quad \text{with} \quad A=A^* \]

- **N**
 - Number of elements of vector \(x \).
- **ALPHA**
 - REAL scalar \(\alpha \).
- **X**
 - COMPLEX array, minimum length \((N - 1) \times |\text{incx}| + 1\).
- **INCX**
 - Increment for the array \(x \). A vector \(x \) having component \(x_i, i = 1, \ldots, n \), is stored in an array \(X() \) with increment argument \(\text{incx} \). If \(\text{incx} > 0 \) then \(x_i \) is stored in \(X(1 + (i - 1) \times \text{incx}) \). If \(\text{incx} < 0 \) then \(x_i \) is stored in \(X(1 + (N - i) \times |\text{incx}|) \). \(\text{incx} = 0 \) is an illegal value.
- **BETA**
 - REAL scalar \(\beta \).
- **AP**
 - Complex array, dimension \((LDA, N)\). Contains the upper or lower triangle, as specified by \(\text{uplo} \) of an \(n \)-by-\(n \) real symmetric or complex Hermitian matrix \(A \), stored by columns in packed form.

Output

- **AP**
 - The upper or lower triangle of the updated \(A \) matrix, as specified by \(\text{uplo} \), replaces the input.
Name
F_CHPR2/F_ZHPR2
Hermitian rank-2 update

Purpose
F_xHPR2 performs the Hermitian rank-2 update

\[A \leftarrow \alpha xy^* + \bar{\alpha}yx^* + \beta A \quad \text{with} \quad A = A^* \]

where \(A \) is an \(n \)-by-\(n \) complex Hermitian matrix stored in packed form, \(\alpha \) is a complex scalar, \(\bar{\alpha} \) is the complex conjugate of \(\alpha \), \(x \) and \(y \) are complex \(n \)-vectors, and \(x^* \) and \(y^* \) are the conjugate transposes of \(x \) and \(y \), respectively. This routine returns immediately if \(n \) is less than or equal to zero.

Refer to “SSPR2/DSPR2/CHPR2/ZHPR2” on page 259 for a description of the equivalent HP MLIB legacy BLAS subprograms and an illustration of the packed storage of symmetric or Hermitian matrices.

Matrix Storage
Because either triangle of \(A \) can be obtained from the other, you only need to provide one triangle of \(A \), either the upper or the lower triangle. Compared to storing the entire matrix, you save memory by supplying that triangle stored column-by-column in packed form in a 1-dimensional array (refer to the \(AP \) matrix).

Usage

VECLIB

```
INTEGER*4    INCX, INCY, LDA, N, UPLO
REAL*4       BETA
COMPLEX*8    ALPHA, A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_CHER2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, AP)

INTEGER*4    INCX, INCY, LDA, N, UPLO
REAL*8       BETA
COMPLEX*16   ALPHA, A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_ZHER2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, AP)
```

VECLIB8

```
INTEGER*8    INCX, INCY, LDA, N, UPLO
REAL*4       BETA
COMPLEX*8    ALPHA, A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_CHER2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, AP)

INTEGER*8    INCX, INCY, LDA, N, UPLO
REAL*8       BETA
COMPLEX*16   ALPHA, A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_ZHER2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, AP)
```
Hermitian rank-2 update

Input

UPLO
Specifies whether a triangular matrix is upper or lower triangular. Use either `BLAS_UPPER` or `BLAS_LOWER`.

N
Number of elements of vector \(x \).

ALPHA
REAL scalar ALPHA.

X
COMPLEX array, minimum length \((N - 1) \times |\text{incx}| + 1\).

INCX
Increment for the array \(x \). A vector \(x \) having component \(x(i), i = 1, \ldots, n \), is stored in an array \(X() \) with increment argument \(\text{incx} \). If \(\text{incx} > 0 \) then \(i \) is stored in \(X(1 + (i - 1) \times \text{incx}) \). If \(\text{incx} < 0 \) then \(i \) is stored in \(X(1 + (N - i) \times |\text{incx}|) \). \(\text{incx} = 0 \) is an illegal value.

Y
COMPLEX array, minimum length \((N - 1) \times |\text{incy}| + 1\).

INCY
Increment for the array \(y \). A vector \(y \) having component \(y(i), i = 1, \ldots, n \), is stored in an array \(Y() \) with increment argument \(\text{incy} \). If \(\text{incy} > 0 \) then \(i \) is stored in \(Y(1 + (i - 1) \times \text{incy}) \). If \(\text{incy} < 0 \) then \(i \) is stored in \(Y(1 + (N - i) \times |\text{incy}|) \). \(\text{incy} = 0 \) is an illegal value.

BETA
COMPLEX scalar BETA.

AP
Complex array, dimension \((LDA, N)\). Contains the upper or lower triangle, as specified by \text{uplo} of an \(n \)-by-\(n \) real symmetric or complex Hermitian matrix \(A \), stored by columns in packed form.

Output

AP
The upper or lower triangle of the updated \(A \) matrix, as specified by \text{uplo}, replaces the input.

\[
A \leftarrow \alpha xy^* + \bar{\alpha}yx^* + \beta A \quad \text{with} \quad A = A^*
\]
Name: F_SFPINFO/F_DFPINFO

Environmental inquiry

Purpose: F_xFPINFO queries for machine-specific floating point characteristics. For BLAS Standard routines, error bounds and limitations due to overflow and underflow depend on details of how floating point numbers are represented. These details are available by calling F_xFPINFO.

Usage: VECLIB

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \text{CMACH} \\
\text{REAL}^*4 & \quad \text{FUNCTION F_SFPINFO (CMACH)} \\
\text{INTEGER}^*4 & \quad \text{CMACH} \\
\text{REAL}^*4 & \quad \text{FUNCTION F_DFPINFO (CMACH)} \\
\text{VECLIB} & \\
\text{INTEGER}^*8 & \quad \text{CMACH} \\
\text{REAL}^*4 & \quad \text{FUNCTION F_SFPINFO (CMACH)} \\
\text{INTEGER}^*8 & \quad \text{CMACH} \\
\text{REAL}^*4 & \quad \text{FUNCTION F_DFPINFO (CMACH)}
\end{align*}
\]

Input: CMACH

A named integer constant. The names for the CMACH argument are given in the appropriate language's include file.

Refer to Table 2-1 on page 173 for a description of CMACH floating point parameters, the corresponding BLAS Standard named constant (from the Fortran 77 include file), and the values returned by F_xFPINFO.
General band matrix-vector multiply

Name
F_SGBMV/F_DGBMV/F_CGBMV/F_ZGBMV
General band matrix-vector multiply

Purpose
F_xGBMV multiplies a vector x by a general band matrix A, its transpose, or its conjugate transpose, scales the resulting vector, and adds it to the scaled vector operand y. If m or n is less than or equal to zero, or if β is equal to one and α is equal to zero, the routine returns immediately. If kl or ku is less than zero, or if lda is less than $kl + ku + 1$, an error flag is set and passed to the error handler. The matrix-vector multiply can be defined as one of the following:

$$ y \leftarrow \alpha Ax + \beta y $$

$$ y \leftarrow \alpha A^T x + \beta y $$

$$ y \leftarrow \alpha A^* x + \beta y $$

Refer to “SGBMV/DGBMV/CGBMV/ZGBMV” on page 212 for a description of the equivalent HP MLIB legacy BLAS subprograms and an example of the storage of general band matrices.

Matrix Storage
Because it is not necessary to store or operate on the zeros outside the band of A, you need only provide the elements within the band of A. The subprograms for general band matrices use less storage than the subprograms for general full matrices if $kl+ku < n$.

Usage
VECLIB

INTEGER*4 INCX, INCY, KL, KU, LDA, M, N, TRANS
REAL*4 ALPHA, BETA
REAL*4 A(LDA, *), X(*), Y(*)
SUBROUTINE F_SGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER*4 INCX, INCY, KL, KU, LDA, M, N, TRANS
REAL*8 ALPHA, BETA
REAL*8 A(LDA, *), X(*), Y(*)
SUBROUTINE F_DGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER*4 INCX, INCY, KL, KU, LDA, M, N, TRANS
COMPLEX*8 ALPHA, BETA
COMPLEX*8 A(LDA, *), X(*), Y(*)
SUBROUTINE F_CGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER*4 INCX, INCY, KL, KU, LDA, M, N, TRANS
COMPLEX*8 ALPHA, BETA
COMPLEX*8 A(LDA, *), X(*), Y(*)
SUBROUTINE F_ZGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
F_SGBMV/F_DGBMV/F_CGBMV/F_ZGBMV

General band matrix-vector multiply

INTEGER*4 INCX, INCY, KL, KU, LDA, M, N, TRANS
COMPLEX*16 ALPHA, BETA
COMPLEX*16 A(LDA, *), X(*), Y(*)

SUBROUTINE F_ZGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

VECLIB

INTEGER*8 INCX, INCY, KL, KU, LDA, M, N, TRANS
REAL*4 ALPHA, BETA
REAL*4 A(LDA, *), X(*), Y(*)

SUBROUTINE F_SGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER*8 INCX, INCY, KL, KU, LDA, M, N, TRANS
REAL*8 ALPHA, BETA
REAL*8 A(LDA, *), X(*), Y(*)

SUBROUTINE F_DGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER*8 INCX, INCY, KL, KU, LDA, M, N, TRANS
COMPLEX*8 ALPHA, BETA
COMPLEX*8 A(LDA, *), X(*), Y(*)

SUBROUTINE F_CGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER*8 INCX, INCY, KL, KU, LDA, M, N, TRANS
COMPLEX*16 ALPHA, BETA
COMPLEX*16 A(LDA, *), X(*), Y(*)

SUBROUTINE F_ZGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

Input TRANS Specifies whether to apply the matrix (A), its transpose (A\text{T}), or its conjugate transpose (A^*). Use one of the following:

BLAS_NO_TRANS, BLAS_TRANS, BLAS_CONJ_TRANS

M Number of rows in matrix A, m > 0. If m \leq 0 , the subprograms do not reference A, X, or Y.

N Number of columns in matrix A, n > 0. If n \leq 0 , the subprograms do not reference A, X, or Y.

KL The lower bandwidth of A, that is, the number of nonzero diagonals below the principal diagonal in the band, 0 \leq KL < n .
General band matrix-vector multiply

F_SGBMV/F_DGBMV/F_CGBMV/F_ZGBMV

KU
The upper bandwidth of A, that is, the number of nonzero diagonals above the principal diagonal in the band, $0 \leq KU < n$.

ALPHA
The scalar ALPHA. If $\beta = 1$ and $\alpha = 0$, this routine returns immediately.

A
REAL or COMPLEX array, dimension (LDA, N).

LDA
Leading dimension of array A. If $\text{lda} < (\text{kl} + \text{ku} + 1)$, an error condition is generated.

X
REAL or COMPLEX array, minimum length $(N - 1) \times |\text{incx}| + 1$.

INCX
Increment for the array x. A vector x having component x_i, $i = 1, \ldots, n$, is stored in an array $X()$ with increment argument incx. If $\text{incx} > 0$ then x_i is stored in $X(1 + (i - 1) \times \text{incx})$. If $\text{incx} < 0$ then x_i is stored in $X(1 + (N - i) \times |\text{incx}|)$. $\text{incx} = 0$ is an illegal value.

BETA
The scalar BETA. If $\beta = 1$ and $\alpha = 0$, this routine returns immediately.

Y
REAL or COMPLEX array, minimum length $(N - 1) \times |\text{incy}| + 1$.

INCY
Increment for the array y. A vector y having component y_i, $i = 1, \ldots, n$, is stored in an array $Y()$ with increment argument incy. If $\text{incy} > 0$ then y_i is stored in $Y(1 + (i - 1) \times \text{incy})$. If $\text{incy} < 0$ then y_i is stored in $Y(1 + (N - i) \times |\text{incy}|)$. $\text{incy} = 0$ is an illegal value.

Output

Y
The updated Y vector replaces the input.

$$ y \leftarrow \alpha Ax + \beta y $$

where A can be A, A^T, or A^*.
Name
F_SGE_COPY/F_DGE_COPY/F_CGE_COPY/F_ZGE_COPY
Matrix copy

Purpose
F_xGE_COPY copies an m-by-n matrix A, its transpose A^T, or its conjugate transpose A^*, and stores the result in a matrix B.

$$B \leftarrow A, \quad B \leftarrow A^T \quad \text{or} \quad B \leftarrow A^*$$

Matrices A and B have the same storage format.

Refer to “SGECPY/DGECPY/CGECPY/ZGECPY” on page 219 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Usage
VECLIB

```
INTEGER-4   LDA, LDB, M, N, TRANS
REAL*4       A( LDA, * ), B( LDB, * )
SUBROUTINE F_SGE_COPY(TRANS, M, N, A, LDA, B, LDB)

INTEGER*4   LDA, LDB, M, N, TRANS
REAL*8       A( LDA, * ), B( LDB, * )
SUBROUTINE F_DGE_COPY(TRANS, M, N, A, LDA, B, LDB)

INTEGER*4   LDA, LDB, M, N, TRANS
COMPLEX*8    A( LDA, * ), B( LDB, * )
SUBROUTINE F_CGE_COPY(TRANS, M, N, A, LDA, B, LDB)

INTEGER*4   LDA, LDB, M, N, TRANS
COMPLEX*16   A( LDA, * ), B( LDB, * )
SUBROUTINE F_ZGE_COPY(TRANS, M, N, A, LDA, B, LDB)
```

VECLIB8

```
INTEGER*8   LDA, LDB, M, N, TRANS
REAL*4       A( LDA, * ), B( LDB, * )
SUBROUTINE F_SGE_COPY(TRANS, M, N, A, LDA, B, LDB)

INTEGER*8   LDA, LDB, M, N, TRANS
REAL*8       A( LDA, * ), B( LDB, * )
SUBROUTINE F_DGE_COPY(TRANS, M, N, A, LDA, B, LDB)

INTEGER*8   LDA, LDB, M, N, TRANS
COMPLEX*8    A( LDA, * ), B( LDB, * )
SUBROUTINE F_CGE_COPY(TRANS, M, N, A, LDA, B, LDB)

INTEGER*8   LDA, LDB, M, N, TRANS
COMPLEX*16   A( LDA, * ), B( LDB, * )
SUBROUTINE F_ZGE_COPY(TRANS, M, N, A, LDA, B, LDB)
```
Matrix copy

Input

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANS</td>
<td>Specifies whether to apply the matrix (A), its transpose ((A^T)), or its conjugate transpose ((A^*)). Use one of the following constants:</td>
</tr>
<tr>
<td></td>
<td>BLAS_NO_TRANS</td>
</tr>
<tr>
<td></td>
<td>BLAS_TRANS</td>
</tr>
<tr>
<td></td>
<td>BLAS_CONJ_TRANS</td>
</tr>
<tr>
<td>M</td>
<td>Number of rows in matrix B, (m \geq 0). If (m = 0), the subprograms do not reference A or B.</td>
</tr>
<tr>
<td>N</td>
<td>Number of columns in matrix B, (n \geq 0). If (n = 0), the subprograms do not reference A or B.</td>
</tr>
<tr>
<td>A</td>
<td>Array containing the (m)-by-(n) matrix A.</td>
</tr>
<tr>
<td>LDA</td>
<td>Leading dimension of array A. If (\text{lda} < 1) or (\text{lda} < m) an error flag is set and passed to the error handler.</td>
</tr>
<tr>
<td>B</td>
<td>Array containing the (m) by (n) matrix B.</td>
</tr>
<tr>
<td>LDB</td>
<td>Leading dimension of array B. Under the following conditions an error flag is set and passed to the error handler:</td>
</tr>
<tr>
<td></td>
<td>• (\text{TRANS} = \text{BLAS_NO_TRANS}), and (\text{lda} < 1) or (\text{lda} < m)</td>
</tr>
<tr>
<td></td>
<td>• (\text{TRANS} = \text{BLAS_TRANS}), and (\text{lda} < 1) or (\text{lda} < n)</td>
</tr>
<tr>
<td></td>
<td>• (\text{TRANS} = \text{BLAS_CONJ_TRANS}), and (\text{lda} < 1) or (\text{lda} < n)</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Array containing the (m)-by-(n) matrix (B) copied from (A), (A^T), or (A^*).</td>
</tr>
</tbody>
</table>
Name
F_SGE_TRANS/F_DGE_TRANS/F_CGE_TRANS/F_ZGE_TRANS
Matrix transposition

Purpose
F_xGE_TRANS performs the matrix transposition, or conjugate transposition, of a square matrix A. F_xGE_TRANS returns immediately if \(n \) is less than or equal to zero.
\[A \leftarrow A^T \quad \text{or} \quad A \leftarrow A^* \]

Usage
VECLIB

```
INTEGER*4   CONJ, LDA,N
REAL*4      A(LDA,*)
SUBROUTINE F_SGE_TRANS(CONJ, N, A, LDA)

INTEGER*4   CONJ, LDA,N
REAL*8      A(LDA,*)
SUBROUTINE F_DGE_TRANS(CONJ, N, A, LDA)

INTEGER*4   CONJ, LDA,N
COMPLEX*8   A(LDA,*)
SUBROUTINE F_CGE_TRANS(CONJ, N, A, LDA)

INTEGER*4   CONJ, LDA,N
COMPLEX*16  A(LDA,*)
SUBROUTINE F_ZGE_TRANS(CONJ, N, A, LDA)
```

VECLIB8

```
INTEGER*8   CONJ, LDA,N
REAL*4      A(LDA,*)
SUBROUTINE F_SGE_TRANS(CONJ, N, A, LDA)

INTEGER*8   CONJ, LDA,N
REAL*8      A(LDA,*)
SUBROUTINE F_DGE_TRANS(CONJ, N, A, LDA)

INTEGER*8   CONJ, LDA,N
COMPLEX*8   A(LDA,*)
SUBROUTINE F_CGE_TRANS(CONJ, N, A, LDA)

INTEGER*8   CONJ, LDA,N
COMPLEX*16  A(LDA,*)
SUBROUTINE F_ZGE_TRANS(CONJ, N, A, LDA)
```
Matrix transposition

<table>
<thead>
<tr>
<th>Input</th>
<th>CONJ</th>
<th>Specifies conjugation. Use either <code>BLAS_CONJ</code> or <code>BLAS_NO_CONJ</code>. When (A) is real the <code>conj</code> operator argument has no effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of rows and columns in matrix (A), (n > 0).</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Array containing the (m)-by-(n) matrix (A).</td>
<td></td>
</tr>
<tr>
<td>LDA</td>
<td>Leading dimension of array (A). When (lda < 1) or (lda < n), an error flag is set and passed to the error handler.</td>
<td></td>
</tr>
</tbody>
</table>

| **Output** | **A** | The transposed \(m \)-by-\(n \) matrix replaces the input matrix \(A \). |
Name
F_SGEMM/F_DGEMM/F_CGEMM/F_ZGEMM
General matrix-matrix multiply

Purpose
F_xGEMM performs the general matrix-matrix multiply

\[C \leftarrow \alpha \text{op}(A)\text{op}(B) + \beta C \]

where \(\alpha \) and \(\beta \) are scalars, and \(A, B, \) and \(C \) are general matrices. \(\text{op}(A) \) and \(\text{op}(B) \) denote \(A, A^T, \) or \(A^* \) and \(B, B^T, \) or \(B^* \), respectively.

This F_xGEMM interface encompasses the legacy BLAS routine xGEMM with added functionality for band matrix-matrix multiplication. Refer to “SGEMM/DGEMM/CGEMM/ZGEMM” on page 222 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Usage
VECLIB

```plaintext
INTEGER*4 K, LDA, LDB, LDC, M, N, TRANSA, TRANSB
REAL*4 ALPHA, BETA
REAL*4 A( LDA, * ), B( LDB, * ), C( LDC, * )
SUBROUTINE F_SGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)

INTEGER*4 K, LDA, LDB, LDC, M, N, TRANSA, TRANSB
REAL*8 ALPHA, BETA
REAL*8 A( LDA, * ), B( LDB, * ), C( LDC, * )
SUBROUTINE F_DGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)

INTEGER*4 K, LDA, LDB, LDC, M, N, TRANSA, TRANSB
COMPLEX*8 ALPHA, BETA
COMPLEX*8 A( LDA, * ), B( LDB, * ), C( LDC, * )
SUBROUTINE F_CGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)

INTEGER*4 K, LDA, LDB, LDC, M, N, TRANSA, TRANSB
COMPLEX*16 ALPHA, BETA
COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * )
SUBROUTINE F_ZGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)

VECLIB8
```
Chapter 3 Basic Matrix Operations

General matrix-matrix multiply

F_SGEMM/F_DGEMM/F_CGEMM/F_ZGEMM

INTEGER*8 K, LDA, LDB, LDC, M, N, TRANSA, TRANSB
REAL*4 ALPHA, BETA
REAL*4 A(LDA, *), B(LDB, *), C(LDC, *)
SUBROUTINE F_SGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)

INTEGER*8 K, LDA, LDB, LDC, M, N, TRANSA, TRANSB
REAL*8 ALPHA, BETA
REAL*8 A(LDA, *), B(LDB, *), C(LDC, *)
SUBROUTINE F_DGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)

INTEGER*8 K, LDA, LDB, LDC, M, N, TRANSA, TRANSB
COMPLEX*8 ALPHA, BETA
COMPLEX*8 A(LDA, *), B(LDB, *), C(LDC, *)
SUBROUTINE F_CGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)

INTEGER*8 K, LDA, LDB, LDC, M, N, TRANSA, TRANSB
COMPLEX*16 ALPHA, BETA
COMPLEX*16 A(LDA, *), B(LDB, *), C(LDC, *)
SUBROUTINE F_ZGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)

Input

TRANS-(A/B) Specifies whether to apply the matrix (A or B), its
 transpose (A^T or B^T), or its conjugate transpose
 (A* or B*). Use one of the following constants:
 BLAS_NO_TRANS, BLAS_TRANS,
 BLAS_CONJ_TRANS

M Number of rows in matrix C, m ≥ 0. If m = 0, the
 subprograms do not reference A, B, or C.

N Number of columns in matrix C, n ≥ 0. If n = 0, the
 subprograms do not reference A, B, or C.

K The middle dimension of the matrix multiply, k ≥ 0.
 If k = 0, the subprograms compute C ← βC without
 referencing A or B.

ALPHA The scalar ALPHA. If alpha = 0, the subprograms
 compute C ← βC without referencing A or B.

A Array containing the matrix A, whose size is indicated
 by TRANSA:
 BLAS_NO_TRANS m-by-k matrix A
F_SGEMM/F_DGEMM/F_CGEMM/F_ZGEMM

General matrix-matrix multiply

BLAS_TRANS \(k \)-by-\(m \) matrix \(A^T \)

BLAS_CONJ_TRANS \(k \)-by-\(m \) matrix \(A^* \)

LDA
Leading dimension of array \(A \).

Error conditions for \(\text{lda} \) depend on the value of \(\text{transa} \).

Each of the following conditions generates an error flag that is passed to the error handler:

- \(\text{lda} < 1 \)
- \(\text{transa} = \text{BLAS_NO_TRANS} \) and \(\text{lda} < \text{m} \)
- \(\text{transa} = \text{BLAS_TRANS} \) and \(\text{lda} < \text{k} \)
- \(\text{transa} = \text{BLAS_CONJ_TRANS} \) and \(\text{lda} < \text{k} \)

B
Array containing the matrix \(B \), whose size is indicated by \(\text{TRANSB} \):

- **BLAS_NO_TRANS** \(k \)-by-\(n \) matrix \(B \)
- **BLAS_TRANS** \(n \)-by-\(k \) matrix \(B^T \)
- **BLAS_CONJ_TRANS** \(n \)-by-\(k \) matrix \(B^* \)

LDB
Leading dimension of array \(B \).

Error conditions for \(\text{ldb} \) depend on the value of \(\text{transb} \).

Each of the following conditions generates an error flag that is passed to the error handler:

- \(\text{ldb} < 1 \)
- \(\text{transb} = \text{BLAS_NO_TRANS} \) and \(\text{ldb} < \text{k} \)
- \(\text{transb} = \text{BLAS_TRANS} \) and \(\text{ldb} < \text{n} \)
- \(\text{transb} = \text{BLAS_CONJ_TRANS} \) and \(\text{ldb} < \text{n} \)

BETA
The scalar \(\text{BETA} \).

C
The \(m \)-by-\(n \) matrix operand \(C \). The representation of the matrix entry \(c_{i,j} \) in \(C \) is denoted by \(C(i, j) \) for all \((i,j)\) in the interval \([0...m - 1] \times [0...n - 1] \).

LDC
Leading dimension of array \(C \). If \(\text{ldc} < 1 \) or \(\text{ldc} < \text{m} \), an error flag is generated and passed to the error handler.

Output
C
The updated \(m \)-by-\(n \) matrix \(C \) replaces the input.

\[
C \leftarrow \alpha aop(A)op(B) + \beta C
\]
General matrix-vector multiply

Name
F_SGEMV/F_DGEMV/F_CGEMV/F_ZGEMV
General matrix-vector multiply

Purpose
F_xGEMV multiplies a vector \(x \) by a general matrix \(A \), its transpose, or its conjugate transpose, scales the resulting vector, and adds it to the scaled vector operand \(y \). If \(m \) or \(n \) is less than or equal to zero, or if \(\beta \) is equal to one and \(\alpha \) is equal to zero, the routine returns immediately. If \(lda \) is less than one, or less than \(m \), an error flag is set and passed to the error handler. The matrix-vector multiply can be defined as one of the following:

\[
y \leftarrow \alpha Ax + \beta y
\]

\[
y \leftarrow \alpha A^T x + \beta y
\]

\[
y \leftarrow \alpha A^* x + \beta y
\]

Refer to “SGEMV/DGEMV/CGEMV/ZGEMV” on page 232 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Usage
VECLIB

```fortran
INTEGER*4     INCX, INCY, LDA, M, N, TRANS
REAL*4         ALPHA, BETA
REAL*4         A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_SGEMV (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER*4     INCX, INCY, LDA, M, N, TRANS
REAL*8         ALPHA, BETA
REAL*8         A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_DGEMV (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER*4     INCX, INCY, LDA, M, N, TRANS
COMPLEX*8      ALPHA, BETA
COMPLEX*8      A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_CGEMV (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER*4     INCX, INCY, LDA, M, N, TRANS
COMPLEX*16     ALPHA, BETA
COMPLEX*16     A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_ZGEMV (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
```

VECLIB8
F_SGEMV/F_DGEMV/F_CGEMV/F_ZGEMV

General matrix-vector multiply

SUBROUTINE F_SGEMV (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

SUBROUTINE F_DGEMV (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

SUBROUTINE F_CGEMV (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

SUBROUTINE F_ZGEMV (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

Input

TRANS Specifies whether to apply the matrix (A), its transpose
 (Aᵀ), or its conjugate transpose (A*). Use one of the
 following:
 BLAS_NO_TRANS, BLAS_TRANS,
 BLAS_CONJ_TRANS.

M Number of rows in matrix A, m > 0. If m ≤ 0, the
 subprograms do not reference A, X, or Y.

N Number of columns in matrix A, n > 0. If n ≤ 0, the
 subprograms do not reference A, X, or Y.

ALPHA The scalar ALPHA. If beta = 1 and alpha = 0, this
 routine returns immediately.

A REAL or COMPLEX array, dimension (LDA, N).

LDA Leading dimension of array A. If lda < 1 or lda < m, an
 error condition is generated.

X REAL or COMPLEX array, minimum length
 (N - 1) x |incx| + 1.

INCX Increment for the array x. A vector x having component
 xᵢ, i = 1,..., n, is stored in an array X() with increment
General matrix-vector multiply

F_SGEMV/F_DGEMV/F_CGEMV/F_ZGEMV

argument \(\text{inex} \). If \(\text{inex} > 0 \) then \(x_i \) is stored in
\[X(1 + (i - 1) \times \text{inex}) \]. If \(\text{inex} < 0 \) then \(x \) is stored in
\[X(1 + (N - i) \times |\text{inex}|) \]. \(\text{inex} = 0 \) is an illegal value.

BETA
The scalar BETA. If \(\beta = 1 \) and \(\alpha = 0 \), this routine returns immediately.

Y
REAL or COMPLEX array, minimum length
\((N - 1) \times |\text{incy}| + 1\).

INCY
Increment for the array \(y \). A vector \(y \) having component
\(y_i, i = 1, \ldots, n \), is stored in an array \(Y() \) with increment
argument \(\text{incy} \). If \(\text{incy} > 0 \) then \(y_i \) is stored in
\[Y(1 + (i - 1) \times \text{incy}) \]. If \(\text{incy} < 0 \) then \(y_i \) is stored in
\[Y(1 + (N - i) \times |\text{incy}|) \]. \(\text{incy} = 0 \) is an illegal value.

Output
Y
The updated vector replaces the input.
\[y \leftarrow \alpha Ax + \beta y \]
where \(A \) can be \(A, A^T, \) or \(A^* \).
Name
F_SGEMVER/F_DGEMVER/F_CGEMVER/F_ZGEMVER
Multiple matrix-vector multiply, rank 2 update

Purpose
F_xGEMVER precedes a combined matrix-vector and a transpose matrix-vector multiply with a rank two update.

\[
\hat{A} \leftarrow A + u_1v_1^T + u_2v_2^T \\
x \leftarrow \beta\hat{A}^Ty + z \\
w \leftarrow \alpha\hat{A}x
\]

Matrix A is updated by \(u_1v_1^T \) and \(u_2v_2^T \). The transpose of the updated matrix is multiplied by a vector \(y \). The resulting vector is scaled and added to the vector operand \(z \), and stored in \(x \). The operand \(x \) is multiplied by the updated matrix \(A \). The resulting vector is stored in \(w \). If \(m \) or \(n \) is less than or equal to zero, this function returns immediately.

Usage
VECLIB

 INTEGER*4 INCW, INCX, INCY, INCZ, LDA, M, N
 REAL*4 A(LDA, *), W(*), X(*), Y(*), Z(*)
 REAL*4 ALPHA, BETA
 REAL*4 U1(*), V1(*), U2(*), V2(*)
 SUBROUTINE F_SGEMVER (M, N, A, LDA, U1, U2, V1, V2, ALPHA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)

 INTEGER*4 INCW, INCX, INCY, INCZ, LDA, M, N
 REAL*8 A(LDA, *), W(*), X(*), Y(*), Z(*)
 REAL*8 ALPHA, BETA
 REAL*8 U1(*), V1(*), U2(*), V2(*)
 SUBROUTINE F_DGEMVER (M, N, A, LDA, U1, U2, V1, V2, ALPHA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)

 INTEGER*4 INCW, INCX, INCY, INCZ, LDA, M, N
 COMPLEX*8 A(LDA, *), W(*), X(*), Y(*), Z(*)
 COMPLEX*8 ALPHA, BETA
 COMPLEX*8 U1(*), V1(*), U2(*), V2(*)
 SUBROUTINE F_CGEMVER (M, N, A, LDA, U1, U2, V1, V2, ALPHA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)

 INTEGER*4 INCW, INCX, INCY, INCZ, LDA, M, N
 COMPLEX*8 A(LDA, *), W(*), X(*), Y(*), Z(*)
 COMPLEX*8 ALPHA, BETA
 COMPLEX*8 U1(*), V1(*), U2(*), V2(*)
 SUBROUTINE F_ZGEMVER (M, N, A, LDA, U1, U2, V1, V2, ALPHA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)
Chapter 3 Basic Matrix Operations

Multiple matrix-vector multiply, rank 2 update

\texttt{F_SGEMVER/F_DGEMVER/F_CGEMVER/F_ZGEMVER}

\begin{verbatim}
INTEGER*4 INCW, INCX, INCY, INCZ, LDA, M, N
COMPLEX*16 A(LDA,*), W(*), X(*), Y(*), Z(*)
COMPLEX*16 ALPHA, BETA
COMPLEX*16 U1(*), V1(*), U2(*), V2(*)
SUBROUTINE F_ZGEMVER(M, N, A, LDA, U1, V1, U2, V2, ALPHA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)
\end{verbatim}

VECLIBS

\begin{verbatim}
INTEGER*8 INCW, INCX, INCY, INCZ, LDA, M, N
REAL*4 A(LDA,*), W(*), X(*), Y(*), Z(*)
REAL*4 ALPHA, BETA
REAL*4 U1(*), V1(*), U2(*), V2(*)
SUBROUTINE F_SGEMVER(M, N, A, LDA, U1, V1, U2, V2, ALPHA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)
\end{verbatim}

\begin{verbatim}
INTEGER*8 INCW, INCX, INCY, INCZ, LDA, M, N
REAL*8 A(LDA,*), W(*), X(*), Y(*), Z(*)
REAL*8 ALPHA, BETA
REAL*8 U1(*), V1(*), U2(*), V2(*)
SUBROUTINE F_DGEMVER(M, N, A, LDA, U1, V1, U2, V2, ALPHA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)
\end{verbatim}

\begin{verbatim}
INTEGER*8 INCW, INCX, INCY, INCZ, LDA, M, N
COMPLEX*8 A(LDA,*), W(*), X(*), Y(*), Z(*)
COMPLEX*8 ALPHA, BETA
COMPLEX*8 U1(*), V1(*), U2(*), V2(*)
SUBROUTINE F_CGEMVER(M, N, A, LDA, U1, V1, U2, V2, ALPHA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)
\end{verbatim}

\begin{verbatim}
INTEGER*8 INCW, INCX, INCY, INCZ, LDA, M, N
COMPLEX*16 A(LDA,*), W(*), X(*), Y(*), Z(*)
COMPLEX*16 ALPHA, BETA
COMPLEX*16 U1(*), V1(*), U2(*), V2(*)
SUBROUTINE F_ZGEMVER(M, N, A, LDA, U1, V1, U2, V2, ALPHA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)
\end{verbatim}

\textbf{Input}

\begin{itemize}
 \item **M**\hspace{1cm}Number of rows in matrix A, \(m > 0 \). If \(m \leq 0 \), the subprograms do not reference A, X, or Y.
 \item **N**\hspace{1cm}Number of columns in matrix A, \(n > 0 \). If \(n \leq 0 \), the subprograms do not reference A, X, or Y.
 \item **A**\hspace{1cm}REAL or COMPLEX array, dimension (LDA, N).
 \item **LDA**\hspace{1cm}Leading dimension of array A. If lda < 1 or lda < m, an error flag is set and passed to the error handler.
\end{itemize}
F_SGEMVER/F_DGEMVER/F_CGEMVER/F_ZGEMVER Multiple matrix-vector multiply, rank 2 update

- **U1**: REAL or COMPLEX array, dimension M.
- **V1**: REAL or COMPLEX array, dimension N.
- **U2**: REAL or COMPLEX array, dimension M.
- **V2**: REAL or COMPLEX array, dimension N.
- **ALPHA**: The scalar ALPHA.
- **INCX**: Increment for the array x. A vector x having component \(x_i, i = 1, \ldots, n \), is stored in an array X() with increment argument in. If \(\text{inex} > 0 \) then \(x_i \) is stored in \(X(1 + (i - 1) \times \text{inex}) \). If \(\text{inex} < 0 \) then \(x_i \) is stored in \(X(1 + (N - i) \times |\text{inex}|) \). \(\text{inex} = 0 \) is an illegal value.
- **Y**: REAL or COMPLEX array, minimum length \((N - 1) \times |\text{incy}| + 1 \).
- **INCY**: Increment for the array y. A vector y having component \(y_i, i = 1, \ldots, n \), is stored in an array Y() with increment argument in. If \(\text{incy} > 0 \) then \(y_i \) is stored in \(Y(1 + (i - 1) \times \text{incy}) \). If \(\text{incy} < 0 \) then \(y_i \) is stored in \(Y(1 + (N - i) \times |\text{incy}|) \). \(\text{incy} = 0 \) is an illegal value.
- **BETA**: The scalar BETA.
- **INCW**: Increment for the array w. A vector w having component \(w_i, i = 1, \ldots, n \), is stored in an array W() with increment argument in. If \(\text{incw} > 0 \) then \(w_i \) is stored in \(W(1 + (i - 1) \times \text{incw}) \). If \(\text{incw} < 0 \) then \(w_i \) is stored in \(W(1 + (N - i) \times |\text{incw}|) \). \(\text{incw} = 0 \) is an illegal value.
- **INCZ**: Increment for the array z. A vector z having component \(z_i, i = 1, \ldots, n \), is stored in an array Z() with increment argument in. If \(\text{incw} > 0 \) then \(z_i \) is stored in \(Z(1 + (i - 1) \times \text{incw}) \). If \(\text{incw} < 0 \) then \(z_i \) is stored in \(Z(1 + (N - i) \times |\text{incw}|) \). \(\text{incw} = 0 \) is an illegal value.

Output

X: Contains the result after A is first updated by \(u_1 v_1^T \) and \(u_2 v_2^T \), then the transpose of the updated matrix is multiplied by vector y.

\[
\hat{A} \leftarrow A + u_1 v_1^T + u_2 v_2^T \\
x \leftarrow \beta \hat{A}^T y + z
\]
Multiple matrix-vector multiply, rank 2 update

\[W \text{ Stores the resulting vector when the operand } x \text{ is multiplied by the updated matrix } A. \]

\[w \leftarrow \alpha \hat{A}x \]

REAL or COMPLEX array, minimum length
\[(N - 1) \times |\text{incx}| + 1.\]

\[W \]

REAL or COMPLEX array, minimum length
\[(N - 1) \times |\text{incw}| + 1.\]
F_SGEMVT/F_DGEMVT/F_CGEMVT/F_ZGEMVT

Multiple matrix-vector multiply

Name

F_SGEMVT/F_DGEMVT/F_CGEMVT/F_ZGEMVT

Purpose

F_xGEMVT combines a matrix-vector and a transposed matrix-vector multiply.

\[x \leftarrow \beta A^T y + z \]

\[w \leftarrow \alpha Ax \]

Specifically, F_xGEMVT routines perform the following operations:

1. Multiply a vector \(y \) by a general matrix \(A^T \).
2. Scale the resulting vector by \(\beta \) and store the result in the vector operand \(x \).
3. Multiply the matrix by the resultant vector \(x \).
4. Scale the resulting vector by \(\alpha \) and store it in the vector operand \(w \).

If \(m \) or \(n \) is less than or equal to zero, this function returns immediately.

Usage

VECLIB

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \text{INCX, INCY, LDA, M, N} \\
\text{REAL}^*4 & \quad \text{ALPHA, BETA, A(LDA, *), X(*), Y(*), W(*), Z(*)} \\
\text{SUBROUTINE F_SGEMVT (M, N, ALPHA, A, LDA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)} \\
\text{INTEGER}^*4 & \quad \text{INCX, INCY, LDA, M, N} \\
\text{REAL}^*8 & \quad \text{ALPHA, BETA, A(LDA, *), X(*), Y(*), W(*), Z(*)} \\
\text{SUBROUTINE F_DGEMVT (M, N, ALPHA, A, LDA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)} \\
\text{INTEGER}^*4 & \quad \text{INCX, INCY, LDA, M, N} \\
\text{COMPLEX}^*8 & \quad \text{ALPHA, BETA, A(LDA, *), X(*), Y(*), W(*), Z(*)} \\
\text{SUBROUTINE F_CGEMVT (M, N, ALPHA, A, LDA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)} \\
\text{INTEGER}^*4 & \quad \text{INCX, INCY, LDA, M, N} \\
\text{COMPLEX}^*16 & \quad \text{ALPHA, BETA, A(LDA, *), X(*), Y(*), W(*), Z(*)} \\
\text{SUBROUTINE F_ZGEMVT (M, N, ALPHA, A, LDA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)}
\end{align*}
\]

VECLIBS

\[
\begin{align*}
\text{INTEGER}^*8 & \quad \text{INCX, INCY, LDA, M, N} \\
\text{REAL}^*4 & \quad \text{ALPHA, BETA, A(LDA, *), X(*), Y(*), W(*), Z(*)} \\
\text{SUBROUTINE F_SGEMVT (M, N, ALPHA, A, LDA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)}
\end{align*}
\]
Multiple matrix-vector multiply

F_SGEMVT/F_DGEMVT/F_CGEMVT/F_ZGEMVT

```
INTEGER*8   INCX, INCY, LDA, M, N
REAL*8      ALPHA, BETA, A( LDA, * ), X( * ), Y( * ), W( * ), Z( * )
SUBROUTINE F_DGEMVT (M, N, ALPHA, A, LDA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)

INTEGER*8   INCX, INCY, LDA, M, N
COMPLEX*8    ALPHA, BETA, A( LDA, * ), X( * ), Y( * ), W( * ), Z( * )
SUBROUTINE F_CGEMVT (M, N, ALPHA, A, LDA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)

INTEGER*8   INCX, INCY, LDA, M, N
COMPLEX*16   ALPHA, BETA, A( LDA, * ), X( * ), Y( * ), W( * ), Z( * )
SUBROUTINE F_ZGEMVT (M, N, ALPHA, A, LDA, X, INCX, Y, INCY, BETA, W, INCW, Z, INCZ)
```

Input

M Number of rows in matrix A, $m > 0$. If $m \leq 0$, the subprograms do not reference A, X, or Y.

N Number of columns in matrix A, $n > 0$. If $n \leq 0$, the subprograms do not reference A, X, or Y.

ALPHA REAL or COMPLEX scalar ALPHA.

A REAL or COMPLEX array, dimension (LDA, N).

LDA Leading dimension of array A. If \(\text{lda} < 1 \) or \(\text{lda} < m \), an error flag is set and passed to the error handler.

INCX Increment for the array x. A vector x having component $x_i, i = 1,\ldots, n$, is stored in an array $X()$ with increment argument \(\text{inx} \). If $\text{inx} > 0$ then x_i is stored in $X(1 + (i - 1) \times \text{inx})$. If $\text{inx} < 0$ then x_i is stored in $X(1 + (N - i) \times |\text{inx}|)$. $\text{inx} = 0$ is an illegal value.

Y REAL or COMPLEX array, minimum length $(N - 1) \times |\text{incy}| + 1$.

INCY Increment for the array y. A vector y having component $y_i, i = 1,\ldots, n$, is stored in an array $Y()$ with increment argument \(\text{incy} \). If $\text{incy} > 0$ then y_i is stored in $Y(1 + (i - 1) \times \text{incy})$. If $\text{incy} < 0$ then y_i is stored in $Y(1 + (N - i) \times |\text{incy}|)$. $\text{incy} = 0$ is an illegal value.

BETA REAL or COMPLEX scalar BETA.

INCW Increment for the array w. A vector w having component $w_i, i = 1,\ldots, n$, is stored in an array $W()$ with increment argument \(\text{inew} \). If $\text{inew} > 0$ then w_i is stored in $W(1 + (i - 1) \times \text{inew})$. If $\text{inew} < 0$ then w_i is stored in $W(1 + (N - i) \times |\text{inew}|)$. $\text{inew} = 0$ is an illegal value.
Multiple matrix-vector multiply

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>REAL or COMPLEX array, minimum length ((N - 1) \times</td>
</tr>
<tr>
<td>INCZ</td>
<td>Increment for the array (y). A vector (z) having component (z_i, i = 1, ..., n), is stored in an array (Z()) with increment argument (\text{incw}). If (\text{incw} > 0) then (z_i) is stored in (Z(1 + (i - 1) \times \text{incw})). If (\text{incw} < 0) then (z_i) is stored in (Z(1 + (N - i) \times</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Result of first matrix-vector multiplication and scaling by (\beta). Refer to “Purpose” on page 372 for details. (x \leftarrow \beta A^T y + z)</td>
</tr>
<tr>
<td>W</td>
<td>Result of second matrix-vector multiply. Refer to “Purpose” on page 372 for details. (w \leftarrow \alpha Ax)</td>
</tr>
</tbody>
</table>
General rank-1 update

F_SGER/F_DGER/F_CGER/F_ZGER

Name
F_SGER/F_DGER/F_CGER/F_ZGER
General rank-1 update

Purpose
F_xGER performs the following rank-1 operations:

When $A \in IR^{m,n}$, $A \leftarrow \alpha xy^T + \beta A$

When $A \in C^{m,n}$, $A \leftarrow \alpha xy^T + \beta A$ or

$A \leftarrow \alpha y^* + \beta A$

where A is an m-by-n matrix, α and β are scalars, x is an m-vector, y is an n-vector, and y^T and y^* are the transpose and conjugate transpose of y, respectively. The operator argument CONJ is only referenced when x and y are complex vectors.

When x and y are complex vectors, the vector components y_i are used unconjugated or conjugated as specified by the operator argument CONJ.

Refer to “SGER/DGER/CGERC/CGERU/ZGERC/ZGERU” on page 237 for a description of HP MLIB legacy BLAS subprograms for rank-1 update.

Usage
VECLIB

INTEGER*4 CONJ, INCX, INCY, LDA, M, N
REAL*4 ALPHA, BETA
REAL*4 A(LDA, *), X(*), Y(*)
SUBROUTINE F_SGER (CONJ, M, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

INTEGER*4 CONJ, INCX, INCY, LDA, M, N
REAL*8 ALPHA, BETA
REAL*8 A(LDA, *), X(*), Y(*)
SUBROUTINE F_DGER (CONJ, M, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

INTEGER*4 CONJ, INCX, INCY, LDA, M, N
COMPLEX*8 ALPHA, BETA
COMPLEX*8 A(LDA, *), X(*), Y(*)
SUBROUTINE F_CGER (CONJ, M, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

INTEGER*4 CONJ, INCX, INCY, LDA, M, N
COMPLEX*8 ALPHA, BETA
COMPLEX*8 A(LDA, *), X(*), Y(*)
SUBROUTINE F_ZGER (CONJ, M, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)
F_SGER/F_DGER/F_CGER/F_ZGER

General rank-1 update

INTEGER*4 CONJ, INCX, INCY, LDA, M, N
COMPLEX*16 ALPHA, BETA
COMPLEX*16 A(LDA, *), X(*), Y(*)

SUBROUTINE F_ZGER (CONJ, M, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

VECLIB8
INTEGER*8 CONJ, INCX, INCY, LDA, M, N
REAL*4 ALPHA, BETA
REAL*4 A(LDA, *), X(*), Y(*)

SUBROUTINE F_SGER (CONJ, M, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

INTEGER*8 CONJ, INCX, INCY, LDA, M, N
REAL*8 ALPHA, BETA
REAL*8 A(LDA, *), X(*), Y(*)

SUBROUTINE F_DGER (CONJ, M, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

INTEGER*8 CONJ, INCX, INCY, LDA, M, N
COMPLEX*8 ALPHA, BETA
COMPLEX*8 A(LDA, *), X(*), Y(*)

SUBROUTINE F_CGER (CONJ, M, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

INTEGER*8 CONJ, INCX, INCY, LDA, M, N
COMPLEX*16 ALPHA, BETA
COMPLEX*16 A(LDA, *), X(*), Y(*)

SUBROUTINE F_ZGER (CONJ, M, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

Input

CONJ
Specifies conjugation for vector components in complex routines. Vector components are used conjugated or unconjugated. Use either BLAS_CONJ or BLAS_NO_CONJ. When \(x \) and \(y \) are real vectors the \texttt{conj} operator argument has no effect.

M
Number of rows in matrix \(A \), \(m > 0 \). If \(m \leq 0 \), the subprograms do not reference \(A, X, \) or \(Y \).

N
Number of elements of vector \(x \).

ALPHA
The scalar \(\alpha \).

X
REAL or COMPLEX array, minimum length \((N - 1) \times |\text{inex}| + 1 \).
General rank-1 update

F_SGER/F_DGER/F_CGER/F_ZGER

INCX Increment for the array x. A vector x having component $x_i, i = 1, \ldots, n$, is stored in an array X() with increment argument incx. If \(\text{incx} > 0 \) then \(x_i \) is stored in \(X(1 + (i - 1) \times \text{incx}) \). If \(\text{incx} < 0 \) then \(x_i \) is stored in \(X(1 + (N - i) \times |\text{incx}|) \). \(\text{incx} = 0 \) is an illegal value.

Y REAL or COMPLEX array, minimum length \((N - 1) \times |\text{incy}| + 1\).

INCY Increment for the array y. A vector y having component $y_i, i = 1, \ldots, n$, is stored in an array Y() with increment argument incy. If \(\text{incy} > 0 \) then \(y_i \) is stored in \(Y(1 + (i - 1) \times \text{incy}) \). If \(\text{incy} < 0 \) then \(y_i \) is stored in \(Y(1 + (N - i) \times |\text{incy}|) \). \(\text{incy} = 0 \) is an illegal value.

BETA The scalar BETA.

A REAL or COMPLEX array, dimension (LDA, N).

LDA Leading dimension of array A. lda < 1 and lda < m are illegal values.

Output A The updated A matrix replaces the input.
Name
F_SSBMV/F_DSBMV/F_CSBMV/F_ZSBMV
Symmetric band matrix-vector multiply

Purpose
F_xSBMV multiplies a vector \(x \) by a real or complex symmetric band matrix \(A \), scales the resulting vector, and adds it to the scaled vector operand \(y \). If \(n \) is less than or equal to zero, or if \(\beta \) is equal to one and \(\alpha \) is equal to zero, this routine returns immediately.

\[
y \leftarrow \alpha A x + \beta y \quad \text{with} \quad A = A^T
\]

Refer to “SSBMV/DSBMV/CHBMV/ZHBMV” on page 244 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Matrix Storage
Because it is not necessary to store or operate on the zeros outside the band of \(A \), and because either triangle of \(A \) can be obtained from the other, you only need to provide the band within one triangle of \(A \). Compared to storing the entire matrix, this can save memory in two ways: only the elements within the band are stored and of them only the upper or the lower triangle. Refer to “SSBMV/DSBMV/CHBMV/ZHBMV” on page 244 for an example of the storage of symmetric band matrices.

Usage
VECLIB

```fortran
INTEGER*4 INCX, INCY, K, LDA, N, UPLO
REAL*4 ALPHA, BETA, A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_SSBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER*4 INCX, INCY, K, LDA, N, UPLO
REAL*8 ALPHA, BETA, A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_DSBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER*4 INCX, INCY, K, LDA, N, UPLO
COMPLEX*8 ALPHA, BETA, A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_CSBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER*4 INCX, INCY, K, LDA, N, UPLO
COMPLEX*16 ALPHA, BETA, A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_ZSBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
```

VECLIB8
Symmetric band matrix-vector multiply

\[\text{F_SSBMV/F_DSBMV/F_CSBMV/F_ZSBMV} \]

\[
\begin{align*}
\text{INTEGER}^*8 & \quad \text{INCX, INCY, K, LDA, N, UPLO} \\
\text{REAL}^*4 & \quad \text{ALPHA, BETA, A(LDA, *), X(*), Y(*)}
\end{align*}
\]

\[
\text{SUBROUTINE F_SSBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)}
\]

\[
\begin{align*}
\text{INTEGER}^*8 & \quad \text{INCX, INCY, K, LDA, N, UPLO} \\
\text{REAL}^*8 & \quad \text{ALPHA, BETA, A(LDA, *), X(*), Y(*)}
\end{align*}
\]

\[
\text{SUBROUTINE F_DSBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)}
\]

\[
\begin{align*}
\text{INTEGER}^*8 & \quad \text{INCX, INCY, K, LDA, N, UPLO} \\
\text{COMPLEX}^*8 & \quad \text{ALPHA, BETA, A(LDA, *), X(*), Y(*)}
\end{align*}
\]

\[
\text{SUBROUTINE F_CSBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)}
\]

\[
\begin{align*}
\text{INTEGER}^*8 & \quad \text{INCX, INCY, K, LDA, N, UPLO} \\
\text{COMPLEX}^*16 & \quad \text{ALPHA, BETA, A(LDA, *), X(*), Y(*)}
\end{align*}
\]

\[
\text{SUBROUTINE F_ZSBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)}
\]

Input

UPLO

Specifies whether a triangular matrix is upper or lower triangular. Use either **BLAS_UPPER** or **BLAS_LOWER**.

N

Number of columns in matrix A, \(n > 0 \). If \(n \leq 0 \), the subprograms do not reference A, X, or Y.

K

The number of non zero diagonals above or below the principal diagonal.

ALPHA

The scalar ALPHA. If **beta** = 1 and **alpha** = 0, this routine returns immediately.

A

REAL or COMPLEX array, dimension (LDA, N).

LDA

Leading dimension of array A. If \(lda < 1 \) or \(lda < k+1 \), an error condition is generated.

X

REAL or COMPLEX array, minimum length \(N - 1 \) x \(|\text{incx}| + 1 \).

INCY

Increment for the array \(x \). A vector \(x \) having component \(x_i, i = 1, ..., n \), is stored in an array \(X() \) with increment argument \(\text{incx} \). If \(\text{incx} > 0 \) then \(x_i \) is stored in \(X(1 + (i - 1) \times \text{incx}) \). If \(\text{incx} < 0 \) then \(x_i \) is stored in \(X(1 + (N - i) \times |\text{incx}|) \). \(\text{incx} = 0 \) is an illegal value.

BETA

The scalar BETA. If **beta** = 1 and **alpha** = 0, this routine returns immediately.
F_SSBMV/F_DSBMV/F_CSBMV/F_ZSBMV

Symmetric band matrix-vector multiply

Y REAL or COMPLEX array, minimum length (N - 1) x |incy| + 1.

INCY Increment for the array y. A vector y having component \(y_i, i = 1, \ldots, n \), is stored in an array Y() with increment argument incy. If incy > 0 then \(y_i \) is stored in \(Y(1 + (i - 1) \times \text{incy}) \). If incy < 0 then \(y_i \) is stored in \(Y(1 + (N - i) \times |\text{incy}|) \). incy = 0 is an illegal value.

Output Y The updated Y vector replaces the input.

\[y \leftarrow \alpha Ax + \beta y \] with \(A = A^T \)
Symmetric packed matrix-vector multiply

Name
F_SSPMV/F_DSPMV/F_CSPMV/F_ZSPMV
Symmetric packed matrix-vector multiply

Purpose
F_xSPMV multiplies a vector \(x \) by a real or complex symmetric packed matrix \(A \), scales the resulting vector and adds it to the scaled vector operand \(y \). If \(n \) is less than or equal to zero, or if \(\beta \) is equal to one and \(\alpha \) is equal to zero, this routine returns immediately.

\[y \leftarrow \alpha A x + \beta y \quad \text{with} \quad A = A^T \]

Refer to “SSPMV/DSPMV/CHPMV/ZHPMV” on page 249 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Matrix Storage
Because either triangle of \(A \) can be obtained from the other, you only need to provide one triangle of \(A \), either the upper or the lower triangle. Compared to storing the entire matrix, you save memory by supplying that triangle stored column-by-column in packed form in a 1-dimensional array. Refer to “SSPMV/DSPMV/CHPMV/ZHPMV” on page 249 for an example of packed storage for symmetric or Hermitian matrices.

Usage
VECLIB

\[
\begin{align*}
\text{INTEGER}^*4 & \quad \text{INCX, INCY, N, UPLO} \\
\text{REAL}^*4 & \quad \text{ALPHA, BETA} \\
\text{REAL}^*4 & \quad \text{AP(\,*), X(\,*), Y(\,*)} \\
\text{SUBROUTINE} & \quad \text{F_SSPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)} \\
\text{INTEGER}^*4 & \quad \text{INCX, INCY, N, UPLO} \\
\text{REAL}^*8 & \quad \text{ALPHA, BETA} \\
\text{REAL}^*8 & \quad \text{AP(\,*), X(\,*), Y(\,*)} \\
\text{SUBROUTINE} & \quad \text{F_DSPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)} \\
\text{INTEGER}^*4 & \quad \text{INCX, INCY, N, UPLO} \\
\text{COMPLEX}^*8 & \quad \text{ALPHA, BETA} \\
\text{COMPLEX}^*8 & \quad \text{AP(\,*), X(\,*), Y(\,*)} \\
\text{SUBROUTINE} & \quad \text{F_CSPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)} \\
\text{INTEGER}^*4 & \quad \text{INCX, INCY, N, UPLO} \\
\text{COMPLEX}^*16 & \quad \text{ALPHA, BETA} \\
\text{COMPLEX}^*16 & \quad \text{AP(\,*), X(\,*), Y(\,*)} \\
\text{SUBROUTINE} & \quad \text{F_ZSPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)}
\end{align*}
\]
F_SSPMV/F_DSPMV/F_CSPMV/F_ZSPMV

Symmetric packed matrix-vector multiply

INTEGER*8 INCX, INCY, N, UPLO
REAL*4 ALPHA, BETA
REAL*4 AP(*), X(*), Y(*)

SUBROUTINE F_SSPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)

INTEGER*8 INCX, INCY, N, UPLO
REAL*8 ALPHA, BETA
REAL*8 AP(*), X(*), Y(*)

SUBROUTINE F_DSPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)

INTEGER*8 INCX, INCY, N, UPLO
COMPLEX*8 ALPHA, BETA
COMPLEX*8 AP(*), X(*), Y(*)

SUBROUTINE F_CSPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)

INTEGER*8 INCX, INCY, N, UPLO
COMPLEX*16 ALPHA, BETA
COMPLEX*16 AP(*), X(*), Y(*)

SUBROUTINE F_ZSPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)

Input

UPLO Specifies whether a triangular matrix is upper or lower triangular. Use either BLAS_UPPER or BLAS_LOWER.

N Number of columns in matrix A, n > 0. If n ≤ 0, the subprograms do not reference A, X, or Y.

ALPHA REAL or COMPLEX scalar ALPHA.

AP Array containing the upper or lower triangle, as specified by uplo of an n-by-n real symmetric or complex Hermitian matrix A, stored by columns in packed form.

X REAL or COMPLEX array, minimum length (N - 1) x |incx| + 1.

INCX Increment for the array x. A vector x having component x_i, i = 1, ..., n, is stored in an array X() with increment argument incx. If incx > 0 then x_i is stored in X (1 + (i - 1) x incx). If incx < 0 then x is stored in X (1 + (N - i) x |incx|). incx = 0 is an illegal value.

BETA REAL or COMPLEX scalar BETA.

Y REAL or COMPLEX array, minimum length (N - 1) x |incy| + 1.
Symmetric packed matrix-vector multiply

F_SSPMV/F_DSPMV/F_CSPMV/F_ZSPMV

INCY
Increment for the array y. A vector y having component
\(y_i, i = 1, \ldots, n \), is stored in an array Y() with increment
argument incy. If incy > 0 then \(y_i \) is stored in
\(Y(1 + (i - 1) \times \text{incy}) \). If incy < 0 then \(y_i \) is stored in
\(Y(1 + (N - i) \times |\text{incy}|) \). incy = 0 is an illegal value.

Output Y
The updated Y vector replaces the input.

\[y \leftarrow \alpha A x + \beta y \quad \text{with} \quad A = A^T \]
Name

F_SSPR/F_DSPR/F_CSPR/F_ZSPR
Symmetric packed rank-1 update

Purpose

F_xSPR performs the symmetric rank-1 update

\[A \leftarrow \alpha xx^T + \beta A \quad \text{with} \quad A = A^T \]

where \(A \) is an \(n \)-by-\(n \) real symmetric matrix stored in packed form, \(\alpha \) and \(\beta \) are real or complex scalars, \(x \) is a real or complex \(n \)-vector, and \(x^T \) is the transpose of \(x \). The routine returns immediately if \(n \) is less than or equal to zero.

This F_xSPR interface encompasses the legacy BLAS routine SSPR with added functionality for complex symmetric matrices. Refer to “SSPR/DSPR/CHPR/ZHPR” on page 254 for a description of the equivalent HP MLIB legacy BLAS subprograms and an illustration of the packed storage of symmetric or Hermitian matrices.

Matrix Storage

Because either triangle of \(A \) can be obtained from the other, you only need to provide one triangle of \(A \), either the upper or the lower triangle. Compared to storing the entire matrix, you save memory by supplying that triangle stored column-by-column in packed form in a one-dimensional array (refer to the \(AP \) matrix).

Usage

VECLIB

```fortran
 INTEGER*4    INCX, N, UPLO
 REAL*4       ALPHA, BETA, AP( * ), X( * )
 SUBROUTINE F_SSPR (UPLO, N, ALPHA, X, INCX, BETA, AP)

 INTEGER*4    INCX, N, UPLO
 REAL*8       ALPHA, BETA, AP( * ), X( * )
 SUBROUTINE F_DSPR (UPLO, N, ALPHA, X, INCX, BETA, AP)

 INTEGER*4    INCX, N, UPLO
 COMPLEX*8    ALPHA, BETA, AP( * ), X( * )
 SUBROUTINE F_CSPR (UPLO, N, ALPHA, X, INCX, BETA, AP)

 INTEGER*4    INCX, N, UPLO
 COMPLEX*16    ALPHA, BETA, AP( * ), X( * )
 SUBROUTINE F_ZSPR (UPLO, N, ALPHA, X, INCX, BETA, AP)
```

VECLIB8

```fortran
 INTEGER*8    INCX, N, UPLO
 REAL*4       ALPHA, BETA, AP( * ), X( * )
 SUBROUTINE F_SSPR (UPLO, N, ALPHA, X, INCX, BETA, AP)
```
Symmetric packed rank-1 update

\[A \leftarrow \alpha x x^T + \beta A \quad \text{with} \quad A = A^T \]

Input

- **UPLO**
 Specifies whether a triangular matrix is upper or lower triangular. Use either `BLAS_UPPER` or `BLAS_LOWER`.
- **N**
 Number of elements of vector \(x \).
- **ALPHA**
 The scalar \(\alpha \).
- **X**
 REAL or COMPLEX array, minimum length \((N - 1) \times |\text{inx}x| + 1\).
- **INCX**
 Increment for the array \(x \). A vector \(x \) having component \(x_i, i = 1, \ldots, n \), is stored in an array \(X() \) with increment argument \(\text{inx}x \). If \(\text{inx}x > 0 \) then \(x_i \) is stored in \(X(1 + (i - 1) \times |\text{inx}x|) \). If \(\text{inx}x < 0 \) then \(x_i \) is stored in \(X(1 + (N - i) \times |\text{inx}x|) \). \(\text{inx}x = 0 \) is an illegal value.
- **BETA**
 The scalar \(\beta \).
- **AP**
 Array containing the upper or lower triangle, as specified by `uplo` of an \(n \)-by-\(n \) real symmetric or complex Hermitian matrix \(A \), stored by columns in packed form.

Output

- **AP**
 The upper or lower triangle of the updated \(A \) matrix, as specified by `uplo`, replaces the input.
F_SSPR2/F_DSPR2/F_CSPR2/F_ZSPR2
Symmetric rank-2 update

Name
F_SSPR2/F_DSPR2/F_CSPR2/F_ZSPR2
Symmetric rank-2 update

Purpose
F_xSPR2 performs the symmetric rank-2 update

\[A \leftarrow \alpha x y^T + \bar{\alpha} y x^T + \beta A \quad \text{with} \quad A = A^T \]

where \(A \) is an \(n \)-by-\(n \) real symmetric matrix stored in packed form, \(\alpha \) and \(\beta \) are real or complex scalar, \(\bar{\alpha} \) is the complex conjugate of \(\alpha \), \(x \) and \(y \) are real or complex \(n \)-vectors, and \(x^T \) and \(y^T \) are transposes of \(x \) and \(y \), respectively.

This F_xSPR2 interface encompasses the legacy BLAS routine SSPR2 with added functionality for complex symmetric matrices. Refer to “SSPR2/DSPR2/CHPR2/ZHPR2” on page 259 for a description of the HP MLIB legacy BLAS subprograms and an illustration of the packed storage of symmetric or Hermitian matrices.

Matrix Storage
Because either triangle of \(A \) can be obtained from the other, you only need to provide one triangle of \(A \), either the upper or the lower triangle. Compared to storing the entire matrix, you save memory by supplying that triangle stored column-by-column in packed form in a 1-dimensional array (refer to the \(AP \) matrix).

Usage
VECLIB

INTEGER*4 INCX, INCY, N, UPLO
REAL*4 ALPHA, BETA
REAL*4 AP(*), X(*), Y(*)
SUBROUTINE F_SSPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, AP)

INTEGER*4 INCX, INCY, N, UPLO
REAL*8 ALPHA, BETA
REAL*8 AP(*), X(*), Y(*)
SUBROUTINE F_DSPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, AP)

INTEGER*4 INCX, INCY, N, UPLO
COMPLEX*8 ALPHA, BETA
COMPLEX*8 AP(*), X(*), Y(*)
SUBROUTINE F_CSPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, AP)

INTEGER*4 INCX, INCY, N, UPLO
COMPLEX*16 ALPHA, BETA
COMPLEX*16 AP(*), X(*), Y(*)
SUBROUTINE F_ZSPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, AP)

VECLIB*8
SUBROUTINE F_SSPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, AP)
SUBROUTINE F_DSPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, AP)
SUBROUTINE F_CSPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, AP)
SUBROUTINE F_ZSPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, AP)

Input

UPLO Specifies whether a triangular matrix is upper or lower triangular. Use either BLAS_UPPER or BLAS_LOWER.

N Number of elements of vector x.

ALPHA The scalar ALPHA.

X REAL or COMPLEX array, minimum length (N - 1) x |incx| + 1.

INCX Increment for the array x. A vector x having component x_i, i = 1,..., n, is stored in an array X() with increment argument incx. If incx > 0 then x_i is stored in X (1 + (i - 1) x incx). If incx < 0 then x_i is stored in X (1 + (N - i) x |incx|). incx = 0 is an illegal value.

Y REAL or COMPLEX array, minimum length (N - 1) x |incy| + 1.

INCY Increment for the array y. A vector y having component y_i, i = 1,..., n, is stored in an array Y() with increment argument incy. If incy > 0 then y_i is stored in Y (1 + (i - 1) x incy). If incy < 0 then y_i is stored in Y (1 + (N - i) x |incy|). incy = 0 is an illegal value.

BETA The scalar BETA.

AP Array containing the upper or lower triangle, as specified by uplo of an n-by-n real symmetric or
complex Hermitian matrix A, stored by columns in packed form.

Output

AP

The upper or lower triangle of the updated A matrix, as specified by `uplo`, replaces the input.

$$A \leftarrow \alpha xy^T + \beta yx^T + \beta A \quad \text{with} \quad A = A^T$$
Name
F_SSYMV/F_DSYMV/F_CSYMV/F_ZSYMV
Symmetric matrix-vector multiply

Purpose
F_xSYMV multiplies a vector \(x \) by a real or complex symmetric matrix \(A \), scales the resulting vector, and adds it to the scaled vector operand \(y \). If \(n \) is less than or equal to zero, or if \(\beta \) is equal to one and \(\alpha \) is equal to zero, this routine returns immediately.

\[
y \leftarrow \alpha Ax + \beta y \quad \text{with} \quad A = A^T
\]

Refer to “SSYMV/DSYMV/CHEMV/ZHEMV” on page 270 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Matrix Storage
Because either triangle of \(A \) can be obtained from the other, you only need to provide one triangle of \(A \). You can supply either the upper or the lower triangle of \(A \), in a two-dimensional array large enough to hold the entire matrix. The other triangle of the array is not referenced.

Usage
VECLIB

```fortran
INTEGER*4      INCX, INCY, LDA, N, UPLO
REAL*4         ALPHA, BETA, A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_SSYMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER*4      INCX, INCY, LDA, N, UPLO
REAL*8         ALPHA, BETA, A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_DSYMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER*4      INCX, INCY, LDA, N, UPLO
COMPLEX*8      ALPHA, BETA, A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_CSYMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

INTEGER*4      INCX, INCY, LDA, N, UPLO
COMPLEX*16     ALPHA, BETA, A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_ZSYMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

VECLIB8
INTEGER*8      INCX, INCY, LDA, N, UPLO
REAL*4         ALPHA, BETA, A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_SSYMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
```
F_SSYMV/F_DSYMV/F_CSYMV/F_ZSYMV

Symmetric matrix-vector multiply

F_DSYMV

Integer*8 INCX, INCY, LDA, N, UPLO
Real*8 ALPHA, BETA, A(LDA,*), X(*), Y(*)
SUBROUTINE F_DSYMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

F_CSYMV

Integer*8 INCX, INCY, LDA, N, UPLO
Complex*8 ALPHA, BETA, A(LDA,*), X(*), Y(*)
SUBROUTINE F_CSYMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

F_ZSYMV

Integer*8 INCX, INCY, LDA, N, UPLO
Complex*16 ALPHA, BETA, A(LDA,*), X(*), Y(*)
SUBROUTINE F_ZSYMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

Input

UPLO

Specifies whether a triangular matrix is upper or lower triangular. Use either **BLAS_UPPER** or **BLAS_LOWER**.

N

Number of columns in matrix A, n > 0. If n ≤ 0, the subprograms do not reference A, X, or Y.

ALPHA

The scalar ALPHA. If beta = 1 and alpha = 0, this routine returns immediately.

A

REAL or COMPLEX array, dimension (LDA, N).

LDA

Leading dimension of array A. If lda < 1 or lda < n an error condition is generated.

X

REAL or COMPLEX array, minimum length (N - 1) x |incx| + 1.

INCX

Increment for the array x. A vector x having component \(x_i, i = 1, ..., n\), is stored in an array X() with increment argument \(\text{incx}\). If incx > 0 then \(x_i\) is stored in \(X(1 + (i - 1) \times \text{incx})\). If incx < 0 then \(x_i\) is stored in \(X(1 + (N - i) \times |\text{incx}|)\). incx = 0 is an illegal value.

BETA

The scalar BETA. If beta = 1 and alpha = 0, this routine returns immediately.

Y

REAL or COMPLEX array, minimum length (N - 1) x |incy| + 1.

INCY

Increment for the array y. A vector y having component \(y_i, i = 1, ..., n\), is stored in an array Y() with increment argument incy. If incy > 0 then \(y_i\) is stored in \(Y(1 + (i - 1) \times \text{incy})\). If incy < 0 then \(y_i\) is stored in \(Y(1 + (N - i) \times |\text{incy}|)\). incy = 0 is an illegal value.
Symmetric matrix-vector multiply

Output \(\mathbf{Y} \)

The updated \(\mathbf{Y} \) vector replaces the input.

\[y \leftarrow \alpha A x + \beta y \quad \text{with} \quad A = A^T \]
F_SSXR/F_DSRXR/F_CSRXR/F_ZSRXR

Name

F_SSXR/F_DSRXR/F_CSRXR/F_ZSRXR
Symmetric rank-1 update

Purpose

F_xSR performs the symmetric rank-1 update

\[A \leftarrow \alpha xx^T + \beta A \quad \text{with} \quad A = A^T \]

where \(A \) is an \(n \)-by-\(n \) real symmetric matrix, \(\alpha \) and \(\beta \) are real or complex scalars, \(x \) is a real or complex \(n \)-vector, and \(x^T \) is the transpose of \(x \). The routine returns immediately if \(n \) is less than or equal to zero.

This F_xSR interface encompasses the legacy BLAS routine SSYR with added functionality for complex symmetric matrices. Refer to “SSYR/DSYR/CHER/ZHER” on page 275 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Matrix Storage

Because either triangle of \(A \) can be obtained from the other, these subprograms reference and apply the update to only one triangle of \(A \). You can supply either the upper or the lower triangle of \(A \), in a two-dimensional array large enough to hold the entire matrix, and the same triangle of the updated matrix is returned in the array. The other triangle of the array is not referenced.

Usage

VECLIB

```
INTEGER*4   INCX, LDA, N, UPLO
REAL*4      ALPHA, BETA
REAL*4      A( LDA, * ), X( * )
SUBROUTINE F_SSXR (UPLO, N, ALPHA, X, INCX, BETA, A, LDA)

INTEGER*4   INCX, LDA, N, UPLO
REAL*8      ALPHA, BETA
REAL*8      A( LDA, * ), X( * )
SUBROUTINE F_DSXR (UPLO, N, ALPHA, X, INCX, BETA, A, LDA)

INTEGER*4   INCX, LDA, N, UPLO
COMPLEX*8    ALPHA, BETA
COMPLEX*8    A( LDA, * ), X( * )
SUBROUTINE F_CSRXR (UPLO, N, ALPHA, X, INCX, BETA, A, LDA)

INTEGER*4   INCX, LDA, N, UPLO
COMPLEX*16   ALPHA, BETA
COMPLEX*16   A( LDA, * ), X( * )
SUBROUTINE F_ZSRXR (UPLO, N, ALPHA, X, INCX, BETA, A, LDA)
```

VECLIB8
Symmetric rank-1 update

\texttt{F_SSYR/F_DSYR/F_CSYR/F_ZSYR}

\begin{verbatim}
INTEGER*8 INCX, LDA, N, UPLO
REAL*4 ALPHA, BETA
REAL*4 A(LDA, *), X(*)
SUBROUTINE F_SSYR (UPLO, N, ALPHA, X, INCX, BETA, A, LDA)

INTEGER*8 INCX, LDA, N, UPLO
REAL*8 ALPHA, BETA
REAL*8 A(LDA, *), X(*)
SUBROUTINE F_DSYR (UPLO, N, ALPHA, X, INCX, BETA, A, LDA)

INTEGER*8 INCX, LDA, N, UPLO
COMPLEX*8 ALPHA, BETA
COMPLEX*8 A(LDA, *), X(*)
SUBROUTINE F_CSYR (UPLO, N, ALPHA, X, INCX, BETA, A, LDA)

INTEGER*8 INCX, LDA, N, UPLO
COMPLEX*16 ALPHA, BETA
COMPLEX*16 A(LDA, *), X(*)
SUBROUTINE F_ZSYR (UPLO, N, ALPHA, X, INCX, BETA, A, LDA)
\end{verbatim}

Input

\begin{itemize}
 \item \textbf{UPLO} Specifies whether a triangular matrix is upper or lower triangular. Use either \texttt{BLAS_UPPER} or \texttt{BLAS_LOWER}.
 \item \textbf{N} Number of elements of vector \(x\).
 \item \textbf{ALPHA} The scalar \(\alpha\).
 \item \textbf{X} REAL or COMPLEX array, dimension \((1 + (N - 1) \times \text{INEX})\).
 \item \textbf{INEX} Increment for the array \(x\). A vector \(x\) having component \(x_i, i = 1, \ldots, n\), is stored in an array \(X()\) with increment argument \texttt{INEX}. If \texttt{INEX} \(> 0\) then \(x_i\) is stored in \(X(1 + (i - 1) \times \text{INEX})\). If \texttt{INEX} \(< 0\) then \(x_i\) is stored in \(X(1 + (N - i) \times \text{INEX})\). \texttt{INEX} \(= 0\) is an illegal value.
 \item \textbf{BETA} The scalar \(\beta\).
 \item \textbf{A} REAL or COMPLEX array, dimension \((\text{LDA}, N)\).
 \item \textbf{LDA} Leading dimension of array \(A\). \texttt{LDA} \(< 1\) and \texttt{LDA} \(< N\) are illegal values.
\end{itemize}

Output

\begin{itemize}
 \item \textbf{A} The upper or lower triangle of the updated \(A\) matrix, as specified by \texttt{UPLO}, replaces the upper or lower triangle of the input, respectively. The other triangle of \(A\) is unchanged \(A \leftarrow \alpha xx^T + \beta A\) with \(A = A^T\).
\end{itemize}
Name
F_SSYR2/F_DSYR2/F_CSYR2/F_ZSYR2
Symmetric rank-2 update

Purpose
F_xSYR2 performs the symmetric rank-2 update

\[A \leftarrow \alpha xy^T + \bar{\alpha}yx^T + \beta A \quad \text{with} \quad A = A^T \]

where \(A \) is an \(n \)-by-\(n \) real symmetric matrix, \(\alpha \) and \(\beta \) are real or complex scalars, \(\bar{\alpha} \) is the complex conjugate of \(\alpha \), \(x \) and \(y \) are real or complex \(n \)-vectors, and \(x^T \) and \(y^T \) are the transposes of \(x \) and \(y \), respectively.

This F_xSYR2 interface encompasses the legacy BLAS routine SSYR2 with added functionality for complex symmetric matrices. Refer to “SSYR2/DSYR2/CHER2/ZHER2” on page 279 for a description of the HP MLIB legacy BLAS subprograms.

Matrix Storage
Because either triangle of \(A \) can be obtained from the other, these subprograms reference and apply the update to only one triangle of \(A \). You can supply either the upper or the lower triangle of \(A \), in a two-dimensional array large enough to hold the entire matrix, and the same triangle of the updated matrix is returned in the array. The other triangle of the array is not referenced.

Usage
VECLIB

```fortran
INTEGER*4     INCX, INCY, LDA, N, UPLO
REAL*4        ALPHA, BETA
REAL*4        A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_SSYR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

INTEGER*4     INCX, INCY, LDA, N, UPLO
REAL*8        ALPHA, BETA
REAL*8        A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_DSYR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

INTEGER*4     INCX, INCY, LDA, N, UPLO
COMPLEX*8     ALPHA, BETA
COMPLEX*8     A( LDA, * ), X( * ), Y( * )
SUBROUTINE F_CSYR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)
```

394 HP MLIB User’s Guide
Symmetric rank-2 update

VECLIB8

SUBROUTINE F_ZSYR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

SUBROUTINE F_SSYR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

SUBROUTINE F_DSYR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

SUBROUTINE F_CSYR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A, LDA)

Input

UPLO Specifies whether a triangular matrix is upper or lower triangular. Use either BLAS_UPPER or BLAS_LOWER.

N Number of elements of vector x.

ALPHA The scalar ALPHA.

X REAL or COMPLEX array, minimum length (N - 1) x |incx| + 1.

INCX Increment for the array x. A vector x having component x_i, i = 1,..., n, is stored in an array X() with increment argument incx. If incx > 0 then x_i is stored in X (1 + (i - 1) x incx). If incx < 0 then x_i is stored in X (1 + (N - i) x |incx|). incx = 0 is an illegal value.
Symmetric rank-2 update

\[\mathbf{A} \leftarrow \alpha \mathbf{y}^T \mathbf{x} + \alpha \mathbf{x}^T \mathbf{y} + \beta \mathbf{A} \quad \text{with} \quad \mathbf{A} = \mathbf{A}^T \]

Input

- **\(\mathbf{Y} \)**: REAL or COMPLEX array, minimum length \((N - 1) \times |\text{incy}| + 1\).
- **\(\text{INCY} \)**: Increment for the array \(y \). A vector \(y \) having component \(y_i, i = 1, \ldots, n \), is stored in an array \(Y() \) with increment argument \(\text{incy} \). If \(\text{incy} > 0 \) then \(y_i \) is stored in \(Y(1 + (i - 1) \times \text{incy}) \). If \(\text{incy} < 0 \) then \(y_i \) is stored in \(Y(1 + (N - i) \times |\text{incy}|) \). \(\text{incy} = 0 \) is an illegal value.
- **\(\beta \)**: The scalar \(\beta \).
- **\(\mathbf{A} \)**: REAL or COMPLEX array, dimension \((LDA, N)\).
- **\(\text{LDA} \)**: Leading dimension of array \(A \). If \(lda < 1 \) or \(lda < n \), an error condition is generated.

Output

- **\(\mathbf{A} \)**: The upper or lower triangle of the updated \(A \) matrix, as specified by \(\text{uplo} \), replaces the upper or lower triangle of the input, respectively. The other triangle of \(A \) is unchanged.
Triangular banded matrix-vector multiply

Name

F_STBMV/F_DTBMV/F_CTBMV/F_ZTBMV

Triangular banded matrix-vector multiply

Purpose

F_xTBMV multiplies a vector \(x \) by a banded triangular matrix \((T)\), its transpose \((T^T)\), or its conjugate transpose \((T^*)\), and copies the resulting vector to the vector operand \(x \). If \(n \) is less than or equal to zero, this routine returns immediately.

\[
\begin{align*}
 x & \leftarrow \alpha T x \\
 x & \leftarrow \alpha T^T x \\
 x & \leftarrow \alpha T^* x
\end{align*}
\]

Refer to “STBMV/DTBMV/CTBMV/ZTBMV” on page 294 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Matrix Storage

Triangular band matrices are stored in a compressed form that takes advantage of knowing the positions of the only elements that can be nonzero. Refer to the examples in “STBMV/DTBMV/CTBMV/ZTBMV” on page 294 for information about the storage of triangular band matrices.

Usage

VECLIB

```plaintext
INTEGER*4   DIAG, INCX, K, LDA, N, TRANS, UPLO
REAL*4      ALPHA
REAL*4      A(LDA, *), X(*)
SUBROUTINE F_STBMV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)

INTEGER*4   DIAG, INCX, K, LDA, N, TRANS, UPLO
REAL*8      ALPHA
REAL*8      A(LDA, *), X(*)
SUBROUTINE F_DTBMV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)

INTEGER*4   DIAG, INCX, K, LDA, N, TRANS, UPLO
COMPLEX*8    ALPHA
COMPLEX*8    A(LDA, *), X(*)
SUBROUTINE F_CTBMV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)
```

Chapter 3 Basic Matrix Operations 397
F_STBMV/F_DTBMV/F_CTBMV/F_ZTBMV

Triangular banded matrix-vector multiply

INTEGER*4 DIAG, INCX, K, LDA, N, TRANS, UPLO
COMPLEX*16 ALPHA
COMPLEX*16 A(LDA, *), X(*)

SUBROUTINE F_ZTBMV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)

VECLIB8

INTEGER*8 DIAG, INCX, K, LDA, N, TRANS, UPLO
REAL*4 ALPHA
REAL*4 A(LDA, *), X(*)

SUBROUTINE F_STBMV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)

INTEGER*8 DIAG, INCX, K, LDA, N, TRANS, UPLO
REAL*8 ALPHA
REAL*8 A(LDA, *), X(*)

SUBROUTINE F_DTBMV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)

INTEGER*8 DIAG, INCX, K, LDA, N, TRANS, UPLO
COMPLEX*8 ALPHA
COMPLEX*8 A(LDA, *), X(*)

SUBROUTINE F_CTBMV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)

INTEGER*8 DIAG, INCX, K, LDA, N, TRANS, UPLO
COMPLEX*16 ALPHA
COMPLEX*16 A(LDA, *), X(*)

SUBROUTINE F_ZTBMV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)

Input

UPLO

Specifies whether a triangular matrix is upper or lower triangular. Use either **BLAS_UPPER** or **BLAS_LOWER**.

TRANS

Specifies whether to apply the matrix (A), its transpose (Aᵀ), or its conjugate transpose (A*). Use one of the following:

- **BLAS_NO_TRANS**
- **BLAS_TRANS**
- **BLAS_CONJ_TRANS**

DIAG

Specifies whether the triangular matrix has unit-diagonal or not. Use one of the following:

- **BLAS_UNIT_DIAG**
- **BLAS_NON_UNIT_DIAG**
Triangular banded matrix-vector multiply

N
Number of rows and columns in matrix A, and elements of vector X. \(n > 0 \). If \(n \leq 0 \), the subprograms do not reference A or X.

K
The number of non-zero diagonals above or below the principal diagonal.

ALPHA
The scalar \(\text{ALPHA} \).

A
REAL or COMPLEX array, dimension (LDA, N).

LDA
Leading dimension of array \(A \). If \(\text{lda} < k + 1 \), an error condition is generated.

X
REAL or COMPLEX array, minimum length \((N - 1) \times |\text{incx}| + 1 \).

INCX
Increment for the array \(x \). A vector \(x \) having component \(x_i, i = 1, \ldots, n \), is stored in an array \(X() \) with increment argument \(\text{incx} \). If \(\text{incx} > 0 \) then \(x_i \) is stored in \(X(1 + (i - 1) \times \text{incx}) \). If \(\text{incx} < 0 \) then \(x \) is stored in \(X(1 + (N - i) \times |\text{incx}|) \). \(\text{incx} = 0 \) is an illegal value.

Output
X
The updated \(X \) vector replaces the input.
F_STBSV/F_DTBSV/F_CTBSV/F_ZTBSV

Triangular banded solve

Name

F_STBSV/F_DTBSV/F_CTBSV/F_ZTBSV

Triangular banded solve

Purpose

F_xTBSV solves one of the following equations:

\[
x \leftarrow \alpha T^{-1}x
\]

\[
x \leftarrow \alpha T^{T}x
\]

\[
x \leftarrow \alpha T^{*+}x
\]

where \(x\) is a vector and the matrix \(T\) is a unit, non-unit, upper, or lower triangular banded matrix, \(T^{-T}\) is the inverse of the transpose of \(T\), and \(T^{*+}\) is the inverse of the conjugate transpose of \(T\).

Refer to “STBSV/DTBSV/CTBSV/ZTBSV” on page 301 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Matrix Storage

For these subprograms, you supply \(A\) in a two-dimensional array large enough to hold a square matrix. The other triangle of the array is not referenced. If \(A\) has an unstored unit diagonal (see input argument \(\text{DIAG}\)), then the diagonal elements of the array also are not referenced.

Usage

VECLIB

INTEGER*4 DIAG, INCX, K, N, TRANS, UPLO
REAL*4 ALPHA, A(LDA, *), X(*)
SUBROUTINE F_STBSV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)

INTEGER*4 DIAG, INCX, K, N, TRANS, UPLO
REAL*8 ALPHA, A(LDA, *), X(*)
SUBROUTINE F_DTBSV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)

INTEGER*4 DIAG, INCX, K, N, TRANS, UPLO
COMPLEX*8 ALPHA, A(LDA, *), X(*)
SUBROUTINE F_CTBSV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)

INTEGER*4 DIAG, INCX, K, N, TRANS, UPLO
COMPLEX*16 ALPHA, A(LDA, *), X(*)
SUBROUTINE F_ZTBSV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)

VECLIB8
Triangular banded solve

F_STBSV/F_DTBSV/F_CTBSV/F_ZTBSV

INTEGER*8 DIAG, INCX, K, N, TRANS, UPLO
REAL*4 ALPHA, A(LDA, *), X(*)
SUBROUTINE F_STBSV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)

INTEGER*8 DIAG, INCX, K, N, TRANS, UPLO
REAL*8 ALPHA, A(LDA, *), X(*)
SUBROUTINE F_DTBSV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)

INTEGER*8 DIAG, INCX, K, N, TRANS, UPLO
COMPLEX*8 ALPHA, A(LDA, *), X(*)
SUBROUTINE F_CTBSV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)

INTEGER*8 DIAG, INCX, K, N, TRANS, UPLO
COMPLEX*16 ALPHA, A(LDA, *), X(*)
SUBROUTINE F_ZTBSV (UPLO, TRANS, DIAG, N, K, ALPHA, A, LDA, X, INCX)

Input

UPLO Specifies whether a triangular matrix is upper or lower triangular. Use either BLAS_UPPER or BLAS_LOWER.

TRANS Specifies whether to apply the matrix (A), its transpose (A^T), or its conjugate transpose (A*). Use one of the following: BLAS_NO_TRANS, BLAS_TRANS, or BLAS_CONJ_TRANS.

DIAG Specifies whether the triangular matrix has unit-diagonal or not. Use one of the following: BLAS_UNIT_DIAG or BLAS_NON_UNIT_DIAG.

N Number of columns in matrix A, n > 0. If n ≤ 0, the subprograms do not reference A, X, or Y.

K The number of non zero diagonals above or below the principal diagonal.

ALPHA The scalar ALPHA.

A REAL or COMPLEX array, dimension (LDA, N).

LDA Leading dimension of array A. lda < 1 and lda < n are illegal values.

X REAL or COMPLEX array, minimum length (N - 1) x |incx| + 1.

INCX Increment for the array x. A vector x having component x_i, i = 1,..., n, is stored in an array X() with increment
F_STBSV/F_DTBSV/F_CTBSV/F_ZTBSV

Triangular banded solve

The solution vector of the triangular system replaces the input.

Output

X

argument **inx**. If **inx** > 0 then \(x_i\) is stored in \(X(1 + (i - 1) \times \text{inx})\). If **inx** < 0 then \(x_i\) is stored in \(X(1 + (N - i) \times |\text{inx}|)\). **inx** = 0 is an illegal value.
Triangular packed matrix-vector multiply

<table>
<thead>
<tr>
<th>Name</th>
<th>F_STPMV/F_DTPMV/F_CTPMV/F_ZTPMV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Triangular packed matrix-vector multiply</td>
</tr>
</tbody>
</table>

Purpose

F_xTPMV multiplies a vector x by a packed triangular matrix (T), its transpose (T^T), or its conjugate transpose ($T^* = \overline{T^T}$), and copies the resulting vector to the vector operand x. If n is less than or equal to zero, this routine returns immediately.

\[
x \leftarrow \alpha T x
\]

\[
x \leftarrow \alpha T^T x
\]

\[
x \leftarrow \alpha T^* x
\]

Refer to “STPMV/DTPMV/CTPMV/ZTPMV” on page 308 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Matrix Storage

You supply the upper or lower triangle of A, stored column-by-column in packed form in a 1-dimensional array. This saves memory compared to storing the entire matrix. Refer to “STPMV/DTPMV/CTPMV/ZTPMV” on page 308 for examples that illustrate the packed storage of a triangular matrix.

Usage

VECLIB

```fortran
INTEGER*4 DIAG, INCX, N, TRANS, UPLO
REAL*4 ALPHA
REAL*4 AP(*), X(*)
SUBROUTINE F_STPMV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)

INTEGER*4 DIAG, INCX, N, TRANS, UPLO
REAL*8 ALPHA
REAL*8 AP(*), X(*)
SUBROUTINE F_DTPMV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)

INTEGER*4 DIAG, INCX, N, TRANS, UPLO
COMPLEX*8 ALPHA
COMPLEX*8 AP(*), X(*)
SUBROUTINE F_CTPMV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)

INTEGER*4 DIAG, INCX, N, TRANS, UPLO
COMPLEX*16 ALPHA
COMPLEX*16 AP(*), X(*)
SUBROUTINE F_ZTPMV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)
```

VECLIB
F_STPMV/F_DTPMV/F_CTPMV/F_ZTPMV

Triangular packed matrix-vector multiply

INTEGER*8 DIAG, INCX, N, TRANS, UPLO
REAL*4 ALPHA
REAL*4 AP(*), X(*)
SUBROUTINE F_STPMV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)

INTEGER*8 DIAG, INCX, N, TRANS, UPLO
REAL*8 ALPHA
REAL*8 AP(*), X(*)
SUBROUTINE F_DTPMV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)

INTEGER*8 DIAG, INCX, N, TRANS, UPLO
COMPLEX*8 ALPHA
COMPLEX*8 AP(*), X(*)
SUBROUTINE F_CTPMV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)

INTEGER*8 DIAG, INCX, N, TRANS, UPLO
COMPLEX*16 ALPHA
COMPLEX*16 AP(*), X(*)
SUBROUTINE F_ZTPMV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)

Input

UPLO Specifies whether a triangular matrix is upper or lower triangular. Use either BLAS_UPPER or BLAS_LOWER.

TRANS Specifies whether to apply the matrix (A), its transpose (A^T), or its conjugate transpose (A^*). Use one of the following:
BLAS_NO_TRANS
BLAS_TRANS
BLAS_CONJ_TRANS

DIAG Specifies whether the triangular matrix has unit-diagonal or not. Use one of the following:
BLAS_UNIT_DIAG or BLAS_NON_UNIT_DIAG.

N Number of rows and columns in matrix A, and elements of vector X. n > 0. If n ≤ 0, the subprograms do not reference A or X.

ALPHA The scalar ALPHA.

AP Array containing the upper or lower triangle, as specified by uplo of an n-by-n real symmetric or complex Hermitian matrix A, stored by columns in packed form.

X REAL or COMPLEX array, minimum length (N - 1) x |incx| + 1.
Triangular packed matrix-vector multiply

INCX
Increment for the array \(x \). A vector \(x \) having component \(x_i, i = 1, \ldots, n \), is stored in an array \(X() \) with increment argument \(\text{incx} \). If \(\text{incx} > 0 \) then \(x_i \) is stored in \(X(1 + (i - 1) \times \text{incx}) \). If \(\text{incx} < 0 \) then \(x_i \) is stored in \(X(1 + (N - i) \times |\text{incx}|) \). \(\text{incx} = 0 \) is an illegal value.

Output

X
The updated \(X \) vector replaces the input.
Name
F_STPSV/F_DTPSV/F_CTPSV/F_ZTPSV
Triangular packed solve

Purpose
F_xTPSV solves one of the following equations:
\[x \leftarrow \alpha T^{-1} x \]
\[x \leftarrow \alpha T^{-T} x \]
\[x \leftarrow \alpha T^{-*} x \]

where \(x \) is a vector and the matrix \(T \) is a unit, non-unit, upper, or lower triangular packed matrix. \(T^{-T} \) is the inverse of the transpose of \(T \), and \(T^{-*} \) is the inverse of the conjugate transpose of \(T \).

Refer to “STPSV/DTPSV/CTPSV/ZTPSV” on page 313 for details of the HP MLIB legacy BLAS triangular-solve subprograms, and a description of packed storage for a triangular matrix.

Matrix Storage
For these subprograms, you supply \(A \) in a two-dimensional array large enough to hold a square matrix. The other triangle of the array is not referenced. If \(A \) has an unstored unit diagonal (see input argument DIAG), then the diagonal elements of the array also are not referenced.

Usage
VECLIB

```fortran
INTEGER**4   DIAG, INCX, N, TRANS, UPLO
REAL**4      ALPHA, AP(*) , X(*)
SUBROUTINE  F_STPSV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)

INTEGER**4   DIAG, INCX, N, TRANS, UPLO
REAL**8      ALPHA, AP(*) , X(*)
SUBROUTINE  F_DTPSV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)

INTEGER**4   DIAG, INCX, N, TRANS, UPLO
COMPLEX**8    ALPHA, AP(*) , X(*)
SUBROUTINE  F_CTPSV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)

INTEGER**4   DIAG, INCX, N, TRANS, UPLO
COMPLEX**16   ALPHA, AP(*) , X(*)
SUBROUTINE  F_ZTPSV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)

VECLIB8

INTEGER**8   DIAG, INCX, N, TRANS, UPLO
REAL**4      ALPHA, AP(*) , X(*)
SUBROUTINE  F_STPSV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)
```

406 HP MLIB User's Guide
Triangular packed solve

<table>
<thead>
<tr>
<th>Subroutine</th>
<th>F_STSVP/F_DTPSV/F_CTPSV/F_ZTPSV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INTEGER*8 DIAG, INCX, N, TRANS, UPLO</td>
</tr>
<tr>
<td></td>
<td>REAL8 ALPHA, AP(), X(*)</td>
</tr>
<tr>
<td>SUBROUTINE F_DTPSV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTEGER*8 DIAG, INCX, N, TRANS, UPLO</td>
</tr>
<tr>
<td></td>
<td>COMPLEX8 ALPHA, AP(), X(*)</td>
</tr>
<tr>
<td>SUBROUTINE F_CTPSV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTEGER*8 DIAG, INCX, N, TRANS, UPLO</td>
</tr>
<tr>
<td></td>
<td>COMPLEX16 ALPHA, AP(), X(*)</td>
</tr>
<tr>
<td>SUBROUTINE F_ZTPSV (UPLO, TRANS, DIAG, N, ALPHA, AP, X, INCX)</td>
<td></td>
</tr>
</tbody>
</table>

Input

- **UPLO**
 Specifies whether a triangular matrix is upper or lower triangular. Use either **BLAS_UPPER** or **BLAS_LOWER**.

- **TRANS**
 Specifies whether to apply the matrix (A), its transpose (A^T), or its conjugate transpose (A*). Use one of the following: **BLAS_NO_TRANS**, **BLAS_TRANS**, or **BLAS_CONJ_TRANS**.

- **DIAG**
 Specifies whether the triangular matrix has unit-diagonal or not. Use one of the following: **BLAS_UNIT_DIAG** or **BLAS_NON_UNIT_DIAG**.

- **N**
 Number of columns in matrix A, n > 0. If n ≤ 0, the subprograms do not reference A, X, or Y.

- **ALPHA**
 The scalar ALPHA.

- **AP**
 Array containing the upper or lower triangle, as specified by uplo of an n-by-n real symmetric or complex Hermitian matrix A, stored by columns in packed form.

- **X**
 REAL or COMPLEX array, minimum length (N - 1) x |incx| + 1.

- **INCX**
 Increment for the array x. A vector x having component x_i, i = 1,..., n, is stored in an array X() with increment argument incx. If incx > 0 then x_i is stored in X (1 + (i - 1) x incx). If incx < 0 then x_i is stored in X (1 + (N - i) x |incx|). incx = 0 is an illegal value.

Output

- **AP**
 The upper or lower triangle of the updated A matrix, as specified by uplo, replaces the input.
Name

F_STRMV/F_DTRMV/F_CTRMV/F_ZTRMV
Triangular matrix-vector multiply

Purpose

F_xTRMV multiplies a vector \(x \) by a general triangular matrix \((T)\), its transpose \((T^T)\), or its conjugate transpose \((T^*)\), and copies the resulting vector to the vector operand \(x \). If \(n \) is less than or equal to zero, this routine returns immediately.

\[x \leftarrow \alpha T x \]

\[x \leftarrow \alpha T^T x \]

\[x \leftarrow \alpha T^* x \]

Refer to “STRMV/DTRMV/CTRMV/ZTRMV” on page 323 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Matrix Storage

For these subprograms, you supply \(A \) in a two-dimensional array large enough to hold a square matrix. The other triangle of the array is not referenced. If \(A \) has an unstored unit diagonal (see input argument \(\text{DIAG} \)), then the diagonal elements of the array also is not referenced.

Usage

VECLIB

```plaintext
INTEGER*4  DIAG, INCX, LDA, N, TRANS, UPLO
REAL*4     ALPHA
REAL*4     A( LDA, * ), X( * )
SUBROUTINE F_STRMV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)

INTEGER*4  DIAG, INCX, LDA, N, TRANS, UPLO
REAL*8     ALPHA
REAL*8     A( LDA, * ), X( * )
SUBROUTINE F_DTRMV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)

INTEGER*4  DIAG, INCX, LDA, N, TRANS, UPLO
COMPLEX*8   ALPHA
COMPLEX*8   A( LDA, * ), X( * )
SUBROUTINE F_CTRMV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)
```
Triangular matrix-vector multiply

\[\text{F _TRMV/F _TRMV/F _TRMV/F _ZTRMV} \]

\[
\begin{align*}
\text{INTEGER*4} & \quad \text{DIAG, INCX, LDA, N, TRANS, UPLO} \\
\text{COMPLEX*16} & \quad \text{ALPHA} \\
\text{COMPLEX*16} & \quad \text{A(LDA, *), X(*)} \\
\text{SUBROUTINE F _ZTRMV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)}
\end{align*}
\]

\[\text{VECLIB8} \]

\[
\begin{align*}
\text{INTEGER*8} & \quad \text{DIAG, INCX, LDA, N, TRANS, UPLO} \\
\text{REAL*4} & \quad \text{ALPHA} \\
\text{REAL*4} & \quad \text{A(LDA, *), X(*)} \\
\text{SUBROUTINE F _TRMV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)}
\end{align*}
\]

\[
\begin{align*}
\text{INTEGER*8} & \quad \text{DIAG, INCX, LDA, N, TRANS, UPLO} \\
\text{REAL*8} & \quad \text{ALPHA} \\
\text{REAL*8} & \quad \text{A(LDA, *), X(*)} \\
\text{SUBROUTINE F _TRMV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)}
\end{align*}
\]

\[
\begin{align*}
\text{INTEGER*8} & \quad \text{DIAG, INCX, LDA, N, TRANS, UPLO} \\
\text{COMPLEX*8} & \quad \text{ALPHA} \\
\text{COMPLEX*8} & \quad \text{A(LDA, *), X(*)} \\
\text{SUBROUTINE F _TRMV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)}
\end{align*}
\]

\[
\begin{align*}
\text{INTEGER*8} & \quad \text{DIAG, INCX, LDA, N, TRANS, UPLO} \\
\text{COMPLEX*16} & \quad \text{ALPHA} \\
\text{COMPLEX*16} & \quad \text{A(LDA, *), X(*)} \\
\text{SUBROUTINE F _ZTRMV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)}
\end{align*}
\]

Input

- **UPLO**
 Specifies whether a triangular matrix is upper or lower triangular. Use either **BLAS_UPPER** or **BLAS_LOWER**.

- **TRANS**
 Specifies whether to apply the matrix (A), its transpose (A\(^T\)), or its conjugate transpose (A\(^\ast\)). Use one of the following:
 - **BLAS_NO_TRANS**
 - **BLAS_TRANS**
 - **BLAS_CONJ_TRANS**

- **DIAG**
 Specifies whether the triangular matrix has unit-diagonal or not. Use one of the following:
 - **BLAS_UNIT_DIAG**
 - **BLAS_NON_UNIT_DIAG**
F_STRMV/F_DTRMV/F_CTRMV/F_ZTRMV

Triangular matrix-vector multiply

N
Number of rows and columns in matrix A, and
elements of vector X. \(n > 0 \). If \(n \leq 0 \), the subprograms
do not reference A or X.

ALPHA
The scalar ALPHA.

A
REAL or COMPLEX array, dimension (LDA, N).

LDA
Leading dimension of array A. If lda < 1 or lda < n, an
error condition is generated.

X
REAL or COMPLEX array, minimum length
\((N - 1) \times |\text{incx}| + 1\).

INCX
Increment for the array x. A vector x having component
\(x_i, i = 1,..., n \), is stored in an array X() with increment
argument \(\text{incx} \). If \(\text{incx} > 0 \) then \(x_i \) is stored in
X \((1 + (i - 1) \times \text{incx})\). If \(\text{incx} < 0 \) then x is stored in
X \((1 + (N - i) \times \text{incx})\). \(\text{incx} = 0 \) is an illegal value.

Output

X
The updated X vector replaces the input.
Name

F_STRMVT/F_DTRMVT/F_CTRMVT/F_ZTRMVT

Multiple triangular matrix-vector multiply

Purpose

F_xTRMVT combines a matrix-vector and a transpose matrix-vector multiply:

\[
x ← T^T y
\]
\[
w ← Tz
\]

F_xTRMVT multiplies a vector \(y \) by a triangular matrix \(T^T \), storing the result as \(x \). It also multiplies the matrix by the vector \(z \), storing the result as \(w \). If \(n \) is less than or equal to zero, this function returns immediately.

Usage

VECLIB

| INTEGER*4 | INCW, INCX, INCY, INCZ, LDT, N, UPLO |
| REAL*4 | T(LDT, *), W(*), X(*), Y(*), Z(*) |
| SUBROUTINE F_STRMVT (UPLO, N, T, LDT, X, INCX, Y, INCY, W, INCW, Z, INCZ) |

| INTEGER*4 | INCW, INCX, INCY, INCZ, LDT, N, UPLO |
| REAL*8 | T(LDT, *), W(*), X(*), Y(*), Z(*) |
| SUBROUTINE F_DTRMVT (UPLO, N, T, LDT, X, INCX, Y, INCY, W, INCW, Z, INCZ) |

| INTEGER*4 | INCW, INCX, INCY, INCZ, LDT, N, UPLO |
| COMPLEX*8 | T(LDT, *), W(*), X(*), Y(*), Z(*) |
| SUBROUTINE F_CTRMVT (UPLO, N, T, LDT, X, INCX, Y, INCY, W, INCW, Z, INCZ) |

| INTEGER*4 | INCW, INCX, INCY, INCZ, LDT, N, UPLO |
| COMPLEX*16| T(LDT, *), W(*), X(*), Y(*), Z(*) |
| SUBROUTINE F_ZTRMVT (UPLO, N, T, LDT, X, INCX, Y, INCY, W, INCW, Z, INCZ) |

VECLIBS

| INTEGER*8 | INCW, INCX, INCY, INCZ, LDT, N, UPLO |
| REAL*4 | T(LDT, *), W(*), X(*), Y(*), Z(*) |
| SUBROUTINE F_STRMVT (UPLO, N, T, LDT, X, INCX, Y, INCY, W, INCW, Z, INCZ) |

| INTEGER*8 | INCW, INCX, INCY, INCZ, LDT, N, UPLO |
| REAL*8 | T(LDT, *), W(*), X(*), Y(*), Z(*) |
| SUBROUTINE F_DTRMVT (UPLO, N, T, LDT, X, INCX, Y, INCY, W, INCW, Z, INCZ) |
INTEGER*8 INCW, INCY, INCX, INCZ, LDT, N, UPLO
COMPLEX*8 T(LDT, *), W(*), X(*), Y(*), Z(*)
SUBROUTINE F_CTRMVT (UPLO, N, T, LDT, X, INCX, Y, INCY, W, INCW, Z, INCZ)

INTEGER*8 INCW, INCY, INCX, INCZ, LDT, N, UPLO
COMPLEX*16 T(LDT, *), W(*), X(*), Y(*), Z(*)
SUBROUTINE F_ZTRMVT (UPLO, N, T, LDT, X, INCX, Y, INCY, W, INCW, Z, INCZ)

Input

UPLO
Specify whether a triangular matrix is upper or lower triangular. Use either **BLAS_UPPER** or **BLAS_LOWER**.

N
Number of rows and columns in matrix T, \(n > 0 \).

T
REAL or COMPLEX array, dimension (LDT, N)—triangular matrix.

LDT
Leading dimension of array T. If ldT < 1 or ldT < m, an error flag is set and passed to the error handler.

INCX
Increment for the array x. A vector x having component \(x_i, i = 1,..., n \), is stored in an array \(X() \) with increment argument \(\text{incx} \). If \(\text{incx} > 0 \) then \(x_i \) is stored in \(X(1 + (i - 1) \times \text{incx}) \). If \(\text{incx} < 0 \) then \(x_i \) is stored in \(X(1 + (N - i) \times |\text{incx}|) \). \(\text{incx} = 0 \) is an illegal value.

Y
REAL or COMPLEX array, minimum length \((N - 1) \times |\text{incy}| + 1 \).

INCY
Increment for the array y. A vector y having component \(y_i, i = 1,..., n \), is stored in an array \(Y() \) with increment argument \(\text{incy} \). If \(\text{incy} > 0 \) then \(y_i \) is stored in \(Y(1 + (i - 1) \times \text{incy}) \). If \(\text{incy} < 0 \) then \(y_i \) is stored in \(Y(1 + (N - i) \times |\text{incy}|) \). \(\text{incy} = 0 \) is an illegal value.

INCW
Increment for the array w. A vector w having component \(w_i, i = 1,..., n \), is stored in an array \(W() \) with increment argument \(\text{incw} \). If \(\text{incw} > 0 \) then \(w_i \) is stored in \(W(1 + (i - 1) \times \text{incw}) \). If \(\text{incw} < 0 \) then \(w_i \) is stored in \(W(1 + (N - i) \times |\text{incw}|) \). \(\text{incw} = 0 \) is an illegal value.

Z
REAL or COMPLEX array, minimum length \((N - 1) \times |\text{incz}| + 1 \).

INCZ
Increment for the array z. A vector z having component \(z_i, i = 1,..., n \), is stored in an array \(Z() \) with increment argument \(\text{incz} \). If \(\text{incz} > 0 \) then \(z_i \) is stored in \(Z(1 + (i - 1) \times \text{incz}) \). If \(\text{incz} < 0 \) then \(z_i \) is stored in \(Z(1 + (N - i) \times |\text{incz}|) \). \(\text{incz} = 0 \) is an illegal value.
Multiple triangular matrix-vector multiply

F_STRMVT/F_DTRMVT/F_CTRMVT/F_ZTRMVT

<table>
<thead>
<tr>
<th>Output</th>
<th>X</th>
<th>REAL or COMPLEX array, minimum length (N - 1) x</th>
<th>\text{incx}</th>
<th>+ 1. Stores the result of the transpose matrix-vector multiply.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W</td>
<td>REAL or COMPLEX array, minimum length (N - 1) x</td>
<td>\text{incw}</td>
<td>+ 1. Stores the result of the matrix-vector multiply.</td>
</tr>
</tbody>
</table>
Name F_STRSM/F_DTRSM/F_CTRSM/F_ZTRSM Triangular solve

Purpose F_xTRSM solves one of the following matrix equations:

\[B \leftarrow \alpha (A^{-1}) \]

\[B \leftarrow \alpha B (A^{-1}) \]

where \(\alpha \) is a scalar, \(B \) is a general matrix, and \(A \) is a unit, or non-unit, upper or lower triangular matrix. \(\text{op}(A) \) denotes \(A, A^T, \) or \(A^* \).

The BLAS Standard (TR, TB, TP)SM Triangular Solve interface encompasses the legacy BLAS routine xTRSM with added functionality for triangular band and packed storage matrix-matrix multiplication.

Refer to “STRSM/DTRSM/CTRSM/ZTRSM” on page 327 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Matrix Storage For these subprograms, you supply \(A \) in a two-dimensional array large enough to hold a square matrix. The other triangle of the array is not referenced. If \(A \) has an unstored unit diagonal (see input argument \(\text{DIAG} \)), then the diagonal elements of the array also is not referenced.

Usage VECLIB

\[
\begin{align*}
\text{INTEGER*4} & \quad \text{DIAG, K, LDA, LDB, M, N, SIDE, TRANSA, UPLO} \\
\text{REAL*4} & \quad \text{ALPHA, A(LDA, *), B(LDB, *)} \\
\text{SUBROUTINE F_STRSM} & \quad (\text{SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB}) \\
\text{INTEGER*4} & \quad \text{DIAG, K, LDA, LDB, M, N, SIDE, TRANSA, UPLO} \\
\text{REAL*8} & \quad \text{ALPHA, A(LDA, *), B(LDB, *)} \\
\text{SUBROUTINE F_DTRSM} & \quad (\text{SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB}) \\
\text{INTEGER*4} & \quad \text{DIAG, K, LDA, LDB, M, N, SIDE, TRANSA, UPLO} \\
\text{COMPLEX*8} & \quad \text{ALPHA, A(LDA, *), B(LDB, *)} \\
\text{SUBROUTINE F_CTRSM} & \quad (\text{SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB}) \\
\text{INTEGER*4} & \quad \text{DIAG, K, LDA, LDB, M, N, SIDE, TRANSA, UPLO} \\
\text{COMPLEX*16} & \quad \text{ALPHA, A(LDA, *), B(LDB, *)} \\
\text{SUBROUTINE F_ZTRSM} & \quad (\text{SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB}) \\
\end{align*}
\]

VECLIB8
Triangular solve

\texttt{F_STRSM/F_DTRSM/F_CTRSM/F_ZTRSM}

\begin{verbatim}
INTEGER*8 DIAG, K, LDA, LDB, M, N, SIDE, TRANSA, UPLO
REAL*4 ALPHA, A(LDA, *), B(LDB, *)
SUBROUTINE F_STRSM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)

INTEGER*8 DIAG, K, LDA, LDB, M, N, SIDE, TRANSA, UPLO
REAL*8 ALPHA, A(LDA, *), B(LDB, *)
SUBROUTINE F_DTRSM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)

INTEGER*8 DIAG, K, LDA, LDB, M, N, SIDE, TRANSA, UPLO
COMPLEX*8 ALPHA, A(LDA, *), B(LDB, *)
SUBROUTINE F_CTRSM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)

INTEGER*8 DIAG, K, LDA, LDB, M, N, SIDE, TRANSA, UPLO
COMPLEX*16 ALPHA, A(LDA, *), B(LDB, *)
SUBROUTINE F_ZTRSM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
\end{verbatim}

Input

\begin{itemize}
\item **SIDE**
 Specifies in which order the product of two matrices, A and B, are computed; \(A \times B\) or \(B \times A\). Use \texttt{BLAS_LEFT_SIDE} to specify A as the left matrix operand \((B \leftarrow a \circ A^{-1} B)\), or \texttt{BLAS_RIGHT_SIDE} to specify A as the right matrix operand \((B \leftarrow a B \circ A^{-1})\).

\item **UPLO**
 Specifies whether a triangular matrix is upper or lower triangular. Use either \texttt{BLAS_UPPER} or \texttt{BLAS_LOWER}.

\item **TRANS**
 Specifies whether to apply the matrix (A), its transpose (A\(^T\)), or its conjugate transpose (A\(^\dagger\)). Use one of the following constants: \texttt{BLAS_NO_TRANS}, \texttt{BLAS_TRANS}, \texttt{BLAS_CONJ_TRANS}.

\item **DIAG**
 Specifies whether the triangular matrix has unit-diagonal, that is \(a_{ij} = 1\), or not. Use either \texttt{BLAS_UNIT_DIAG} or \texttt{BLAS_NON_UNIT_DIAG}.

\item **M**
 Number of rows in matrix B, \(m \geq 0\). If \(m = 0\), the subprograms do not reference A or B.

\item **N**
 Number of columns in matrix B, \(n \geq 0\). If \(n = 0\), the subprograms do not reference A or B.

\item **ALPHA**
 The scalar ALPHA.
\end{itemize}
F_STRSM/F_DTRSM/F_CTRSM/F_ZTRSM

Triangular solve

A
Array whose upper or lower triangle, as specified by `uplo`, contains the unit, non-unit, upper or lower triangular matrix A. The matrix size is indicated by `SIDE`:

- **BLAS_LEFT_SIDE** A is an m-by-m matrix
- **BLAS_RIGHT_SIDE** A is an n-by-n matrix

LDA
Leading dimension of array A.

For `SIDE = BLAS_LEFT_SIDE`, and `lda < 1` or `lda < m`, an error flag is set and passed to the error handler.

For `SIDE = BLAS_RIGHT_SIDE`, and `lda < 1` or `lda < n`, an error flag is set and passed to the error handler.

B
Array containing the m by n matrix B. The representation of the matrix entry $b_{i,j}$ in B is denoted by $B(i, j)$ for all (i, j) in the interval $[0...m - 1] \times [0...n - 1]$.

LDB
Leading dimension of array B.

For `SIDE = BLAS_LEFT_SIDE`, and `ldb < 1` or `ldb < m`, an error flag is set and passed to the error handler.

For `SIDE = BLAS_LEFT_SIDE`, and `ldb < 1` or `ldb < m`, an error flag is set and passed to the error handler.

Output

B
The updated m-by-n matrix replaces the input.
Triangular solve

Name

F_STRSV/F_DTRSV/F_CTRSV/F_ZTRSV

Triangular solve

Purpose

F_xTRSV solves one of the following equations:

\[x \leftarrow \alpha T^{-1} x \]

\[x \leftarrow \alpha T^{-T} x \]

\[x \leftarrow \alpha T^{-*} x \]

where \(x \) is a vector and the matrix \(T \) is a unit, non-unit, upper, or lower triangular matrix. \(T^{-T} \) is the inverse of the transpose of \(T \), and \(T^{-*} \) is the inverse of the conjugate transpose of \(T \).

Refer to “STRSV/DTRSV/CTRSV/ZTRSV” on page 332 for a description of the equivalent HP MLIB legacy BLAS subprograms.

Matrix Storage

For these subprograms, you supply \(A \) in a two-dimensional array large enough to hold a square matrix. The other triangle of the array is not referenced. If \(A \) has an unstored unit diagonal (see input argument DIAG), then the diagonal elements of the array also are not referenced.

Usage

VECLIB

```plaintext
INTEGER*4   DIAG, INCX, N, TRANS, UPLO
REAL*4      ALPHA, A( LDA, * ), X( * )
SUBROUTINE  F_STRSV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)

INTEGER*4   DIAG, INCX, N, TRANS, UPLO
REAL*8      ALPHA, A( LDA, * ), X( * )
SUBROUTINE  F_DTRSV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)

INTEGER*4   DIAG, INCX, N, TRANS, UPLO
COMPLEX*8   ALPHA, A( LDA, * ), X( * )
SUBROUTINE  F_CTRSV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)

INTEGER*4   DIAG, INCX, N, TRANS, UPLO
COMPLEX*16  ALPHA, A( LDA, * ), X( * )
SUBROUTINE  F_ZTRSV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)

VECLIB8
```
F_STRSV/F_DTRSV/F_CTRSV/F_ZTRSV

Triangular solve

INTEGER*8 DIAG, INCX, N, TRANS, UPLO
REAL*4 ALPHA, A(LDA, *), X(*)
SUBROUTINE F_STRSV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)

INTEGER*8 DIAG, INCX, N, TRANS, UPLO
REAL*8 ALPHA, A(LDA, *), X(*)
SUBROUTINE F_DTRSV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)

INTEGER*8 DIAG, INCX, N, TRANS, UPLO
COMPLEX*8 ALPHA, A(LDA, *), X(*)
SUBROUTINE F_CTRSV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)

INTEGER*8 DIAG, INCX, N, TRANS, UPLO
COMPLEX*16 ALPHA, A(LDA, *), X(*)
SUBROUTINE F_ZTRSV (UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX)

Input

UPLO
Specifies whether a triangular matrix is upper or lower triangular. Use either **BLAS_UPPER** or **BLAS_LOWER**.

TRANS
Specifies whether to apply the matrix (A), its transpose (A^T), or its conjugate transpose (A*). Use one of the following: **BLAS_NO_TRANS**, **BLAS_TRANS**, or **BLAS_CONJ_TRANS**.

DIAG
Specifies whether the triangular matrix has unit-diagonal or not. Use one of the following: **BLAS_UNIT_DIAG** or **BLAS_NON_UNIT_DIAG**.

N
Number of columns in matrix A, n > 0. If n ≤ 0, the subprograms do not reference A or X.

ALPHA
The scalar ALPHA.

A
REAL or COMPLEX array, dimension (LDA, N).

LDA
Leading dimension of array A. lda < 1 and lda < n are illegal values.

X
REAL or COMPLEX array, minimum length (N - 1) x |inex| + 1.

INCX
Increment for the array x. A vector x having component x_i, i = 1,..., n, is stored in an array X() with increment argument **inex**. If **inex** > 0 then x_i is stored in X (1 + (i - 1) x **inex**). If **inex** < 0 then x_i is stored in X (1 + (N - i) x |**inex|**). **inex** = 0 is an illegal value.
<table>
<thead>
<tr>
<th>Triangular solve</th>
<th>F_STRSV/F_DTRSV/F_CTRSV/F_ZTRSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output X</td>
<td>The solution vector of the triangular system replaces the input.</td>
</tr>
</tbody>
</table>
F_STRSV/F_DTRSV/F_CTRSV/F_ZTRSV
Triangular solve
4 Sparse BLAS Operations

Overview

This chapter explains how to use the HP MLIB Sparse BLAS implementation that supports matrix multiply and triangular solver.

This implementation provides the NIST Fortran Sparse BLAS V.0.5 standard functionality, but with three additional data types ("Sparse BLAS Naming Convention—Data Type" on page 423) and four additional matrix forms (See MSC, MSR, BMC, and BMR in Table 4-2). The Sparse BLAS library routines are written in Fortran 77 and are callable from Fortran 90 and C routines.

Chapter objectives

After reading this chapter you will:

- Be familiar with the Sparse BLAS subroutine naming convention
- Understand argument conventions
- Know what operations the Sparse BLAS performs
- Know how to use the described subprograms
- Be familiar with the Sparse BLAS subroutines
The following documents provide supplemental material for this chapter:

What you need to know to use these subprograms

The following sections describe overall considerations for using matrix subprograms:

- Subroutine naming convention
- Operator arguments in the Sparse BLAS

Subroutine naming convention

Each Sparse BLAS subroutine has a six-character name that is a function of the data type, the data structure of the sparse matrix and the type of operation. More precisely, each name is in the form XYYYZZ.

The first letter, denoted by X, in the naming convention indicates one of the four Fortran data types, as shown in Table 4-1.

<table>
<thead>
<tr>
<th>T</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Single Precision REAL</td>
</tr>
<tr>
<td>D</td>
<td>Double Precision REAL</td>
</tr>
<tr>
<td>C</td>
<td>Single Precision COMPLEX</td>
</tr>
<tr>
<td>Z</td>
<td>Double Precision COMPLEX</td>
</tr>
</tbody>
</table>
What you need to know to use these subprograms

The next three letters in the naming convention, YYY, indicate the data structure of the sparse matrix, as presented in Table 4-2.

Table 4-2 Sparse BLAS Naming Convention—Matrix Form

<table>
<thead>
<tr>
<th>YYY</th>
<th>Point Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>COO</td>
<td>Coordinate</td>
</tr>
<tr>
<td>CSC</td>
<td>Compressed sparse column</td>
</tr>
<tr>
<td>MSC</td>
<td>Modified sparse column</td>
</tr>
<tr>
<td>CSR</td>
<td>Compressed sparse row</td>
</tr>
<tr>
<td>MSR</td>
<td>Modified sparse row</td>
</tr>
<tr>
<td>DIA</td>
<td>Sparse diagonal</td>
</tr>
<tr>
<td>ELL</td>
<td>Ellpack-Itpack</td>
</tr>
<tr>
<td>JAD</td>
<td>Jagged diagonal</td>
</tr>
<tr>
<td>SKY</td>
<td>(Triangular) Skyline</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YYY</th>
<th>Block Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCO</td>
<td>Block coordinate</td>
</tr>
<tr>
<td>BSC</td>
<td>Block compressed sparse column</td>
</tr>
<tr>
<td>BMC</td>
<td>Block modified sparse column</td>
</tr>
<tr>
<td>BSR</td>
<td>Block compressed sparse row</td>
</tr>
<tr>
<td>BMR</td>
<td>Block modified sparse row</td>
</tr>
<tr>
<td>BDI</td>
<td>Block sparse diagonal</td>
</tr>
<tr>
<td>BEL</td>
<td>Block Ellpack-Itpack</td>
</tr>
<tr>
<td>VBR</td>
<td>Variable block row</td>
</tr>
</tbody>
</table>

The table below lists the final two characters in the naming convention, ZZ, indicating the type of operation.

Sparse BLAS Naming Convention—Operation

<table>
<thead>
<tr>
<th>ZZ</th>
<th>Subroutine Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Matrix-Matrix product</td>
</tr>
<tr>
<td>SM</td>
<td>Solution of a triangular system with multiple right-hand-sides</td>
</tr>
</tbody>
</table>

Sparse matrix storage formats

Each Sparse BLAS subroutine handles a specific sparse matrix storage format. These formats are classified into two major groups: point entry and block entry data structures, as presented in Table 4-2. Point entry formats store the nonzero entries and keep track of their location in the matrix. Block entry formats represent sparse matrices whose nonzero entries are dense blocks.
What you need to know to use these subprograms

Point entry formats

COO - Coordinate. Given a sparse matrix A with nnz nonzero entries, the COO format stores the entries of the matrix along with their corresponding row and column indices. Three arrays are required for the COO representation:

- $val(*)$ - Scalar array of length nnz containing the matrix entries.
- $indx(*)$ - Integer array of length nnz containing row indices such that $indx(i)$ corresponds to the row index of $val(i)$.
- $jndx(*)$ - Integer array of length nnz containing column indices such that $jndx(i)$ corresponds to the column index of $val(i)$.

Consider, for example, the 4 x 5 matrix:

<table>
<thead>
<tr>
<th>Table 4-3 4 x 5 Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 0 13 0 15</td>
</tr>
<tr>
<td>21 22 0 0 0</td>
</tr>
<tr>
<td>31 0 33 0 35</td>
</tr>
<tr>
<td>41 0 0 44 45</td>
</tr>
</tbody>
</table>

This matrix could be represented in COO format as:

<table>
<thead>
<tr>
<th>Table 4-4 COO Format Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>val = 11 13 15 21 22 31 33 35 41 44 45</td>
</tr>
<tr>
<td>$indx$ = 1 1 1 2 2 3 3 3 4 4 4</td>
</tr>
<tr>
<td>$jndx$ = 1 3 5 1 2 1 3 5 1 4 5</td>
</tr>
</tbody>
</table>

CSC - Compressed sparse column. Given a sparse m-by-k matrix A with nnz nonzero entries, the CSC format stores each column of A as a sparse vector. Four arrays are required for the CSC representation:

- $val(*)$ - Scalar array of length $\max(nnz, pntrb(k)-1)$ containing the nonzero matrix entries.
- $indx(*)$ - Integer array of length $\max(nnz, pntr(k)-1)$ containing row indices such that $indx(i)$ corresponds to the row index of $val(i)$.
- $pntrb(*)$ - Integer array of length k such that $pntrb(j)$ points to location in $val(\cdot)$ of the first nonzero element in column j.
- $pntr(*)$ - Integer array of length k such that $pntr(j)-1$ points to location in $val(\cdot)$ of the last nonzero element in column j.

Note that the above representation only requires each column of A to be stored in a contiguous portion of $val(\cdot)$. If matrix A is stored in the first nnz entries of...
What you need to know to use these subprograms

val(), a single array pntr() of length k+1 can be used instead of pntrb() and pntre() by having pntrb(i) = pntr(i) and pntre(i) = pntr(i+1).

The matrix in Table 4-4 could be represented in CSC format as:

<table>
<thead>
<tr>
<th>Table 4-5</th>
<th>CSC Format Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>val=</td>
<td>11 21 31 41 22 13 33 44 15 35 45</td>
</tr>
<tr>
<td>indx=</td>
<td>1 2 3 4 2 1 3 4 1 3 4</td>
</tr>
<tr>
<td>pntrb=</td>
<td>1 5 6 8 9</td>
</tr>
<tr>
<td>pntre=</td>
<td>5 6 8 9 12</td>
</tr>
</tbody>
</table>

Optionally, a single array pntrb() (instead of pntrb() and pntre()) could be used:

pntr= 1 5 6 8 9 12

MSC - Modified sparse column. The MSC format is a variation of the CSC format obtained by storing the main diagonal of the matrix in a specific array. Given a sparse m-by-k matrix A with nnz nonzero entries, the MSC representation requires five arrays:

- **diag(*)** - Scalar array of length d containing the main diagonal of A, where d=min(m, k) is the number of elements in the main diagonal.
- **val(*)** - Scalar array of length max(nnz-d, pntre(k)-1) containing the nonzero matrix entries that do not belong to the main diagonal.
- **indx(*)** - Integer array of length max(nnz, pntre(k)-1) containing row indices such that indx(i) corresponds to the row index of val(i).
- **pntrb(*)** - Integer array of length k such that pntrb(j) points to location in val() of the first nonzero element in column j.
- **pntre(*)** - Integer array of length k such that pntre(j)-1 points to location in val() of the last nonzero element in column j.

The matrix in Table 4-4 could be represented in MSC format as:

<table>
<thead>
<tr>
<th>Table 4-6</th>
<th>MSC Format Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>diag=</td>
<td>11 22 33 44</td>
</tr>
<tr>
<td>val=</td>
<td>21 31 41 13 15 35 45</td>
</tr>
<tr>
<td>indx=</td>
<td>2 3 4 1 1 3 4</td>
</tr>
<tr>
<td>pntrb=</td>
<td>1 4 4 1 1 3 4</td>
</tr>
<tr>
<td>pntre=</td>
<td>4 4 5 5 5 8</td>
</tr>
</tbody>
</table>
CSR - Compressed sparse row. Given a sparse \(m \)-by-\(k \) matrix \(A \) with \(nnz \) nonzero entries, the CSR format stores each row of \(A \) as a sparse vector. Four arrays are required for the CSR representation:

- \(val(*) \) - Scalar array of length \(\max(nnz, pntre(k)-1) \) containing the nonzero matrix entries.
- \(indx(*) \) - Integer array of length \(\max(nnz, pntre(k)-1) \) containing column indices such that \(indx(i) \) corresponds to the column index of \(val(i) \).
- \(pntrb(*) \) - Integer array of length \(m \) such that \(pntrb(j) \) points to location in \(val() \) of the first nonzero element in row \(j \).
- \(pntre(*) \) - Integer array of length \(m \) such that \(pntre(j)-1 \) points to location in \(val() \) of the last nonzero element in row \(j \).

Note that the above representation only requires each row of \(A \) to be stored in a contiguous portion of \(val() \). If matrix \(A \) is stored in the first \(nnz \) entries of \(val() \), a single array \(pntr() \) of length \(m+1 \) can be used instead of \(pntrb() \) and \(pntre() \) by having \(pntrb(i) = pntr(i) \) and \(pntre(i) = pntr(i+1) \).

The matrix in Table 4-4 could be represented in CSR format as:

Table 4-7 CSR Format Matrix

\[
\begin{array}{ccccccccccc}
val &=& 11 & 13 & 15 & 21 & 22 & 31 & 33 & 35 & 41 & 44 & 45 \\
indx &=& 1 & 3 & 5 & 1 & 2 & 1 & 3 & 5 & 1 & 4 & 5 \\
pntrb &=& 1 & 4 & 6 & 9 \\
pntre &=& 4 & 6 & 8 & 12
\end{array}
\]

Optionally, a single array \(pntr() \) (instead of \(pntrb() \) and \(pntre() \)) could be used:

\[
pntr = 1 & 4 & 6 & 9 & 12
\]

MSR - Modified sparse row. The MSR format is a variation of the CSR format obtained by storing the main diagonal of the matrix in a specific array. Given a sparse \(m \)-by-\(k \) matrix \(A \) with \(nnz \) nonzero entries, the MSR representation requires five arrays:

- \(diag(*) \) - Scalar array of length \(d \) containing the main diagonal of \(A \), where \(d=\min(m, k) \) is the number of elements in the main diagonal.
- \(val(*) \) - Scalar array of length \(\max(nnz, pntre(k)-1) \) containing the nonzero matrix entries that do not belong to the main diagonal.
- \(indx(*) \) - Integer array of length \(\max(nnz, pntre(k)-1) \) containing column indices such that \(indx(i) \) corresponds to the column index of \(val(i) \).
What you need to know to use these subprograms

- \textit{pntrb(*)} - Integer array of length \(m \) such that \(\text{pntrb}(j) \) points to location in \(\text{val}(\cdot) \) of the first nonzero element in row \(j \).

- \textit{pntre(*)} - Integer array of length \(m \) such that \(\text{pntre}(j)-1 \) points to location in \(\text{val}(\cdot) \) of the last nonzero element in row \(j \).

The matrix in Table 4-4 could be represented in MSR format as:

\(\text{diag} \)	11	22	33	44			
\(\text{val} \)	13	15	21	31	35	41	45
\(\text{indx} \)	3	5	1	1	5	1	5
\(\text{pntrb} \)	1	3	4	6			
\(\text{pntre} \)	3	4	6	8			

DIA- Sparse diagonal. Given a sparse \(m \)-by-\(k \) matrix \(A \) with \(ndiag \) nonzero diagonals, the DIA format stores the nonzero diagonals of \(A \). Two arrays are required for the DIA representation:

- \textit{idiag(*)} - Integer array of length \(ndiag \) consisting of the corresponding diagonal offsets \(\text{idiag}(i) \) of the nonzero diagonal of \(A \) stored in the column \(\text{val}(\cdot, i) \). Offsets are represented with respect to the main diagonal, that is, the main diagonal has offset 0, lower triangular diagonals have negative offsets, and upper triangular diagonals have positive offsets.

- \textit{val(lda, *)} - Two dimensional \(lda \)-by-\(ndiag \) scalar array where \(lda \) is greater or equal to \(\min(m, k) \). Column \(\text{val}(\cdot, i) \) consists of elements on diagonal \(\text{idiag}(i) \) of \(A \) including any zero element within the diagonal. Since diagonals may have fewer elements than to \(\min(m, k) \):

 a) any diagonal with positive or zero offset \(d=\text{idiag}(i) \) (the main diagonal or any upper triangular diagonal) is stored starting from position \(\text{val}(\cdot, i) \);
 b) if \(m \) is greater or equal to \(k \), any diagonal with negative offset \(d=\text{idiag}(i) \) (any lower triangular diagonal) is stored starting from position \(\text{val}(-d, i) \);
 c) if \(m \) is less than \(k \), any diagonal with negative offset \(d=\text{idiag}(i) \) is stored starting from position \(\text{val}(t, i) \) where \(t=1+\max(0, k-m-d) \).
Consider, for example, the 5×4 matrix:

<table>
<thead>
<tr>
<th>Table 4-9 5 x 4 Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 12 0 14</td>
</tr>
<tr>
<td>21 22 0 0</td>
</tr>
<tr>
<td>0 0 33 34</td>
</tr>
<tr>
<td>0 0 0 44</td>
</tr>
<tr>
<td>51 52 0 54</td>
</tr>
</tbody>
</table>

This matrix could be represented in DIA format (using $n_{diag} = 6$) as:

<table>
<thead>
<tr>
<th>Table 4-10 DIA Format Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(id_{diag} =)</td>
</tr>
<tr>
<td>(val =)</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>51</td>
</tr>
</tbody>
</table>

ELL- Ellpack-Itpack. Given a sparse m-by-k matrix A with $maxnz$ nonzero elements in any row, the ELL format stores the nonzero entries of A row by row. Two arrays are required for the ELL representation:

- \(val(lda, *) \) - Two dimensional lda-by-$maxnz$ scalar array where lda is greater or equal to m. The first entries in row $val(i, :) \) consist of nonzero elements in row i of A.

- \(indx(lda, *) \) - Two dimensional lda-by-$maxnz$ integer array where row $indx(i, :) \) stores column indices for row i of A: $indx(i, j)$ corresponds to the column index of $val(i, j)$. If a row has t nonzero elements with t less than $maxnz$, then $indx(i, t+1)$ is set to a negative value.
What you need to know to use these subprograms

The matrix in Table 4-10 could be represented in ELL format using maxn=3:

Table 4-11 ELL Format Matrix

\[
\begin{array}{ccc}
val & 11 & 12 \\
& 21 & 22 \\
& 33 & 34 \\
& 44 & - \\
& 51 & 52 & 54 \\
\end{array}
\]

\[
\begin{array}{c}
indx \\
1 \\
2 \\
4 \\
1 \\
2 \\
-1 \\
-1 \\
-1 \\
-1 \\
-1 \\
4 \\
2 \\
4 \\
\end{array}
\]

JAD- Jagged diagonal. Given a sparse \(m \)-by-\(k \) matrix \(A \) with \(maxnz \) nonzero elements in any row, the JAD format stores the nonzero entries of a row permutation of \(A \) using column ordering. The rows of the original matrix \(A \) are permuted in the decreasing number of nonzero entries. Four arrays are required for the JAD representation:

- \(iperm(*) \) - Integer array of length \(m \) such that \(i=iperm(j) \) indicates that row \(j \) of the row-permuted representation of \(A \) corresponds to row \(i \) of the original matrix \(A \). If there is no permutation at all, \(iperm \) is set to a negative number (usually \(-1\)).

- \(val(*) \) - Scalar array of length \(nnz \) (the total number of nonzero elements in \(A \)) containing the jagged diagonals of the row-permuation of \(A \): The first jagged diagonal consists of the first nonzero entry of each row, and it is stored first in \(val() \); the second jagged diagonalconsists of the second nonzero entry of each row, and it is stored second in \(val(*) \); and so on.

- \(indx(*) \) - Integer array of length \(nnz \) consisting of the column indices of the corresponding entries in \(val() \).

- \(pntr(*) \) - Integer array of length \(maxnz+1 \) such that \(pntr(j) \) and \(pntr(j+1)-1 \) respectively point to location in \(val() \) of the first and last nonzero elements in the \(j \)-th jagged diagonal of the row-permutation of \(A \).

One possible row-permutation for the matrix in Table 4-10 would be \(iperm=(1, 5, 2, 3, 4) \):

430 HP MLIB User's Guide
What you need to know to use these subprograms

Table 4-12 JAD Format Matrix

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>44</td>
</tr>
</tbody>
</table>

And the JAD representation of the row-permuted matrix could be given by:

Table 4-13 JAD Row-Permuted Matrix

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>val</td>
<td>11</td>
<td>51</td>
<td>21</td>
<td>33</td>
<td>44</td>
<td>12</td>
<td>52</td>
<td>22</td>
</tr>
<tr>
<td>indx</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>pntr</td>
<td>1</td>
<td>6</td>
<td>10</td>
<td>12</td>
<td>1</td>
<td>6</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

SKY- (Triangular) Skyline. The Skyline format can be used to represent square triangular matrices. Two arrays are required for the SKY representation:

- **val(*)** - Scalar array of length $pntr(m+1)-1$ (see below for $pntr()$) containing all the nonzero entries, and maybe some zero entries of A. A must be a square triangular matrix ($m=k$). $val()$ is row oriented if A is a lower triangular matrix, and column oriented if A is an upper triangular matrix. All entries from the first nonzero entry through the diagonal entry of a row (column) are stored.

- **pntr(*)** - Integer array of length $m+1$ (A lower triangular) or $k+1$ (A upper triangular) such that $pntr(i)$ and $pntr(i+1)-1$, respectively, point to the location in $val()$ of the first entry and last entry of the skyline profile in row (column) i. In any case, the last entry is the diagonal entry.

Consider, for example, the symmetric 5 x 5 matrix:

Table 4-14 5 x 5 Matrix

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>51</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>32</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>42</td>
<td>0</td>
<td>44</td>
<td>54</td>
</tr>
<tr>
<td>51</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>55</td>
</tr>
</tbody>
</table>

The lower triangular part of this matrix could be represented in SKY format as:
What you need to know to use these subprograms

Table 4-15 SKY Format Matrix

<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>21</th>
<th>22</th>
<th>32</th>
<th>33</th>
<th>42</th>
<th>0</th>
<th>44</th>
<th>51</th>
<th>0</th>
<th>0</th>
<th>54</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>val</td>
<td></td>
</tr>
<tr>
<td>pntr</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Block entry formats

All block entry formats can be used to represent matrices with fixed square block size. The Variable Block Compressed Sparse Row format can also be used for matrices with variable block sizes.

BCO - Block coordinate. Given a sparse block matrix A formed by mb-by-kb square blocks of size lb-by-lb each, the block coordinate format represents the $bnnz$ nonzero block entries using the same variables as in the COO format. Each nonzero dense block is stored in column major order. Three arrays are required for the BCO representation:

- $val(lb, lb, *)$ - Scalar matrix of dimension lb-by-lb-by-$bnnz$ containing the nonzero lb-by-lb blocks.
- $bindx(*)$ - Integer array of length $bnnz$ containing block row indices such that $bindx(i)$ corresponds to the block row index of the matrix block $val(:, :, i)$.
- $bjndx(*)$ - Integer array of length $bnnz$ containing block column indices such that $bjndx(i)$ corresponds to the block column index of $val(:, :, i)$.

Consider, for example, the 4 x 6 matrix:

Table 4-16 4 x 6 Matrix

<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>12</th>
<th>0</th>
<th>0</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>33</td>
<td>0</td>
<td>35</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>43</td>
<td>44</td>
<td>0</td>
<td>46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This matrix could be represented in BCO format using $mb=2$, $kb=3$, and $lb=2$.

Table 4-17 BCO Format Matrix

<table>
<thead>
<tr>
<th>bindx</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>bjndx</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$val(1:2, 1:2, 1)$</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$val(1:2, 1:2, 2)$</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$val(1:2, 1:2, 3)$</th>
<th>33</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>43</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$val(1:2, 1:2, 4)$</th>
<th>35</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>46</td>
</tr>
</tbody>
</table>

BSC - Block compressed sparse column. Given a sparse block matrix A formed by mb-by-kb square blocks of size lb-by-lb each, the block compressed sparse column format represents the $bnnz$ nonzero block entries using the same variables as in the CSC format. Each nonzero dense block is stored in column major order. Four arrays are required for the BSC representation:

- $val(lb, lb, \ast)$ - Scalar matrix of dimension lb-by-lb-by-$maxnnz$ containing the nonzero lb-by-lb blocks, where $maxnnz = \max(bnnz, bptre(k)-1)$.

- $bindx(\ast)$ - Integer array of length $maxnnz$ containing block column indices such that $bindx(i)$ corresponds to the block column index of $val(:, :, i)$.

- $bpntrb(\ast)$ - Integer array of length kb such that $bpntrb(j)$ points to location $val(:, :, j)$ of the first nonzero block in block column j.

- $bpntre(\ast)$ - Integer array of length kb such that $bpntre(j)-1$ points to location $val(:, :, j)$ of the last nonzero block in block column j.

What you need to know to use these subprograms
What you need to know to use these subprograms

The matrix in Table 4-17 could be represented in BSC format as:

Table 4-18 BSC Format Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$bindx$</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$bpntrb$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$bpntre$</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>$val(1:2, 1:2, 1)$</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$val(1:2, 1:2, 2)$</td>
<td>33</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$val(1:2, 1:2, 3)$</td>
<td>15</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$val(1:2, 1:2, 4)$</td>
<td>35</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BMC - Block modified sparse column. The BMC format is a variation of the BSC format obtained by storing the main diagonal of the matrix in a specific array $bdiag$:

- $bdiag(lb, lb, *)$ - Scalar matrix of dimension lb-by-lb-by-d containing the main diagonal of A, where $d=min(mb, kb)$ is the number of blocks forming the main diagonal.

BSR - Block compressed sparse row. Given a sparse block matrix A formed by mb-by-kb square blocks of size lb-by-lb each, the block compressed sparse row format represents the $bnnz$ nonzero block entries using the same variables as in the BSR format. Each nonzero dense block is stored in column major order. Four arrays are required for the BSR representation:

- $val(lb, lb, *)$ - Scalar matrix of dimension lb-by-lb-by-$maxnnz$ containing the nonzero lb-by-lb blocks, where $maxnnz = max(bnnz, bpntre(k)-1)$.
- $bindx(*)$ - Integer array of length $maxnnz$ containing block row indices such that $bindx(i)$ corresponds to the block row index of $val(:, :, i)$.
What you need to know to use these subprograms

- \textit{bpntrb(*)} - Integer array of length \(mb \) such that \(bpntrb(j) \) points to location \(val(:, :, j) \) of the first nonzero block in block row \(j \).
- \textit{bpntre(*)} - Integer array of length \(mb \) such that \(pntre(j)-1 \) points to location \(val(:, :, j) \) of the last nonzero block in block row \(j \).

The matrix in Table 4-17 could be represented in BSR format as:

<table>
<thead>
<tr>
<th>Table 4-19 BSR Format Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{bindx}=</td>
</tr>
<tr>
<td>\textit{bpntrb}=</td>
</tr>
<tr>
<td>\textit{bpntre}=</td>
</tr>
<tr>
<td>\textit{val(1, 2, 1)}=</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>\textit{val(1, 2, 2)}=</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>\textit{val(1, 2, 3)}=</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>\textit{val(1, 2, 4)}=</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

\textbf{BMR - Block modified sparse row}. The BMR format is a variation of the BSR format obtained by storing the main diagonal of the matrix in a specific array \textit{bdiag}:

- \textit{bdiag(lb, lb, *)} - Scalar matrix of dimension \(lb \)-by-\(lb \)-by-\(d \) containing the main diagonal of \(A \), where \(d=\min(mb, kb) \) is the number of blocks forming the main diagonal.

\textbf{BDI- Block sparse diagonal}. Given a sparse block matrix \(A \) formed by \(mb \)-by-\(kb \) square blocks of size \(lb \)-by-\(lb \) each and with \(nbdiag \) nonzero block diagonals, the block compressed sparse diagonal format represents the nonzero block diagonals of \(A \) using the same variables as in the DIA format. Each nonzero dense block is stored in column major order. Two arrays are required for the BDI representation:
What you need to know to use these subprograms

- \texttt{ibdiag(*)} - Integer array of length \texttt{nbdiag} consisting of the corresponding block diagonal offsets \texttt{ibdiag(i)} of the nonzero block diagonal of \texttt{A} stored in the column \texttt{val(:, :, i)}.

- \texttt{val(lb, lb, lda, *)} - Scalar matrix of dimension \texttt{lb-by-lb-by-lda-by-nbdiag} where \texttt{lda} is greater or equal to \textit{min(mb, kb)}. Column \texttt{val(:, :, :, i)} consists of blocks on block diagonal \texttt{ibdiag(i)}.

\textbf{BEL- Block Ellpack-Itpack.} Given a sparse block matrix \texttt{A} formed by \texttt{mb-by-kb} square blocks of size \texttt{lb-by-lb} each and with \texttt{maxbnz} nonzero block entries in any block row, the block Ellpack-Itpack format represents the nonzero block entries of \texttt{A} using the same variables as in the ELL format. Each nonzero dense block is stored in column major order. Two arrays are required for the BEL representation:

- \texttt{val(lb, lb, lda, *)} - Scalar matrix of dimension \texttt{lb-by-lb-by-lda-by-maxbnz} where \texttt{lda} is greater or equal to \texttt{mb}. The first block entries in the block row \texttt{val(:, :, i, :) \texttt{consist of}} nonzero blocks in block row \texttt{i} of \texttt{A}.

- \texttt{bindx(*)} - Two dimensional \texttt{lda-by-maxbnz} integer array where row \texttt{indx(i, :) stores block column indices for block row i of A}.

\textbf{VBR- Variable block row.} The variable block row format is a generalization of the BSR format. Given a sparse block matrix \texttt{A} formed by \texttt{mb-by-kb} blocks of size \texttt{lb-by-lb} each, the \texttt{bnnz} nonzero block of variable sizes are represented by adding arrays \texttt{rpntr()} and \texttt{cpntr()} which store the sparsity structure of the blocks. Each nonzero dense block is stored in column major order. Seven arrays are required for the VBR representation:

- \texttt{val(*)} - Scalar array storing nonzero blocks of \texttt{A} in row major order.

- \texttt{indx(*)} - Integer array of length \texttt{bnnz+1} such that \texttt{indx(i)} points to the location in \texttt{val()} of the \texttt{(1, 1)} element of the \texttt{i}-th block entry. \texttt{indx(bnnz+1)} points to the last used position in \texttt{val()} plus one.

- \texttt{bindx(*)} - Integer array of length \texttt{bnnz} containing block row indices such that \texttt{bindx(i)} corresponds to the block row index of the \texttt{i}-th block entry.

- \texttt{rpntr(*)} - Integer array of length \texttt{mb+1} such that \texttt{rpntr(i)} and \texttt{rpntr(i+1)}, respectively, are the row index of the first point row and row index of the last point row in the \texttt{i}-th block row. Thus, the number of point rows in the \texttt{i}-th block row is \texttt{rpntr(i+1)-rpntr(i)}.

- \texttt{cpntr(*)} - Integer array of length \texttt{kb+1} such that \texttt{cpntr(j)} and \texttt{cpntr(j+1)}, respectively, are the column index of the first point column and the column index of the last point column in the \texttt{j}-th block column. Thus, the number of point columns in the \texttt{j}-th block column is \texttt{cpntr(j+1)-cpntr(j)}.
What you need to know to use these subprograms

- \textit{bpntrb(*)} - Integer array of length \textit{mb} such that \textit{bpntrb(j)} points to location in \textit{bindx(*)} of the first nonzero block in block row \textit{j}.

- \textit{bpntre(*)} - Integer array of length \textit{mb} such that \textit{bpntre(j)-1} points to location \textit{bindx(*)} of the last nonzero block in block row \textit{j}.

Consider, for example, the 6 x 6 matrix:

\begin{table}[h]
\centering
\begin{tabular}{|c|c|cccc|}
\hline
11 & 12 & 0 & 14 & 15 & 16 \\
21 & 22 & 0 & 24 & 25 & 26 \\
31 & 32 & 33 & 0 & 0 & 0 \\
0 & 0 & 43 & 44 & 0 & 0 \\
0 & 0 & 53 & 54 & 55 & 0 \\
0 & 0 & 63 & 64 & 65 & 66 \\
\hline
\end{tabular}
\caption{6 x 6 Matrix}
\end{table}

This matrix could be represented in VBR format using a 2x1x3 blocking:

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
\textit{val} & 11 & 21 & 12 & 22 & 14 & 24 & 15 & 25 & 16 \\
& 26 & 31 & 32 & 33 & 43 & 53 & 63 & 44 & 54 \\
& 64 & 8 & 55 & 65 & 0 & 0 & 66 \\
\hline
\textit{indx} & 1 & 5 & 11 & 13 & 14 & 17 & 26 \\
\textit{bindx} & 1 & 3 & 1 & 2 & 2 & 3 \\
\textit{rpntr} & 1 & 3 & 4 & 7 \\
\textit{cpntr} & 1 & 3 & 4 & 7 \\
\textit{bpntrb} & 1 & 3 & 5 \\
\textit{bpntbe} & 3 & 5 & 7 \\
\hline
\end{tabular}
\caption{VBR Format Matrix}
\end{table}

Operator arguments in the Sparse BLAS

The argument conventions follow the spirit of the dense BLAS.

- Point entry matrix-matrix product:
 \texttt{XYYYMM (TRANSA, M, N, K, ALPHA, args(A), B, LDB, BETA, C, LDC, WORK, LWORK)}

- Block entry matrix-matrix product:
 \texttt{XYYYMM (TRANSA, MB, N, KB, ALPHA, args(A), B, BLDB, BETA, C, BLDC, WORK, LWORK)}

- Point entry solution of triangular system:
What you need to know to use these subprograms

XYYYSM (TRANSA, M, N, UNITD, DV, ALPHA, args(A), B, LDB, BETA, C, LDC, WORK, LWORK)

- Block entry solution of triangular system:
 XYYYSM (TRANSA, MB, N, UNITD, DV, ALPHA, args(A), B, BLDB, BETA, C, BLDC, WORK, LWORK)

The general order of arguments is:

1. Arguments specifying options.
2. Arguments specifying problem dimensions.
4. Description of sparse input matrices (See “Order of arguments for args(A)” on page 440).
5. Description of dense input matrices.
7. Description of input-output matrix.
8. Workspace.
9. Length of workspace.

Common arguments

The argument TRANSA is an integer argument. The possible values are:

- TRANSA - Indicates how to operate with the sparse matrix.
 - 0 - Operate with the matrix (No transpose).
 - 1 - Operate with the transpose of the matrix.
 - 2 - Operate with the conjugate transpose of the matrix.

TRANSA=2 is equivalent to TRANSA=1 if the matrix is real.

The argument M is the number of rows in the matrix C, N is the number of columns in C, and K is the number of rows in B. M and K are the row and column dimensions of A, respectively, if TRANSA=0 or the column and row dimensions of A^T or A^* if TRANSA=1 or 2.

If A is a constant block entry matrix, then M=MBxLB and K=KBxLB are the row and column dimensions of A, respectively. Here, LB is the block entry dimension given by args(A).

For the block entry data structures, the argument MB is the number of block rows in the matrix C, and KB is the number of block rows in B. MB and KB are
What you need to know to use these subprograms

the block row and block column dimensions of A, respectively, if $\text{TRANSA}=0$ or the block column and block row dimensions of A^T or A^* if $\text{TRANSA}=1$ or 2. Negative dimensions are not allowed. If M, N, K, MB, or KB is equal to zero, then no operations are performed. The arguments ALPHA and BETA are both scalar inputs of the same data type as the matrices. The arguments B and C are rectangular arrays with first dimension LDB and LDC, respectively. The argument WORK is an array of the same data type as A and length $LWORK$. If necessary, it is used as scratch space for optimizing performance.
What you need to know to use these subprograms

SM arguments

The argument UNITD is an integer argument indicating whether or not the diagonal matrix D is unitary. The possible values for UNITD are:

1. Unitary diagonal matrix, i.e., D is the identity. In this case the argument DV is ignored.
2. Scale on the left (row scaling).
3. Scale on the right (column scaling).

The argument DV is an array containing the diagonal entries of the (block) diagonal matrix D.

Order of arguments for args(A)

The list of arguments describing the sparse matrix A (denoted by args(A)) is specific to each storage format. The general order of args(A) is:

1. Descriptor array, DESCRA.
2. Array containing the nonzero values (entries) of input matrix.
3. First dimension of values array (if shape of this array differs from index arrays).
4. Array(s) containing indices corresponding to the entries of input matrix. If more than one index array:
 a. Arrays ordered in decreasing length.
 b. Arrays of same length are ordered with row indices first.
5. Length or first dimension of value/index arrays.
6. Array(s) containing pointers. If more than one pointer array:
 a. Arrays ordered in decreasing length.
 b. Arrays of same length are ordered with row pointers first, column pointers next, and diagonal pointers last.
7. Length or first dimension of pointer arrays.
8. Array(s) representing left and/or right permutations of A. If more than one permutation array order left permutation array first.
9. Block entry dimension, LB.
Block coordinate matrix-matrix multiply SBCOMM/DBCOMM/CBCOMM/ZBCOMM

Sparse BLAS routines

Name SBCOMM/DBCOMM/CBCOMM/ZBCOMM
Block coordinate matrix-matrix multiply

Purpose Block coordinate matrix-matrix multiply. These subprograms compute the matrix-matrix product AB, where A is a m-by-k sparse matrix, and B is a k-by-n matrix with $m=mb \times lb$ and $k=kb \times lb$. Optionally, A may be replaced by A^T or A^*, where A^T or A^* is a k-by-m matrix, and B is a m-by-n matrix. Here A^T is the transpose and A^* is the conjugate-transpose of A. The product may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the matrix product and the result matrix. Specifically, these subprograms compute matrix products of the form

\[
C \leftarrow \alpha AB + \beta C \quad C \leftarrow \alpha A^T B + \beta C \quad C \leftarrow \alpha A^* B + \beta C
\]

Usage VECLIB:

SUBROUTINE SBCOMM
INTEGER*4 transa, mb, n, kb, bnnz, lb, ldb, ldc, lwork
INTEGER*4 descsa(*), bindx(*), bjndx(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SBCOMM (transa, mb, n, kb, alpha, descsa, val, bindx, bjndx, bnnz, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DBCOMM
INTEGER*4 transa, mb, n, kb, bnnz, lb, ldb, ldc, lwork
INTEGER*4 descsa(*), bindx(*), bjndx(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DBCOMM (transa, mb, n, kb, alpha, descsa, val, bindx, bjndx, bnnz, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CBCOMM
INTEGER*4 transa, mb, n, kb, bnnz, lb, ldb, ldc, lwork
INTEGER*4 descsa(*), bindx(*), bjndx(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CBCOMM (transa, mb, n, kb, alpha, descsa, val, bindx, bjndx, bnnz, lb, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZBCOMM
INTEGER*4 transa, mb, n, kb, bnnz, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*), bjndx(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZBCOMM (transa, mb, n, kb, alpha, descra, val, bindx, bjndx,
 bnnz, lb, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SBCOMM
INTEGER*8 transa, mb, n, kb, bnnz, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bjndx(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SBCOMM (transa, mb, n, kb, alpha, descra, val, bindx, bjndx,
 bnnz, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DBCOMM
INTEGER*8 transa, mb, n, kb, bnnz, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bjndx(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DBCOMM (transa, mb, n, kb, alpha, descra, val, bindx, bjndx,
 bnnz, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CBCOMM
INTEGER*8 transa, mb, n, kb, bnnz, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bjndx(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CBCOMM (transa, mb, n, kb, alpha, descra, val, bindx, bjndx,
 bnnz, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZBCOMM
INTEGER*8 transa, mb, n, kb, bnnz, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bjndx(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZBCOMM (transa, mb, n, kb, alpha, descra, val, bindx, bjndx,
 bnnz, lb, b, ldb, beta, c, ldc, work, lwork)

Input
transa Indicates how to operate with the sparse matrix.
 0: Operate with matrix
Block coordinate matrix-matrix multiply

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

\textbf{mb} \quad \text{Number of block rows in matrix } A.
\textbf{n} \quad \text{Number of columns in matrix } C.
\textbf{kb} \quad \text{Number of block columns in matrix } A.
\textbf{alpha} \quad \text{Scalar parameter.}
\textbf{descra}() \quad \text{Descriptor argument. Five element integer array.}
\textbf{descra(1)} \quad \text{Matrix structure.}
0: General
1: Symmetric
2: Hermitian
3: Triangular
4: Skew (Anti)-Symmetric
5: Diagonal
\textbf{descra(2)} \quad \text{Upper/Lower triangular indicator.}
1: Lower
2: Upper
\textbf{descra(3)} \quad \text{Main diagonal type.}
0: Non-unit
1: Unit
\textbf{descra(4)} \quad \text{Array base.}
0: C/C++ compatible \textbf{Not Supported}
1: Fortran compatible
\textbf{descra(5)} \quad \text{Repeated indices.}
0: Unknown
1: No repeated indices
\textbf{val()} \quad \text{Scalar array of length } nnz \text{ containing matrix entries stored column-major within each dense block.}
\textbf{bindx()} \quad \text{Integer array of length } bnnz \text{ consisting of the block row indices of the block entries of } A.
bjndx() Integer array of length bnnz consisting of the block column indices of the block entries of A.
bnnz Number of block entries.
lb Dimension of dense blocks composing A.
b() Rectangular array with leading dimension ldb.
ldb Leading dimension of b.
beta Scalar parameter.
e() Rectangular array with leading dimension ldc.
ldc Leading dimension of c.
work() Scratch array of length lwork. Not used.
lwork Length of work array.
Block diagonal matrix-matrix multiply

Name SBDIMM/DBDIMM/CBDIMM/ZBDIMM

Block diagonal matrix-matrix multiply

Purpose Block diagonal matrix-matrix multiply. These subprograms compute the matrix-matrix product \(AB \), where \(A \) is a \(m \)-by-\(k \) sparse matrix, and \(B \) is a \(k \)-by-\(n \) matrix with \(m=mb \times lb \) and \(k=kb \times lb \). Optionally, \(A \) may be replaced by \(A^T \) or \(A^* \), where \(A^T \) or \(A^* \) is a \(k \)-by-\(m \) matrix, and \(B \) is a \(m \)-by-\(n \) matrix. Here \(A^T \) is the transpose and \(A^* \) is the conjugate-transpose of \(A \). The product may be stored in the result matrix \(C \) or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, \(\alpha \) and \(\beta \), which are used as multipliers of the matrix product and the result matrix. Specifically, these subprograms compute matrix products of the form

\[
C \leftarrow \alpha AB + \beta C \quad C \leftarrow \alpha A^T B + \beta C \quad C \leftarrow \alpha A^* B + \beta C
\]

Usage VECLIB:

SUBROUTINE SBDIMM

INTEGER\(^4\) transa, mb, n, kb, blda, nbdiag, lb, ldb, ldc, lwork

INTEGER\(^4\) descra\((*)\), ibdiag\((*)\)

REAL\(^4\) alpha, beta

REAL\(^4\) val\((*)\), b\(l(lb,*\)), c\(l(ldc,*\)), work\((*)\)

CALL SBDIMM (transa, mb, n, kb, alpha, descra, val, blda, ibdiag, nbdiag, lb, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DBDIMM

INTEGER\(^4\) transa, mb, n, kb, blda, nbdiag, lb, ldb, ldc, lwork

INTEGER\(^4\) descra\((*)\), ibdiag\((*)\)

REAL\(^8\) alpha, beta

REAL\(^8\) val\((*)\), b\(l(lb,*\)), c\(l(ldc,*\)), work\((*)\)

CALL DBDIMM (transa, mb, n, kb, alpha, descra, val, blda, ibdiag, nbdiag, lb, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CBDIMM

INTEGER\(^4\) transa, mb, n, kb, blda, nbdiag, lb, ldb, ldc, lwork

INTEGER\(^4\) descra\((*)\), ibdiag\((*)\)

COMPLEX\(^8\) alpha, beta

COMPLEX\(^8\) val\((*)\), b\(l(lb,*\)), c\(l(ldc,*\)), work\((*)\)

CALL CBDIMM (transa, mb, n, kb, alpha, descra, val, blda, ibdiag, nbdiag, lb, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZBDIMM
INTEGER*4 transa, mb, n, kb, blda, nbdiag, lb, ldb, ldc, lwork
INTEGER*4 descra(*), ibdiag(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZBDIMM (transa, mb, n, kb, alpha, descra, val, blda, ibdiag,
 nbdiag, lb, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SBDIMM
INTEGER*8 transa, mb, n, kb, blda, nbdiag, lb, ldb, ldc, lwork
INTEGER*8 descra(*), ibdiag(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SBDIMM (transa, mb, n, kb, alpha, descra, val, blda, ibdiag,
 nbdiag, lb, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DBDIMM
INTEGER*8 transa, mb, n, kb, blda, nbdiag, lb, ldb, ldc, lwork
INTEGER*8 descra(*), ibdiag(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DBDIMM (transa, mb, n, kb, alpha, descra, val, blda, ibdiag,
 nbdiag, lb, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CBDIMM
INTEGER*8 transa, mb, n, kb, blda, nbdiag, lb, ldb, ldc, lwork
INTEGER*8 descra(*), ibdiag(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CBDIMM (transa, mb, n, kb, alpha, descra, val, blda, ibdiag,
 nbdiag, lb, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZBDIMM
INTEGER*8 transa, mb, n, kb, blda, nbdiag, lb, ldb, ldc, lwork
INTEGER*8 descra(*), ibdiag(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZBDIMM (transa, mb, n, kb, alpha, descra, val, blda, ibdiag,
 nbdiag, lb, ldb, beta, c, ldc, work, lwork)

Input
transa
 Indicates how to operate with the sparse matrix.
 0: Operate with matrix
1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

mb Number of block rows in matrix A.
n Number of columns in matrix C.
kb Number of block columns in matrix A.
alpha Scalar parameter.
descra() Descriptor argument. Five element integer array.
descra(1) Matrix structure.
 0: General
 1: Symmetric
 2: Hermitian
 3: Triangular
 4: Skew (Anti)-Symmetric
 5: Diagonal
descra(2) Upper/Lower triangular indicator.
 1: Lower
 2: Upper
descra(3) Main diagonal type.
 0: Non-unit
 1: Unit
descra(4) Array base.
 0: C/C++ compatible Not Supported
 1: Fortran compatible
descra(5) Repeated indices.
 0: Unknown
 1: No repeated indices
val() Scalar array of length $lb^*lb*blda*nbdiag$ containing matrix entries stored column-major within each dense block.
blda Leading block dimension of val().
ibdiag() Integer array of length nbdiag consisting of the corresponding indices of the nonzero block diagonals of A in val().

nbdiag Number of nonzero block diagonals in A.

lb Row and column dimension of the dense blocks composing val.

b() Rectangular array with leading dimension ldb.

ldb Leading dimension of b.

beta Scalar parameter.

e() Rectangular array with leading dimension ldce.

ldce Leading dimension of c.

work() Scratch array of length lwork. Not used.

lwork Length of work array.
Block diagonal format triangular solve

Name

SBDISM/DBDISM/CBDISM/ZBDISM

Block diagonal format triangular solve

Purpose

Block diagonal format triangular solve. Given a scalar \(\alpha \), an upper- or lower-triangular sparse matrix \(A \), and a \(m \times n \) matrix \(B \) with \(m = mb \times lb \), these subprograms compute either of the matrix solutions \(\alpha A^{-1}B \), or \(\alpha DA^{-1}B \), or \(\alpha A^{-1}DB \), where \(D \) is a diagonal matrix. The size of \(A \) is \(m \times m \). Optionally, \(A^{-1} \) may be replaced by \(A^{-T} \), or by \(A^{-*} \). Here, \(A^{-T} \) is the transpose-inverse and \(A^{-*} \) is the conjugate-transpose-inverse of \(A \). The solution matrix may be stored in the result matrix \(C \) or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, \(\alpha \) and \(\beta \), which are used as multipliers of the solution matrix and the result matrix. Specifically, these subprograms compute matrix solutions of the form

\[
\begin{align*}
C &\leftarrow \alpha A^{-1}B + \beta C \\
C &\leftarrow \alpha A^{-T}B + \beta C \\
C &\leftarrow \alpha A^{-*}B + \beta C \\
C &\leftarrow \alpha DA^{-1}B + \beta C \\
C &\leftarrow \alpha DA^{-T}B + \beta C \\
C &\leftarrow \alpha DA^{-*}B + \beta C \\
C &\leftarrow \alpha A^{-1}DB + \beta C \\
C &\leftarrow \alpha A^{-T}DB + \beta C \\
C &\leftarrow \alpha A^{-*}DB + \beta C
\end{align*}
\]

Usage

VECLIB:

SUBROUTINE SBDISM

INTEGER*4 transa, mb, n, unitd, blda, nbdiag, lb, ldb, ldc, lwork
INTEGER*4 descra(*), ibdiag(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SBDISM (transa, mb, n, unitd, dv, alpha, descra, val, blda, ibdiag, nbdiag, lb, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DBDISM

INTEGER*4 transa, mb, n, unitd, blda, nbdiag, lb, ldb, ldc, lwork
INTEGER*4 descra(*), ibdiag(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DBDISM (transa, mb, n, unitd, dv, alpha, descra, val, blda, ibdiag, nbdiag, lb, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CBDISM

INTEGER*4 transa, mb, n, unitd, blda, nbdiag, lb, ldb, ldc, lwork
INTEGER*4 descra(*), ibdiag(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val (*), b(ldb,*), c(ldc,*), work(*)
CALL CBDISM (transa, mb, n, unitd, dv, alpha, descra, val, blda, ibdiag, nbdiag, lb, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZBDISM
INTEGER*4 transa, mb, n, unitd, blda, nbdiag, lb, ldb, ldc, lwork
INTEGER*4 descra(*), ibdiag(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(lldb,*), c(ldc,*), work(*)
CALL ZBDISM (transa, mb, n, unitd, dv, alpha, descra, val, blda, ibdiag,
 nbdiag, lb, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SBDISM
INTEGER*8 transa, mb, n, unitd, blda, nbdiag, lb, ldb, ldc, lwork
INTEGER*8 descra(*), ibdiag(*)
REAL*4 alpha, beta
REAL*4 val(*), b(lldb,*), c(ldc,*), work(*)
CALL SBDISM (transa, mb, n, unitd, dv, alpha, descra, val, blda, ibdiag,
 nbdiag, lb, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DBDISM
INTEGER*8 transa, mb, n, unitd, blda, nbdiag, lb, ldb, ldc, lwork
INTEGER*8 descra(*), ibdiag(*)
REAL*8 alpha, beta
REAL*8 val(*), b(lldb,*), c(ldc,*), work(*)
CALL DBDISM (transa, mb, n, unitd, dv, alpha, descra, val, blda, ibdiag,
 nbdiag, lb, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CBDISM
INTEGER*8 transa, mb, n, unitd, blda, nbdiag, lb, ldb, ldc, lwork
INTEGER*8 descra(*), ibdiag(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(lldb,*), c(ldc,*), work(*)
CALL CBDISM (transa, mb, n, unitd, dv, alpha, descra, val, blda, ibdiag,
 nbdiag, lb, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZBDISM
INTEGER*8 transa, mb, n, unitd, blda, nbdiag, lb, ldb, ldc, lwork
INTEGER*8 descra(*), ibdiag(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(lldb,*), c(ldc,*), work(*)
CALL ZBDISM (transa, mb, n, unitd, dv, alpha, descra, val, blda, ibdiag,
 nbdiag, lb, ldb, beta, c, ldc, work, lwork)

Input
transa Indicates how to operate with the sparse matrix.
0: Operate with matrix
Block diagonal format triangular solve

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

mb
Number of block rows in matrix A.
n
Number of columns in matrix C.
unitd
Type of scaling.
1. Identity matrix (argument \(dv()\) is ignored)
2. Scale on left (row scaling)
3. Scale on right (column scaling)

dv()
Diagonal scaling array of length \(lb*lb*mb\).
alpha
Scalar parameter.
descrea()
Descriptor argument. Five element integer array.
descrea(1)
Matrix structure.
0: General
1: Symmetric
2: Hermitian
3: Triangular
4: Skew (Anti)-Symmetric
5: Diagonal
descrea(2)
Upper/Lower triangular indicator.
1: Lower
2: Upper
descrea(3)
Main diagonal type.
0: Non-unit
1: Unit
descrea(4)
Array base.
0: C/C++ compatible \(\text{Not Supported}\)
1: Fortran compatible
descrea(5)
Repeated indices.
0: Unknown
1: No repeated indices
val() Scalar array of length $lb \times lb \times blda \times nbdiag$ containing matrix entries stored column-major within each dense block.

blda Leading block dimension of val().

ibdiag() Integer array of length nbdiag consisting of the corresponding indices of the nonzero block diagonals of A in val().

nbdiag Number of nonzero block diagonals in A.

lb Dimension of the dense blocks composing A.

b() Rectangular array with leading dimension ldb.

ldb Leading dimension of b.

beta Scalar parameter.

c() Rectangular array with leading dimension ldc.

ldc Leading dimension of c.

work() Scratch array of length lwork. lwork should be at least $mb \times lb \times \min(lb, n)$.

lwork Length of work array.
Block Ellpack matrix-matrix multiply

Name
SBELMM/DBELMM/CBELMM/ZBELMM

Block Ellpack matrix-matrix multiply

Purpose
Block Ellpack matrix-matrix multiply. These subprograms compute the matrix-matrix product AB, where A is a m-by-k sparse matrix, and B is a k-by-n matrix with $m=mb \times lb$ and $k=kb \times lb$. Optionally, A may be replaced by A^T or A^*, where A^T or A^* is a k-by-m matrix, and B is a m-by-n matrix. Here A^T is the transpose and A^* is the conjugate-transpose of A. The product may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the matrix product and the result matrix.

Specifically, these subprograms compute matrix products of the form

- $C \leftarrow \alpha AB + \beta C$
- $C \leftarrow \alpha A^T B + \beta C$
- $C \leftarrow \alpha A^* B + \beta C$

Usage
VECLIB:

SUBROUTINE SBELMM
INTEGER*4 transa, mb, n, kb, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb, *), c(ldc, *), work(*)
CALL SBELMM (transa, mb, n, kb, alpha, descra, val, blda, bindx, maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DBELMM
INTEGER*4 transa, mb, n, kb, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DBELMM (transa, mb, n, kb, alpha, descra, val, blda, bindx, maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CBELMM
INTEGER*4 transa, mb, n, kb, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CBELMM (transa, mb, n, kb, alpha, descra, val, blda, bindx, maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)
SBELMM/DBELMM/CBELMM/ZBELMM Block Ellpack matrix-matrix multiply

SUBROUTINE ZBELMM
INTEGER*4 transa, mb, n, kb, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(lldb,*), c(ldc,*), work(*)
CALL ZBELMM (transa, mb, n, kb, alpha, descra, val, blda, bindx,
maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SBELMM
INTEGER*8 transa, mb, n, kb, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*)
REAL*4 alpha, beta
REAL*4 val(*), b(lldb,*), c(ldc,*), work(*)
CALL SBELMM (transa, mb, n, kb, alpha, descra, val, blda, bindx,
maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DBELMM
INTEGER*8 transa, mb, n, kb, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*)
REAL*8 alpha, beta
REAL*8 val(*), b(lldb,*), c(ldc,*), work(*)
CALL DBELMM (transa, mb, n, kb, alpha, descra, val, blda, bindx,
maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CBELMM
INTEGER*8 transa, mb, n, kb, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(lldb,*), c(ldc,*), work(*)
CALL CBELMM (transa, mb, n, kb, alpha, descra, val, blda, bindx,
maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZBELMM
INTEGER*8 transa, mb, n, kb, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(lldb,*), c(ldc,*), work(*)
CALL ZBELMM (transa, mb, n, kb, alpha, descra, val, blda, bindx,
maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)

Input transa Indicates how to operate with the sparse matrix.
 0: Operate with matrix
1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

mb
Number of block rows in matrix A.

n
Number of columns in matrix C.

kb
Number of block columns in matrix A.

alpha
Scalar parameter.

descra()
Descriptor argument. Five element integer array.

descra(1)
Matrix structure.
0: General
1: Symmetric
2: Hermitian
3: Triangular
4: Skew (Anti)-Symmetric
5: Diagonal

descra(2)
Upper/Lower triangular indicator.
1: Lower
2: Upper

descra(3)
Main diagonal type.
0: Non-unit
1: Unit

descra(4)
Array base.
0: C/C++ compatible Not Supported
1: Fortran compatible

descra(5)
Repeated indices.
0: Unknown
1: No repeated indices

val()
Scalar array of length $lb*lb*blda*maxbnz$ containing matrix entries stored column-major within each dense block.

blda
Leading block dimension of $bindx(:, :)$.
bindx() Two dimensional blda-by-maxbnz array such that bindx (i, :) consists of the block column indices of the nonzero blocks in block row i, padded by the integer value i if the number of nonzero blocks is less than maxbnz.

maxbnz Max number of nonzero blocks per row.

lb Row and column dimension of the dense blocks composing val.

b() Rectangular array with leading dimension ldb.

ldb Leading dimension of b.

beta Scalar parameter.

c() Rectangular array with leading dimension ldc.

ldc Leading dimension of c.

work() Scratch array of length lwork. Not used.

lwork Length of work array.
Name

SBELSM/DBELSM/CBELSM/ZBELSM

Block Ellpack format triangular solve

Purpose

Block Ellpack format triangular solve. Given a scalar α, an upper- or lower-triangular sparse matrix A, and a $m\times n$ matrix B with $m=mb \times lb$, these subprograms compute either of the matrix solutions $\alpha A^{-1}B$, or $\alpha DA^{-1}B$, or $\alpha A^{-1}DB$, where D is a diagonal matrix. The size of A is $m\times m$. Optionally, A^{-1} may be replaced by A^{-T}, or by A^{-*}. Here, A^{-T} is the transpose-inverse and A^{-*} is the conjugate-transpose-inverse of A. The solution matrix may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the solution matrix and the result matrix. Specifically, these subprograms compute matrix solutions of the form

$$
C \leftarrow \alpha A^{-1}B + \beta C \\
C \leftarrow \alpha A^{-T}B + \beta C \\
C \leftarrow \alpha A^{-*}B + \beta C
$$

Usage

VECLIB:

SUBROUTINE SBELSM
INTEGER*4 transa, mb, n, unitd, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SBELSM (transa, mb, n, unitd, dv, alpha, descra, val, blda, bindx, maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DBELSM
INTEGER*4 transa, mb, n, unitd, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DBELSM (transa, mb, n, unitd, dv, alpha, descra, val, blda, bindx, maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CBELSM
INTEGER*4 transa, mb, n, unitd, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CBELSM (transa, mb, n, unitd, dv, alpha, descra, val, blda, bindx, maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)
SBELSM/DBELSM/CBELSM/ZBELSM

Block Ellpack format triangular solve

SUBROUTINE ZBELSM
INTEGER*4 transa, mb, n, unitd, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(lldb,*), c(ldc,*), work(*)
CALL ZBELSM (transa, mb, n, unitd, dv, alpha, descra, val, blda, bindx,
maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:

SUBROUTINE SBELSM
INTEGER*8 transa, mb, n, unitd, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*)
REAL*4 alpha, beta
REAL*4 val(*), b(lldb,*), c(ldc,*), work(*)
CALL SBELSM (transa, mb, n, unitd, dv, alpha, descra, val, blda, bindx,
maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DBELSM
INTEGER*8 transa, mb, n, unitd, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*)
REAL*8 alpha, beta
REAL*8 val(*), b(lldb,*), c(ldc,*), work(*)
CALL DBELSM (transa, mb, n, unitd, dv, alpha, descra, val, blda, bindx,
maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CBELSM
INTEGER*8 transa, mb, n, unitd, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(lldb,*), c(ldc,*), work(*)
CALL CBELSM (transa, mb, n, unitd, dv, alpha, descra, val, blda, bindx,
maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZBELSM
INTEGER*8 transa, mb, n, unitd, blda, maxbnz, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(lldb,*), c(ldc,*), work(*)
CALL ZBELSM (transa, mb, n, unitd, dv, alpha, descra, val, blda, bindx,
maxbnz, lb, b, ldb, beta, c, ldc, work, lwork)

Input transa Indicates how to operate with the sparse matrix.
0: Operate with matrix
Block Ellpack format triangular solve

SBELSM/DBELSM/CBELSM/ZBELSM

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

mb
Number of block rows in matrix A.

n
Number of columns in matrix C.

unitd
Type of scaling.
1. Identity matrix (argument *dv(*) is ignored)
2. Scale on left (row scaling)
3. Scale on right (column scaling)

dv(*)
Diagonal scaling array of length *lb*:*lb*:*mb*.

alpha
Scalar parameter.

descra()
Descriptor argument. Five element integer array.

descra(1)
Matrix structure.
0: General
1: Symmetric
2: Hermitian
3: Triangular
4: Skew (Anti)-Symmetric
5: Diagonal

descra(2)
Upper/Lower triangular indicator.
1: Lower
2: Upper

descra(3)
Main diagonal type.
0: Non-unit
1: Unit

descra(4)
Array base.
0: C/C++ compatible **Not Supported**
1: Fortran compatible

descra(5)
Repeated indices.
0: Unknown
1: No repeated indices
val() Scalar array of length $lb*lb*blda*maxbnz$ containing matrix entries stored column-major within each dense block.
blda Leading block dimension of bindx(:,:).
bindx() Two dimensional $blda$-by-$maxbnz$ array such that $bindx(i,:) \text{ consists of the block column indices of the nonzero blocks in block row } i$, padded by the integer value i if the number of nonzero blocks is less than $maxbnz$.
maxbnz Max number of nonzero blocks per row.
lb Row and column dimension of the dense blocks composing val.
b() Rectangular array with leading dimension ldb.
ldb Leading dimension of b.
beta Scalar parameter.
e() Rectangular array with leading dimension ldc.
ldc Leading dimension of e.
work() Scratch array of length $lwork$. $lwork$ should be at least $mb \times lb \times \min(lb, n)$.
lwork Length of work array.
Name
SBSCMM/DBSCMM/CBSCMM/ZBSCMM

Block sparse column matrix-matrix multiply

Purpose
Block sparse column matrix-matrix multiply. These subprograms compute the matrix-matrix product AB, where A is a m-by-k sparse matrix, and B is a k-by-n matrix with $m=mb \times lb$ and $k=kb \times lb$. Optionally, A may be replaced by A^T or A^*, where A^T or A^* is a k-by-m matrix, and B is a m-by-n matrix. Here A^T is the transpose and A^* is the conjugate transpose of A. The product may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the matrix product and the result matrix. Specifically, these subprograms compute matrix products of the form

$$C \leftarrow \alpha AB + \beta C \quad C \leftarrow \alpha A^T B + \beta C \quad C \leftarrow \alpha A^* B + \beta C$$

Usage

VECLIB:

- **SUBROUTINE** SBSCMM
 - INTEGER*4 transa, mb, n, kb, lb, ldb, ldc, lwork
 - INTEGER*4 descra(*), bindx(*), bpntrb(*), bpntre(*)
 - REAL*4 alpha, beta
 - REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
 - CALL SBSCMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

- **SUBROUTINE** DBSCMM
 - INTEGER*4 transa, mb, n, kb, lb, ldb, ldc, lwork
 - INTEGER*4 descra(*), bindx(*), bpntrb(*), bpntre(*)
 - REAL*8 alpha, beta
 - REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
 - CALL DBSCMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

- **SUBROUTINE** CBSCMM
 - INTEGER*4 transa, mb, n, kb, lb, ldb, ldc, lwork
 - INTEGER*4 descra(*), bindx(*), bpntrb(*), bpntre(*)
 - COMPLEX*8 alpha, beta
 - COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
 - CALL CBSCMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)
SBSCMM/DBSCMM/CBSCMM/ZBSCMM

Block sparse column matrix-matrix multiply

SUBROUTINE ZBSCMM
INTEGER*4 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*), bpntrb(*), bpntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZBSCMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb,
bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:

SUBROUTINE SBSCMM
INTEGER*8 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SBSCMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb,
bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DBSCMM
INTEGER*8 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DBSCMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb,
bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CBSCMM
INTEGER*8 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CBSCMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb,
bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZBSCMM
INTEGER*8 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZBSCMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb,
bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

Input
transa
Indicates how to operate with the sparse matrix.
0: Operate with matrix
Block sparse column matrix-matrix multiply

SBSCMM/DBSCMM/CBSCMM/ZBSCMM

1. Operate with transpose matrix
2. Operate with conjugate-transpose matrix

<table>
<thead>
<tr>
<th>mb</th>
<th>Number of block rows in matrix A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of columns in matrix C.</td>
</tr>
<tr>
<td>kb</td>
<td>Number of block columns in matrix A.</td>
</tr>
<tr>
<td>alpha</td>
<td>Scalar parameter.</td>
</tr>
<tr>
<td>descra()</td>
<td>Descriptor argument. Five element integer array.</td>
</tr>
<tr>
<td>descra(1)</td>
<td>Matrix structure.</td>
</tr>
<tr>
<td></td>
<td>0: General</td>
</tr>
<tr>
<td></td>
<td>1: Symmetric</td>
</tr>
<tr>
<td></td>
<td>2: Hermitian</td>
</tr>
<tr>
<td></td>
<td>3: Triangular</td>
</tr>
<tr>
<td></td>
<td>4: Skew (Anti)-Symmetric</td>
</tr>
<tr>
<td></td>
<td>5: Diagonal</td>
</tr>
<tr>
<td>descra(2)</td>
<td>Upper/Lower triangular indicator.</td>
</tr>
<tr>
<td></td>
<td>1: Lower</td>
</tr>
<tr>
<td></td>
<td>2: Upper</td>
</tr>
<tr>
<td>descra(3)</td>
<td>Main diagonal type.</td>
</tr>
<tr>
<td></td>
<td>0: Non-unit</td>
</tr>
<tr>
<td></td>
<td>1: Unit</td>
</tr>
<tr>
<td>descra(4)</td>
<td>Array base.</td>
</tr>
<tr>
<td></td>
<td>0: C/C++ compatible Not Supported</td>
</tr>
<tr>
<td></td>
<td>1: Fortran compatible</td>
</tr>
<tr>
<td>descra(5)</td>
<td>Repeated indices.</td>
</tr>
<tr>
<td></td>
<td>0: Unknown</td>
</tr>
<tr>
<td></td>
<td>1: No repeated indices</td>
</tr>
<tr>
<td>val()</td>
<td>Scalar array of length (nnz) containing matrix entries stored column-major within each dense block.</td>
</tr>
<tr>
<td>bindx()</td>
<td>Integer array of length (bnnz) consisting of the block row indices of the block entries of A.</td>
</tr>
</tbody>
</table>
bptrb()

Integer array of length \(kb \) such that \(bptrb(j) \) points to location in \(bindx \) of the first block entry of the \(j \)-th block column of \(A \).

bptrc()

Integer array of length \(kb \) such that \(bptrc(j)-1 \) points to location in \(bindx \) of the last block entry of the \(j \)-th block column of \(A \).

lb

Dimension of dense blocks composing \(A \).

b()

Rectangular array with leading dimension \(ldb \).

ldb

Leading dimension of \(b \).

beta

Scalar parameter.

c()

Rectangular array with leading dimension \(ldc \).

ldc

Leading dimension of \(c \).

work()

Scratch array of length \(lwork \). Not used.

lwork

Length of \(work \) array.
Name
SBSCSM/DBSCSM/CBSCSM/ZBSCSM
Block sparse column format triangular solve

Purpose
Block sparse column format triangular solve. Given a scalar α, an upper- or lower-triangular sparse matrix A, and an m-by-n matrix B with $m=mb \times lb$, these subprograms compute either of the matrix solutions $\alpha A^{-1}B$, or $\alpha DA^{-1}B$, or $\alpha A^{-1}DB$, where D is a diagonal matrix. The size of A is m-by-m. Optionally, A^{-1} may be replaced by A^{-T}, or by A^{-*}. Here, A^{-T} is the transpose-inverse and A^{-*} is the conjugate-transpose-inverse of A. The solution matrix may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the solution matrix and the result matrix. Specifically, these subprograms compute matrix solutions of the form

\[
C \leftarrow \alpha A^{-1}B + \beta C \\
C \leftarrow \alpha A^{-T}B + \beta C \\
C \leftarrow \alpha A^{-*}B + \beta C \\
C \leftarrow \alpha A^{-1}DB + \beta C \\
C \leftarrow \alpha DA^{-1}B + \beta C \\
C \leftarrow \alpha DA^{-T}B + \beta C \\
C \leftarrow \alpha DA^{-*}B + \beta C \\
C \leftarrow \alpha A^{-1}DB + \beta C
\]

Usage
VECLIB:

SUBROUTINE
SBSCSM
INTEGER*4 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*), bpntrb(*), bpntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SBSCSM (transa, mb, n, unitd, dv, alpha, descra, val, bindx, bpntrb, bpntre, lb, ldb, beta, c, ldc, work, lwork)

SUBROUTINE
DBSCSM
INTEGER*4 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*), bpntrb(*), bpntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DBSCSM (transa, mb, n, unitd, dv, alpha, descra, val, bindx, bpntrb, bpntre, lb, ldb, beta, c, ldc, work, lwork)

SUBROUTINE
CBSCSM
INTEGER*4 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*), bpntrb(*), bpntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CBSCSM (transa, mb, n, unitd, dv, alpha, descra, val, bindx, bpntrb, bpntre, lb, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZBSCSM
INTEGER*4 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*), bpntrb(*), bpntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZBSCSM (transa, mb, n, unitd, dv, alpha, descra, val, bindx,
bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SBSCSM
INTEGER*8 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SBSCSM (transa, mb, n, unitd, dv, alpha, descra, val, bindx,
bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE DBSCSM
INTEGER*8 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DBSCSM (transa, mb, n, unitd, dv, alpha, descra, val, bindx,
bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE CBSCSM
INTEGER*8 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CBSCSM (transa, mb, n, unitd, dv, alpha, descra, val, bindx,
bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZBSCSM
INTEGER*8 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZBSCSM (transa, mb, n, unitd, dv, alpha, descra, val, bindx,
bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

Input
transa
Indicates how to operate with the sparse matrix.
0: Operate with matrix
1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

mb
Number of block rows in matrix A.

n
Number of columns in matrix C.

unitd
Type of scaling.
1. Identity matrix (argument $dv()$ is ignored)
2. Scale on left (row scaling)
3. Scale on right (column scaling)

dv()
Diagonal scaling array of length $lb*lb*mb$.

alpha
Scalar parameter.

descra()
Descriptor argument. Five element integer array.

descra(1)
Matrix structure.
0: General
1: Symmetric
2: Hermitian
3: Triangular
4: Skew (Anti)-Symmetric
5: Diagonal

descra(2)
Upper/Lower triangular indicator.
1: Lower
2: Upper

descra(3)
Main diagonal type.
0: Non-unit
1: Unit

descra(4)
Array base.
0: C/C++ compatible Not Supported
1: Fortran compatible

descra(5)
Repeated indices.
0: Unknown
1: No repeated indices
val() Scalar array of length nnz containing matrix entries stored column-major within each dense block.
bindx() Integer array of length bnnz consisting of the block row indices of the block entries of A.
bpntrb() Integer array of length kb such that bpntrb(j) points to location in bindx of the first block entry of the j-th block column of A.
bpntrc() Integer array of length kb such that bpntrc(j)-1 points to location in bindx of the last block entry of the j-th block column of A.
lb Dimension of the dense blocks composing A.
b() Rectangular array with leading dimension ldb.
ldb Leading dimension of b.
beta Scalar parameter.
e() Rectangular array with leading dimension ldc.
ldc Leading dimension of c.
work() Scratch array of length lwork. lwork should be at least mb x lb x min(lb, n).
lwork Length of work array.
Block sparse row matrix-matrix multiply

Name
SBSRMM/DBSRMM/CBSRMM/ZBSRMM
Block sparse row matrix-matrix multiply

Purpose
Block sparse row matrix-matrix multiply. These subprograms compute the matrix-matrix product AB, where A is a m-by-k sparse matrix, and B is a k-by-n matrix with $m=mb \times lb$ and $k=kb \times lb$. Optionally, A may be replaced by A^T or A^*, where A^T or A^* is a k-by-m matrix, and B is a m-by-n matrix. Here A^T is the transpose and A^* is the conjugate-transpose of A. The product may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the matrix product and the result matrix. Specifically, these subprograms compute matrix products of the form

$$C \leftarrow \alpha AB + \beta C$$
$$C \leftarrow \alpha A^T B + \beta C$$
$$C \leftarrow \alpha A^* B + \beta C$$

Usage
VECLIB:

SUBROUTINE SBSRMM
INTEGER*4 transa, mb, n, kb, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*), bpntrb(*), bpntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SBSRMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DBSRMM
INTEGER*4 transa, mb, n, kb, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*), bpntrb(*), bpntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DBSRMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CBSRMM
INTEGER*4 transa, mb, n, kb, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*), bpntrb(*), bpntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CBSRMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZBSRMM
INTEGER*4 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*), bpntrb(*), bpntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZBSRMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb, bpntr, lb, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SBSRMM
INTEGER*8 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SBSRMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb, bpntr, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DBSRMM
INTEGER*8 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DBSRMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb, bpntr, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CBSRMM
INTEGER*8 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CBSRMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb, bpntr, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZBSRMM
INTEGER*8 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZBSRMM (transa, mb, n, kb, alpha, descra, val, bindx, bpntrb, bpntr, lb, b, ldb, beta, c, ldc, work, lwork)

Input
transa Indicates how to operate with the sparse matrix.
0: Operate with matrix
1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

mb Number of block rows in matrix A.
n Number of columns in matrix C.
kb Number of block columns in matrix A.
alpha Scalar parameter.
descra() Descriptor argument. Five element integer array.
descra(1) Matrix structure.
 0: General
 1: Symmetric
 2: Hermitian
 3: Triangular
 4: Skew (Anti)-Symmetric
 5: Diagonal

descra(2) Upper/Lower triangular indicator.
 1: Lower
 2: Upper

descra(3) Main diagonal type.
 0: Non-unit
 1: Unit

descra(4) Array base.
 0: C/C++ compatible Not Supported
 1: Fortran compatible

descra(5) Repeated indices.
 0: Unknown
 1: No repeated indices

val() Scalar array of length nnz containing matrix entries stored column-major within each dense block.
bindx() Integer array of length bnnz consisting of the block row indices of the block entries of A.
bpntrb() Integer array of length mb such that bpntrb(j) points to location in bindx of the first block entry of the j-th block row of A.

bpntre() Integer array of length mb such that bptre(j)-1 points to location in bindx of the last block entry of the j-th block column of A.

lb Dimension of dense blocks composing A.

b() Rectangular array with leading dimension ldb.

ldb Leading dimension of b.

beta Scalar parameter.

c() Rectangular array with leading dimension ldc.

ldc Leading dimension of c.

work() Scratch array of length lwork. Not used.

lwork Length of work array.
Name SBSRSM/DBSRSM/CBSRSM/ZBSRSM Block sparse row format triangular solve

Purpose Block sparse row format triangular solve. Given a scalar α, an upper- or lower-triangular sparse matrix A, and a m-by-n matrix B with $m=mb \times lb$, these subprograms compute either of the matrix solutions $\alpha A^{-1}B$, or $\alpha DA^{-1}B$, or $\alpha A^{-1}DB$, where D is a diagonal matrix. The size of A is m-by-m. Optionally, A^{-1} may be replaced by A^{-T}, or by A^{-*}. Here, A^{-T} is the transpose-inverse and A^{-*} is the conjugate-transpose-inverse of A. The solution matrix may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the solution matrix and the result matrix. Specifically, these subprograms compute matrix solutions of the form

$$C \leftarrow \alpha A^{-1}B + \beta C$$
$$C \leftarrow \alpha A^{-T}B + \beta C$$
$$C \leftarrow \alpha A^{-*}B + \beta C$$

Usage VECLIB:

SUBROUTINE SBSRSM
INTEGER*4 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*4 desca(*), bindx(*), bpntrb(*), bpntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SBSRSM (transa, mb, n, unitd, dv, alpha, desca, val, bindx, bpntrb, bpntre, lb, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DBSRSM
INTEGER*4 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*4 desca(*), bindx(*), bpntrb(*), bpntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DBSRSM (transa, mb, n, unitd, dv, alpha, desca, val, bindx, bpntrb, bpntre, lb, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CBSRSM
INTEGER*4 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*4 desca(*), bindx(*), bpntrb(*), bpntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CBSRSM (transa, mb, n, unitd, dv, alpha, desca, val, bindx, bpntrb, bpntre, lb, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZBSRSM
INTEGER*4 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*4 descra(*), bindx(*), bpntrb(*), bpntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZBSRSM (transa, mb, n, unitd, dv, alpha, descra, val, bindx, bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SBSRSM
INTEGER*8 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SBSRSM (transa, mb, n, unitd, dv, alpha, descra, val, bindx, bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DBSRSM
INTEGER*8 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DBSRSM (transa, mb, n, unitd, dv, alpha, descra, val, bindx, bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CBSRSM
INTEGER*8 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CBSRSM (transa, mb, n, unitd, dv, alpha, descra, val, bindx, bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZBSRSM
INTEGER*8 transa, mb, n, unitd, blda, lb, ldb, ldc, lwork
INTEGER*8 descra(*), bindx(*), bpntrb(*), bpntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZBSRSM (transa, mb, n, unitd, dv, alpha, descra, val, bindx, bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork)

Input
transa Indicates how to operate with the sparse matrix.
0: Operate with matrix
1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

mb
Number of block rows in matrix A.

n
Number of columns in matrix C.

unitd
Type of scaling.
1. Identity matrix (argument $dv()$ is ignored)
2. Scale on left (row scaling)
3. Scale on right (column scaling)

$dv()$
Diagonal scaling array of length $lb*lb*mb$.

alpha
Scalar parameter.

descra()
Descriptor argument. Five element integer array.

descra(1)
Matrix structure.
0: General
1: Symmetric
2: Hermitian
3: Triangular
4: Skew (Anti)-Symmetric
5: Diagonal

descra(2)
Upper/Lower triangular indicator.
1: Lower
2: Upper

descra(3)
Main diagonal type.
0: Non-unit
1: Unit

descra(4)
Array base.
0: C/C++ compatible **Not Supported**
1: Fortran compatible

descra(5)
Repeated indices.
0: Unknown
1: No repeated indices
val() Scalar array of length \(nnz \) containing matrix entries stored column-major within each dense block.

bindx() Integer array of length \(bnnz \) consisting of the block row indices of the block entries of \(A \).

bpntrb() Integer array of length \(mb \) such that \(bpntrb(j) \) points to location in \(bindx \) of the first block entry of the \(j \)-th block row of \(A \).

bpntre() Integer array of length \(mb \) such that \(bpntre(j)-1 \) points to location in \(bindx \) of the last block entry of the \(j \)-th block row of \(A \).

\(lb \) Dimension of the dense blocks composing \(A \).

\(b() \) Rectangular array with leading dimension \(ldb \).

\(ldb \) Leading dimension of \(b \).

\(beta \) Scalar parameter.

\(e() \) Rectangular array with leading dimension \(ldc \).

\(ldc \) Leading dimension of \(c \).

\(work() \) Scratch array of length \(lwork \). \(lwork \) should be at least \(mb \times lb \times \min(lb, n) \).

\(lwork \) Length of \(work \) array.
Coordinate matrix-matrix multiply

Name
SCOOMM/DCOOMM/CCOOMM/ZCOOMM
Coordinate matrix-matrix multiply

Purpose
Coordinate matrix-matrix multiply. These subprograms compute the matrix-matrix product AB, where A is a m-by-k sparse matrix, and B is a k-by-n matrix. Optionally, A may be replaced by A^T or A^*, where A^T or A^* is a k-by-m matrix, and B is a m-by-n matrix. Here A^T is the transpose and A^* is the conjugate-transpose of A. The product may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the matrix product and the result matrix. Specifically, these subprograms compute matrix products of the form

$$C \leftarrow \alpha AB + \beta C \quad C \leftarrow \alpha A^TB + \beta C \quad C \leftarrow \alpha A^*B + \beta C$$

Usage
VECLIB:

SUBROUTINE
SCOOMM
INTEGER*4 transa, m, n, k, nnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), jndx(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SCOOMM (transa, m, n, k, alpha, descra, val, indx, jndx, nnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE
DCOOMM
INTEGER*4 transa, m, n, k, nnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), jndx(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DCOOMM (transa, m, n, k, alpha, descra, val, indx, jndx, nnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE
CCOOMM
INTEGER*4 transa, m, n, k, nnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), jndx(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CCOOMM (transa, m, n, k, alpha, descra, val, indx, jndx, nnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE
ZCOOMM
INTEGER*4 transa, m, n, k, nnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), jndx(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZCOOMM (transa, m, n, k, alpha, descra, val, indx, jndx, nnz, b, ldb, beta, c, ldc, work, lwork)
SCOOMM/DCOOMM/CCOOMM/ZCOOMM

Coordinate matrix-matrix multiply

SUBROUTINE ZCOOMM
INTEGER*4 transa, m, n, k, nnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), jndx(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZCOOMM (transa, m, n, k, alpha, descra, val, indx, jndx, nnz, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SCOOMM
INTEGER*8 transa, m, n, k, nnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), jndx(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SCOOMM (transa, m, n, k, alpha, descra, val, indx, jndx, nnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DCOOMM
INTEGER*8 transa, m, n, k, nnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), jndx(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DCOOMM (transa, m, n, k, alpha, descra, val, indx, jndx, nnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CCOOMM
INTEGER*8 transa, m, n, k, nnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), jndx(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CCOOMM (transa, m, n, k, alpha, descra, val, indx, jndx, nnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZCOOMM
INTEGER*8 transa, m, n, k, nnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), jndx(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZCOOMM (transa, m, n, k, alpha, descra, val, indx, jndx, nnz, b, ldb, beta, c, ldc, work, lwork)

Input
transa Indicates how to operate with the sparse matrix.
0: Operate with matrix
Coordinate matrix-matrix multiply

SCOOMM/DCOOMM/CSCOOMM/ZCSCOOMM

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

m Number of rows in matrix A.
n Number of columns in matrix C.
k Number of columns in matrix A.
alpha Scalar parameter.
descra() Descriptor argument. Five element integer array.
descra(1) Matrix structure.
 0: General
 1: Symmetric
 2: Hermitian
 3: Triangular
 4: Skew (Anti)-Symmetric
 5: Diagonal
descra(2) Upper/Lower triangular indicator.
 1: Lower
 2: Upper
descra(3) Main diagonal type.
 0: Non-unit
 1: Unit
descra(4) Array base.
 0: C/C++ compatible Not Supported
 1: Fortran compatible
descra(5) Repeated indices.
 0: Unknown
 1: No repeated indices
val() Scalar array of length nnz containing matrix entries.
indx() Integer array of length nnz containing row indices.
jndx() Integer array of length nnz containing column indices.
nnz() Number of nonzero elements in A.
b() Rectangular array with leading dimension ldb.
ldb Leading dimension of b.
beta Scalar parameter.
e() Rectangular array with leading dimension ldc.
ldc Leading dimension of c.
work() Scratch array of length lwork. Not used.
lwork Length of work array.
Compressed sparse column matrix-matrix multiply

Name

SCSCMM/DCSCMM/CCSCMM/ZCSCMM

Compressed sparse column matrix-matrix multiply

Purpose

Compressed sparse column matrix-matrix multiply. These subprograms compute the matrix-matrix product AB, where A is a m-by-k sparse matrix, and B is a k-by-n matrix. Optionally, A may be replaced by A^T or A^*, where A^T or A^* is a k-by-m matrix, and B is a m-by-n matrix. Here A^T is the transpose and A^* is the conjugate-transpose of A. The product may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the matrix product and the result matrix. Specifically, these subprograms compute matrix products of the form

$$C \leftarrow \alpha AB + \beta C$$

$$C \leftarrow \alpha A^T B + \beta C$$

$$C \leftarrow \alpha A^* B + \beta C$$

Usage

VECLIB:

SUBROUTINE SCSCMM

INTEGER*4 transa, m, n, k, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)

CALL SCSCMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DCSCMM

INTEGER*4 transa, m, n, k, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)

CALL DCSCMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CCSCMM

INTEGER*4 transa, m, n, k, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)

CALL CCSCMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZCSCMM
INTEGER*4 transa, m, n, k, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZCSCMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SCSCMM
INTEGER*8 transa, m, n, k, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SCSCMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DCSCMM
INTEGER*8 transa, m, n, k, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DCSCMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CCSCMM
INTEGER*8 transa, m, n, k, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CCSCMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZCSCMM
INTEGER*8 transa, m, n, k, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZCSCMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

Input transa Indicates how to operate with the sparse matrix.
0: Operate with matrix
Compressed sparse column matrix-matrix multiply

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

m Number of rows in matrix A.
n Number of columns in matrix C.
k Number of columns in matrix A.
α Scalar parameter.
$\text{descra}(\)$ Descriptor argument. Five element integer array.
$\text{descra}(1)$ Matrix structure.
0: General
1: Symmetric
2: Hermitian
3: Triangular
4: Skew (Anti)-Symmetric
5: Diagonal
$\text{descra}(2)$ Upper/Lower triangular indicator.
1: Lower
2: Upper
$\text{descra}(3)$ Main diagonal type.
0: Non-unit
1: Unit
$\text{descra}(4)$ Array base.
0: C/C++ compatible Not Supported
1: Fortran compatible
$\text{descra}(5)$ Repeated indices.
0: Unknown
1: No repeated indices
$\text{val}(\)$ Scalar array of length nnz containing matrix entries.
$\text{indx}(\)$ Integer array of length nnz containing row indices.
$\text{pntrb}(\)$ Integer array of length k such that $\text{pntrb}(j)$ points to location in val of the first nonzero element in column j.
SCSCMM/DCSCMM/CCSCMM/ZCSCMM

Compressed sparse column matrix-matrix multiply

- `pntre()` Integer array of length `k` such that `pntre(j)-1` points to location in `val` of the last nonzero element in column `j`.
- `b()` Rectangular array with leading dimension `ldb`.
- `ldb` Leading dimension of `b`.
- `beta` Scalar parameter.
- `e()` Rectangular array with leading dimension `ldc`.
- `ldc` Leading dimension of `c`.
- `work()` Scratch array of length `lwork`. Not used.
- `lwork` Length of `work` array.
Compressed sparse column format triangular solve

Name

SCSCSM/DCSCSM/CCSCSM/ZCSCSM

Compressed sparse column format triangular solve

Purpose

Compressed sparse column format triangular solve. Given a scalar α, an upper- or lower-triangular sparse matrix A, and an m-by-n matrix B, these subprograms compute either of the matrix solutions $\alpha A^{-1}B$, or $\alpha DA^{-1}B$, or $\alpha A^{-1}DB$, where D is a diagonal matrix. The size of A is m-by-m. Optionally, A^{-1} may be replaced by A^{-T}, or by A^{-*}. Here, A^{-T} is the transpose-inverse and A^{-*} is the conjugate-transpose-inverse of A. The solution matrix may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the solution matrix and the result matrix. Specifically, these subprograms compute matrix solutions of the form

$$
C \leftarrow \alpha A^{-1}B + \beta C \\
C \leftarrow \alpha A^{-T}B + \beta C \\
C \leftarrow \alpha A^{-*}B + \beta C \\
C \leftarrow \alpha A^{-1}DB + \beta C \\
C \leftarrow \alpha DA^{-T}B + \beta C \\
C \leftarrow \alpha DA^{-*}B + \beta C \\
C \leftarrow \alpha A^{-1}DB + \beta C \\
C \leftarrow \alpha DA^{-1}B + \beta C \\
C \leftarrow \alpha DA^{-T}B + \beta C \\
C \leftarrow \alpha DA^{-*}B + \beta C \\
C \leftarrow \alpha A^{-1}DB + \beta C \\
C \leftarrow \alpha DA^{-1}B + \beta C
$$

Usage

VECLIB:

SUBROUTINE SCSCSM
INTEGER*4 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SCSCSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DCSCSM
INTEGER*4 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DCSCSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CCSCSM
INTEGER*4 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CCSCSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZCSCSM
INTEGER*4 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZCSCSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SCSCSM
INTEGER*8 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SCSCSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DCSCSM
INTEGER*8 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DCSCSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CCSCSM
INTEGER*8 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CCSCSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZCSCSM
INTEGER*8 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZCSCSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

Input

transa
Indicates how to operate with the sparse matrix.
0: Operate with matrix
Compressed sparse column format triangular solve

SCSCSM/DCSCSM/CCSCSM/ZCSCSM

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

\(m \) Number of rows in matrix \(A \).
\(n \) Number of columns in matrix \(C \).
\(\text{unitd} \) Type of scaling.
 1. Identity matrix (argument \(dv() \) is ignored)
 2. Scale on left (row scaling)
 3. Scale on right (column scaling)
\(dv() \) Diagonal scaling array of length \(M \).
\(\text{alpha} \) Scalar parameter.
\(\text{descra()} \) Descriptor argument. Five element integer array.
\(\text{descra(1)} \) Matrix structure.
 0: General
 1: Symmetric
 2: Hermitian
 3: Triangular
 4: Skew (Anti)-Symmetric
 5: Diagonal
\(\text{descra(2)} \) Upper/Lower triangular indicator.
 1: Lower
 2: Upper
\(\text{descra(3)} \) Main diagonal type.
 0: Non-unit
 1: Unit
\(\text{descra(4)} \) Array base.
 0: C/C++ compatible Not Supported
 1: Fortran compatible
\(\text{descra(5)} \) Repeated indices.
 0: Unknown
 1: No repeated indices
val() Scalar array of length nnz containing matrix entries.
indx() Integer array of length nnz containing row indices.
pntrb() Integer array of length k such that pntrb(j) points to location in val of the first nonzero element in column j.
pntre() Integer array of length k such that pntre(j)-1 points to location in val of the first nonzero element in column j.
b() Rectangular array with leading dimension ldb.
ldb Leading dimension of b.
beta Scalar parameter.
e() Rectangular array with leading dimension ldc.
ldc Leading dimension of c.
work() Scratch array of length lwork. lwork should be at least mb x lb x min(lb, n).
lwork Length of work array.
Compressed sparse row matrix-matrix multiply

Name

SCSRMM/DCSRMM/CCSRMM/ZCSRMM

Compressed sparse row matrix-matrix multiply

Purpose

Compressed sparse row matrix-matrix multiply. These subprograms compute the matrix-matrix product AB, where A is a m-by-k sparse matrix, and B is a k-by-n matrix. Optionally, A may be replaced by A^T or A^*, where A^T or A^* is a k-by-m matrix, and B is a m-by-n matrix. Here A^T is the transpose and A^* is the conjugate-transpose of A. The product may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the matrix product and the result matrix. Specifically, these subprograms compute matrix products of the form

$$C \leftarrow \alpha AB + \beta C \quad C \leftarrow \alpha A^T B + \beta C \quad C \leftarrow \alpha A^* B + \beta C$$

Usage

VECLIB:

SUBROUTINE SCSRMM
INTEGER*4 transa, m, n, k, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SCSRMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DCSRMM
INTEGER*4 transa, m, n, k, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DCSRMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CCSRMM
INTEGER*4 transa, m, n, k, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CCSRMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)
SCSRMM/DCSRMM/CCSRMM/ZCSRMM

Compressed sparse row matrix-matrix multiply

SUBROUTINE ZCSRMM
INTEGER*4 transa, m, n, k, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZCSRMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:

SUBROUTINE SCSRMM
INTEGER*8 transa, m, n, k, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SCSRMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DCSRMM
INTEGER*8 transa, m, n, k, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DCSRMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CCSRMM
INTEGER*8 transa, m, n, k, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CCSRMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZCSRMM
INTEGER*8 transa, m, n, k, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZCSRMM (transa, m, n, k, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

Input

transa Indicates how to operate with the sparse matrix.
0: Operate with matrix
Compressed sparse row matrix-matrix multiply

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

m
Number of rows in matrix A.

n
Number of columns in matrix C.

k
Number of columns in matrix A.

alpha
Scalar parameter.

descra()
Descriptor argument. Five element integer array.

descra(1)
Matrix structure.
0: General
1: Symmetric
2: Hermitian
3: Triangular
4: Skew (Anti)-Symmetric
5: Diagonal

descra(2)
Upper/Lower triangular indicator.
1: Lower
2: Upper

descra(3)
Main diagonal type.
0: Non-unit
1: Unit

descra(4)
Array base.
0: C/C++ compatible Not Supported
1: Fortran compatible

descra(5)
Repeated indices.
0: Unknown
1: No repeated indices

val()
Scalar array of length nnz containing matrix entries.

indx()
Integer array of length nnz containing column indices.

pntrb()
Integer array of length m such that $pntrb(j)$ points to location in val of the first nonzero element in row j.

Chapter 4 Sparse BLAS Operations 491
SCSRMM/DCSRMM/CCSRMM/ZCSRMM

Compressed sparse row matrix-matrix multiply

\textbf{pntre()} \hspace{1cm} \text{Integer array of length } m \text{ such that } pntre(j)-1 \text{ points to location in } \text{val} \text{ of the last nonzero element in row } j.

\textbf{b()} \hspace{1cm} \text{Rectangular array with leading dimension } ldb.

\textbf{ldb} \hspace{1cm} \text{Leading dimension of } b.

\textbf{beta} \hspace{1cm} \text{Scalar parameter.}

\textbf{e()} \hspace{1cm} \text{Rectangular array with leading dimension } ldc.

\textbf{ldc} \hspace{1cm} \text{Leading dimension of } c.

\textbf{work()} \hspace{1cm} \text{Scratch array of length } lwork. \text{ Not used.}

\textbf{lwork} \hspace{1cm} \text{Length of } work \text{ array.}
Compressed sparse row format triangular solve

Name

SCSRSM/DCSRSM/CCSRSM/ZCSRSM

Compressed sparse row format triangular solve

Purpose

Compressed sparse row format triangular solve. Given a scalar α, an upper- or lower-triangular sparse matrix A, and an m-by-n matrix B, these subprograms compute either of the matrix solutions $\alpha A^{-1}B$, or $\alpha DA^{-1}B$, or $\alpha A^{-1}DB$, where D is a diagonal matrix. The size of A is m-by-m. Optionally, A^{-1} may be replaced by A^{-T}, or by A^{-*}. Here, A^{-T} is the transpose-inverse and A^{-*} is the conjugate-transpose-inverse of A. The solution matrix may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the solution matrix and the result matrix. Specifically, these subprograms compute matrix solutions of the form

- $C \leftarrow \alpha A^{-1}B + \beta C$
- $C \leftarrow \alpha A^{-T}B + \beta C$
- $C \leftarrow \alpha A^{-*}B + \beta C$
- $C \leftarrow \alpha DA^{-1}B + \beta C$
- $C \leftarrow \alpha DA^{-T}B + \beta C$
- $C \leftarrow \alpha DA^{-*}B + \beta C$
- $C \leftarrow \alpha A^{-1}DB + \beta C$
- $C \leftarrow \alpha A^{-T}DB + \beta C$
- $C \leftarrow \alpha A^{-*}DB + \beta C$

Usage

VECLIB:

```fortran
SUBROUTINE SCSRSM
INTEGER*4 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SCSRSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pncre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DCSRSM
INTEGER*4 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DCSRSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pncre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CCSRSM
INTEGER*4 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CCSRSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pncre, b, ldb, beta, c, ldc, work, lwork)
```

Chapter 4 Sparse BLAS Operations

493
SCSRSM/DCSRSM/CCSRSM/ZCSRSM Compressed sparse row format triangular solve

SUBROUTINE ZCSRSM
INTEGER*4 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZCSRSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:

SUBROUTINE SCSRSM
INTEGER*8 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SCSRSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DCSRSM
INTEGER*8 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DCSRSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CCSRSM
INTEGER*8 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CCSRSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZCSRSM
INTEGER*8 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntrb(*), pntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZCSRSM (transa, m, n, unitd, dv, alpha, descra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc, work, lwork)

Input
transa Indicates how to operate with the sparse matrix.
0: Operate with matrix
Chapter 4 Sparse BLAS Operations

Compressed sparse row format triangular solve

SCSRS/DCSRS/CCSRS/ZCSRSM

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

\(m \) Number of rows in matrix \(A \).
\(n \) Number of columns in matrix \(C \).
\(\text{unitd} \) Type of scaling.
1. Identity matrix (argument \(dv() \) is ignored)
2. Scale on left (row scaling)
3. Scale on right (column scaling)

\(dv() \) Diagonal scaling array of length \(M \).
\(\alpha \) Scalar parameter.
\(\text{descra}() \) Descriptor argument. Five element integer array.
\(\text{descra}(1) \) Matrix structure.
0: General
1: Symmetric
2: Hermitian
3: Triangular
4: Skew (Anti)-Symmetric
5: Diagonal

\(\text{descra}(2) \) Upper/Lower triangular indicator.
1: Lower
2: Upper

\(\text{descra}(3) \) Main diagonal type.
0: Non-unit
1: Unit

\(\text{descra}(4) \) Array base.
0: C/C++ compatible Not Supported
1: Fortran compatible

\(\text{descra}(5) \) Repeated indices.
0: Unknown
1: No repeated indices

val()
Scalar array of length \(nnz \) containing matrix entries.

indx()
Integer array of length \(nnz \) containing column indices.

pntrb()
Integer array of length \(m \) such that \(pntrb(j) \) points to location in \(val \) of the first nonzero element in row \(j \).

pntre()
Integer array of length \(m \) such that \(pntre(j)-1 \) points to location in \(val \) of the first nonzero element in row \(j \).

b()
Rectangular array with leading dimension \(ldb \).

ldb
Leading dimension of \(b \).

beta
Scalar parameter.

c()
Rectangular array with leading dimension \(ldc \).

ldc
Leading dimension of \(c \).

work()
Scratch array of length \(lwork \). \(lwork \) should be at least \(mb \times lb \times \min(lb, n) \).

lwork
Length of \(work \) array.
Diagonal matrix-matrix multiply

Name
SDIAMM/DDIAMM/CDIAMM/ZDIAMM
Diagonal matrix-matrix multiply

Purpose
Diagonal matrix-matrix multiply. These subprograms compute the matrix-matrix product AB, where A is a m-by-k sparse matrix, and B is a k-by-n matrix. Optionally, A may be replaced by A^T or A^*, where A^T or A^* is a k-by-m matrix, and B is a m-by-n matrix. Here A^T is the transpose and A^* is the conjugate-transpose of A. The product may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the matrix product and the result matrix. Specifically, these subprograms compute matrix products of the form

$$C \leftarrow \alpha AB + \beta C$$
$$C \leftarrow \alpha A^T B + \beta C$$
$$C \leftarrow \alpha A^* B + \beta C$$

Usage
VECLIB:

SUBROUTINE SDIAMM
INTEGER*4 transa, m, n, k, lda, ndiag, ldb, ldc, lwork
INTEGER*4 descra(*), idiag(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SDIAMM (transa, m, n, k, alpha, descra, val, lda, idiag, ndiag, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DDIAMM
INTEGER*4 transa, m, n, k, lda, ndiag, ldb, ldc, lwork
INTEGER*4 descra(*), idiag(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DDIAMM (transa, m, n, k, alpha, descra, val, lda, idiag, ndiag, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CDIAMM
INTEGER*4 transa, m, n, k, lda, ndiag, ldb, ldc, lwork
INTEGER*4 descra(*), idiag(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CDIAMM (transa, m, n, k, alpha, descra, val, lda, idiag, ndiag, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZDIAMM
INTEGER*4 transa, m, n, k, lda, ndiag, ldb, ldc, lwork
INTEGER*4 descra(*), idiag(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZDIAMM (transa, m, n, k, alpha, descra, val, lda, idiag, ndiag, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SDIAMM
INTEGER*8 transa, m, n, k, lda, ndiag, ldb, ldc, lwork
INTEGER*8 descra(*), idiag(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SDIAMM (transa, m, n, k, alpha, descra, val, lda, idiag, ndiag, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DDIAMM
INTEGER*8 transa, m, n, k, lda, ndiag, ldb, ldc, lwork
INTEGER*8 descra(*), idiag(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DDIAMM (transa, m, n, k, alpha, descra, val, lda, idiag, ndiag, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CDIAMM
INTEGER*8 transa, m, n, k, lda, ndiag, ldb, ldc, lwork
INTEGER*8 descra(*), idiag(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CDIAMM (transa, m, n, k, alpha, descra, val, lda, idiag, ndiag, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZDIAMM
INTEGER*8 transa, m, n, k, lda, ndiag, ldb, ldc, lwork
INTEGER*8 descra(*), idiag(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZDIAMM (transa, m, n, k, alpha, descra, val, lda, idiag, ndiag, b, ldb, beta, c, ldc, work, lwork)

Input
transa
 Indicates how to operate with the sparse matrix.
 0: Operate with matrix
Diagonal matrix-matrix multiply

SDIAMM/DDIAMM/CDIAMM/ZDIAMM

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

\[m \]
Number of rows in matrix \(A \).

\[n \]
Number of columns in matrix \(C \).

\[k \]
Number of columns in matrix \(A \).

\(\alpha \)
Scalar parameter.

\texttt{descra()}
Descriptor argument. Five element integer array.

\texttt{descra(1)}
Matrix structure.
0: General
1: Symmetric
2: Hermitian
3: Triangular
4: Skew (Anti)-Symmetric
5: Diagonal

\texttt{descra(2)}
Upper/Lower triangular indicator.
1: Lower
2: Upper

\texttt{descra(3)}
Main diagonal type.
0: Non-unit
1: Unit

\texttt{descra(4)}
Array base.
0: C/C++ compatible Not Supported
1: Fortran compatible

\texttt{descra(5)}
Repeated indices.
0: Unknown
1: No repeated indices

\texttt{val()}
Two dimensional \(lda \)-by-\(ndiag \) array such that \(\text{val}(i; j) \) consists of nonzero elements on diagonal \(\text{idiag}(i) \) of \(A \). Diagonals in the lower triangular part of \(A \) are padded from the top, and those in the upper triangular part are padded from the bottom.
SDIAMM/DDIAMM/CDIAMM/ZDIAMM
Diagonal matrix-matrix multiply

- **lda**
 Leading dimension of `val`, must be greater or equal to `min(m,k)`.

- **idiag()**
 Integer array of length `ndiag` consisting of the corresponding diagonal offsets of the nonzero diagonals of `A` in `val`. Lower triangular diagonals have negative offsets, the main diagonal has offset 0, and upper triangular diagonals have positive offset.

- **ndiag**
 Number of nonzero diagonals in `A`.

- **b()**
 Rectangular array with leading dimension `ldb`.

- **ldb**
 Leading dimension of `b`.

- **beta**
 Scalar parameter.

- **c()**
 Rectangular array with leading dimension `ldc`.

- **ldc**
 Leading dimension of `c`.

- **work()**
 Scratch array of length `lwork`. Not used.

- **lwork**
 Length of `work` array.
Diagonal format triangular solve

Name

SDIASM/DDIASM/CDIASM/ZDIASM

Diagonal format triangular solve

Purpose

Diagonal format triangular solve. Given a scalar α, an upper- or lower-triangular sparse matrix A, and a m-by-n matrix B, these subprograms compute either of the matrix solutions $\alpha A^{-1}B$, or $\alpha DA^{-1}B$, or $\alpha A^{-1}DB$, where D is a diagonal matrix. The size of A is m-by-m. Optionally, A^{-1} may be replaced by A^{-T}, or by A^{-*}. Here, A^{-T} is the transpose-inverse and A^{-*} is the conjugate-transpose-inverse of A. The solution matrix may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the solution matrix and the result matrix.

Specifically, these subprograms compute matrix solutions of the form

\[
C \leftarrow \alpha A^{-1}B + \beta C \\
C \leftarrow \alpha A^{-T}B + \beta C \\
C \leftarrow \alpha A^{-*}B + \beta C \\
C \leftarrow \alpha DA^{-1}B + \beta C \\
C \leftarrow \alpha DA^{-T}B + \beta C \\
C \leftarrow \alpha DA^{-*}B + \beta C \\
C \leftarrow \alpha A^{-1}DB + \beta C \\
C \leftarrow \alpha A^{T}DB + \beta C \\
C \leftarrow \alpha A^{-*}DB + \beta C
\]

Usage

VECLIB:

```fortran
SUBROUTINE SDIASM
INTEGER*4 transa, m, n, unitd, lda, ndiag, ldb, ldc, lwork
INTEGER*4 descra(*), idiag(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SDIASM (transa, m, n, unitd, dv, alpha, descra, val, lda, idiag, ndiag, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DDIASM
INTEGER*4 transa, m, n, unitd, lda, ndiag, ldb, ldc, lwork
INTEGER*4 descra(*), idiag(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DDIASM (transa, m, n, unitd, dv, alpha, descra, val, lda, idiag, ndiag, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CDIASM
INTEGER*4 transa, m, n, unitd, lda, ndiag, ldb, ldc, lwork
INTEGER*4 descra(*), idiag(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CDIASM (transa, m, n, unitd, dv, alpha, descra, val, lda, idiag, ndiag, b, ldb, beta, c, ldc, work, lwork)
```

Chapter 4 Sparse BLAS Operations 501
SUBROUTINE ZDIASM
INTEGER*4 transa, m, n, unitd, lda, ndiag, ldb, ldc, lwork
INTEGER*4 descra(*), idiag(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZDIASM (transa, m, n, unitd, dv, alpha, descra, val, lda, idiag,
ndiag, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SDIASM
INTEGER*8 transa, m, n, unitd, lda, ndiag, ldb, ldc, lwork
INTEGER*8 descra(*), idiag(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SDIASM (transa, m, n, unitd, dv, alpha, descra, val, lda, idiag,
ndiag, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DDIASM
INTEGER*8 transa, m, n, unitd, lda, ndiag, ldb, ldc, lwork
INTEGER*8 descra(*), idiag(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DDIASM (transa, m, n, unitd, dv, alpha, descra, val, lda, idiag,
ndiag, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CDIASM
INTEGER*8 transa, m, n, unitd, lda, ndiag, ldb, ldc, lwork
INTEGER*8 descra(*), idiag(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CDIASM (transa, m, n, unitd, dv, alpha, descra, val, lda, idiag,
ndiag, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZDIASM
INTEGER*8 transa, m, n, unitd, lda, ndiag, ldb, ldc, lwork
INTEGER*8 descra(*), idiag(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZDIASM (transa, m, n, unitd, dv, alpha, descra, val, lda, idiag,
ndiag, b, ldb, beta, c, ldc, work, lwork)

Input transa Indicates how to operate with the sparse matrix.
0: Operate with matrix
Diagonal format triangular solve

SDIASM/DDIASM/CDIASM/ZDIASM

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

- **m** : Number of rows in matrix A.
- **n** : Number of columns in matrix C.
- **unitd** : Type of scaling.
 1. Identity matrix (argument \(dv() \) is ignored)
 2. Scale on left (row scaling)
 3. Scale on right (column scaling)

- **dv()** : Diagonal scaling array of length \(M \).
- **alpha** : Scalar parameter.

descra() : Descriptor argument. Five element integer array.

- **descra(1)** : Matrix structure.
 0: General
 1: Symmetric
 2: Hermitian
 3: Triangular
 4: Skew (Anti)-Symmetric
 5: Diagonal

- **descra(2)** : Upper/Lower triangular indicator.
 1: Lower
 2: Upper

- **descra(3)** : Main diagonal type.
 0: Non-unit
 1: Unit

- **descra(4)** : Array base.
 0: C/C++ compatible **Not Supported**
 1: Fortran compatible

- **descra(5)** : Repeated indices.
 0: Unknown
 1: No repeated indices
val() Two dimensional lda-by-ndiag array such that val(:, i) consists of nonzero elements on diagonal idia(i) of A. Diagonals in the lower triangular part of A are padded from the top, and those in the upper triangular part are padded from the bottom.

lda Leading dimension of val, must be greater or equal to min(m,k).

idiag() Integer array of length ndiag consisting of the corresponding diagonal offsets of the nonzero diagonals of A in val. Lower triangular diagonals have negative offsets, the main diagonal has offset 0, and upper triangular diagonals have positive offset.

ndiag Number of nonzero diagonals in A.

b() Rectangular array with leading dimension ldb.

ldb Leading dimension of b.

beta Scalar parameter.

e() Rectangular array with leading dimension ldc.

ldc Leading dimension of c.

work() Scratch array of length lwork. lwork should be at least mb x lb x min(lb, n).

lwork Length of work array.
Ellpack matrix-matrix multiply

Name
SELLMM/DELLMM/CELLMM/ZEOLMM
Ellpack matrix-matrix multiply

Purpose
Ellpack matrix-matrix multiply. These subprograms compute the matrix-matrix product AB, where A is a m-by-k sparse matrix, and B is a k-by-n matrix. Optionally, A may be replaced by A^T or A^*, where A^T or A^* is a k-by-m matrix, and B is a m-by-n matrix. Here A^T is the transpose and A^* is the conjugate-transpose of A. The product may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the matrix product and the result matrix. Specifically, these subprograms compute matrix products of the form

\[
\begin{align*}
C & \leftarrow \alpha AB + \beta C \\
C & \leftarrow \alpha A^T B + \beta C \\
C & \leftarrow \alpha A^* B + \beta C
\end{align*}
\]

Usage
VECLIB:

```fortran
SUBROUTINE SELLMM
INTEGER*4 transa, m, n, k, lda, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SELLMM (transa, m, n, k, alpha, descra, val, lda, indx, maxnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DELLMM
INTEGER*4 transa, m, n, k, lda, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DELLMM (transa, m, n, k, alpha, descra, val, lda, indx, maxnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CELLMM
INTEGER*4 transa, m, n, k, lda, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CELLMM (transa, m, n, k, alpha, descra, val, lda, indx, maxnz, b, ldb, beta, c, ldc, work, lwork)
```

Chapter 4 Sparse BLAS Operations 505
SELLMM/DELLMM/CELLMM/ZEILMM Ellpack matrix-matrix multiply

SUBROUTINE ZELLMM

```
INTEGER*4 transa, m, n, k, lda, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZELLMM (transa, m, n, k, alpha, descra, val, lda, indx, maxnz, b, 
             ldb, beta, c, ldc, work, lwork)
```

VECLIB8:

SUBROUTINE SELLMM

```
INTEGER*8 transa, m, n, k, lda, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SELLMM (transa, m, n, k, alpha, descra, val, lda, indx, maxnz, b, 
              ldb, beta, c, ldc, work, lwork)
```

SUBROUTINE DELLMM

```
INTEGER*8 transa, m, n, k, lda, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DELLMM (transa, m, n, k, alpha, descra, val, lda, indx, maxnz, b, 
              ldb, beta, c, ldc, work, lwork)
```

SUBROUTINE CELLMM

```
INTEGER*8 transa, m, n, k, lda, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CELLMM (transa, m, n, k, alpha, descra, val, lda, indx, maxnz, b, 
              ldb, beta, c, ldc, work, lwork)
```

SUBROUTINE ZELLMM

```
INTEGER*8 transa, m, n, k, lda, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZELLMM (transa, m, n, k, alpha, descra, val, lda, indx, maxnz, b, 
              ldb, beta, c, ldc, work, lwork)
```

Input

- **transa**
 - Indicates how to operate with the sparse matrix.
 - 0: Operate with matrix
Ellpack matrix-matrix multiply

SELLMM/DELLMM/CELLMM/ZELLMM

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

\textbf{m} \quad \text{Number of rows in matrix } A. \\
\textbf{n} \quad \text{Number of columns in matrix } C. \\
\textbf{k} \quad \text{Number of columns in matrix } A. \\
\textbf{alpha} \quad \text{Scalar parameter.} \\
\textbf{descra()} \quad \text{Descriptor argument. Five element integer array.} \\
\textbf{descra(1)} \quad \text{Matrix structure.} \\
0: General \\
1: Symmetric \\
2: Hermitian \\
3: Triangular \\
4: Skew (Anti)-Symmetric \\
5: Diagonal \\
\textbf{descra(2)} \quad \text{Upper/Lower triangular indicator.} \\
1: Lower \\
2: Upper \\
\textbf{descra(3)} \quad \text{Main diagonal type.} \\
0: Non-unit \\
1: Unit \\
\textbf{descra(4)} \quad \text{Array base.} \\
0: C/C++ compatible \textbf{Not Supported} \\
1: Fortran compatible \\
\textbf{descra(5)} \quad \text{Repeated indices.} \\
0: Unknown \\
1: No repeated indices \\
\textbf{val()} \quad \text{Two dimensional } lda\text{-by-maxnz} \text{ array such that } val(i, :) \text{ consists of nonzero elements in row } i \text{ of } A, \text{ padded by zero values if the row contains less than } maxnz. \\
\textbf{lda} \quad \text{Leading dimension of } val \text{ and } indx.
SELLMM/DELLMM/CELLMM/ZEllMM

Ellpack matrix-matrix multiply

\texttt{indx()} Two dimensional integer \texttt{blda-by-maxbnz} array such that \texttt{indx(i, :)}} consists of the column indices of the nonzero elements in row \texttt{i}, padded by the integer value \texttt{i} if the number of nonzeros is less than \texttt{maxnz}.

\texttt{maxnz} Max number of nonzero elements per row.

\texttt{b()} Rectangular array with leading dimension \texttt{ldb}.

\texttt{ldb} Leading dimension of \texttt{b}.

\texttt{beta} Scalar parameter.

\texttt{e()} Rectangular array with leading dimension \texttt{ldc}.

\texttt{ldc} Leading dimension of \texttt{c}.

\texttt{work()} Scratch array of length \texttt{lwork}. Not used.

\texttt{lwork} Length of \texttt{work} array.
ELLPACK format triangular solve
SELLSM/DELLSM/CELLSM/ZEQLSM

Name
SELLSM/DELLSM/CELLSM/ZEQLSM
ELLPACK format triangular solve

Purpose
ELLPACK format triangular solve. Given a scalar α, an upper- or lower-triangular sparse matrix A, and a m-by-n matrix B, these subprograms compute either of the matrix solutions $\alpha A^{-1}B$, or $\alpha DA^{-1}B$, or $\alpha A^{-1}DB$, where D is a diagonal matrix. The size of A is m-by-m. Optionally, A^{-1} may be replaced by A^{-T}, or by A^{-*}. Here, A^{-T} is the transpose-inverse and A^{-*} is the conjugate-transpose-inverse of A. The solution matrix may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the solution matrix and the result matrix. Specifically, these subprograms compute matrix solutions of the form

\[
\begin{align*}
C & \leftarrow \alpha A^{-1}B + \beta C \\
C & \leftarrow \alpha DA^{-1}B + \beta C \\
C & \leftarrow \alpha A^{-1}DB + \beta C
\end{align*}
\]

Usage
VECLIB:

SUBROUTINE SELLSM
INTEGER*4 transa, m, n, unitd, lda, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SELLSM (transa, m, n, unitd, dv, descra, val, lda, indx, maxnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DELLSM
INTEGER*4 transa, m, n, unitd, lda, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DELLSM (transa, m, n, unitd, dv, descra, val, lda, indx, maxnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CELLSM
INTEGER*4 transa, m, n, unitd, lda, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CELLSM (transa, m, n, unitd, dv, descra, val, lda, indx, maxnz, b, ldb, beta, c, ldc, work, lwork)

Chapter 4 Sparse BLAS Operations 509
SELLSM/DELLSM/CELLSM/ZELLSM

Ellpack format triangular solve

SUBROUTINE ZELLSM
INTEGER*4 transa, m, n, unitd, lda, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZELLSM (transa, m, n, unitd, dv, alpha, descra, val, lda, indx,
maxnz, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SELLSM
INTEGER*8 transa, m, n, unitd, lda, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SELLSM (transa, m, n, unitd, dv, alpha, descra, val, lda, indx,
maxnz, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE DELLSM
INTEGER*8 transa, m, n, unitd, lda, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DELLSM (transa, m, n, unitd, dv, alpha, descra, val, lda, indx,
maxnz, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE CELLSM
INTEGER*8 transa, m, n, unitd, lda, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CELLSM (transa, m, n, unitd, dv, alpha, descra, val, lda, indx,
maxnz, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZELLSM
INTEGER*8 transa, m, n, unitd, lda, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZELLSM (transa, m, n, unitd, dv, alpha, descra, val, lda, indx,
maxnz, b, ldb, beta, c, ldc, work, lwork)

Input

transa
Indicates how to operate with the sparse matrix.
0: Operate with matrix
Ellpack format triangular solve
SELLSM/DELLSM/CELLSM/ZELLSM

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

\[m \]
Number of rows in matrix \(A \).

\[n \]
Number of columns in matrix \(C \).

\[\text{unitd} \]
Type of scaling.
1. Identity matrix (argument \(\text{dv}() \) is ignored)
2. Scale on left (row scaling)
3. Scale on right (column scaling)

\[\text{dv}() \]
Diagonal scaling array of length \(M \).

\[\alpha \]
Scalar parameter.

\[\text{descra()} \]
Descriptor argument. Five element integer array.

\[\text{descra(1)} \]
Matrix structure.
0: General
1: Symmetric
2: Hermitian
3: Triangular
4: Skew (Anti)-Symmetric
5: Diagonal

\[\text{descra(2)} \]
Upper/Lower triangular indicator.
1: Lower
2: Upper

\[\text{descra(3)} \]
Main diagonal type.
0: Non-unit
1: Unit

\[\text{descra(4)} \]
Array base.
0: C/C++ compatible Not Supported
1: Fortran compatible

\[\text{descra(5)} \]
Repeated indices.
0: Unknown
1: No repeated indices
val() Two dimensional \textit{lda-by-maxnz} array such that \textit{val}(i,:) consists of nonzero elements in row \textit{i} of \textit{A}, padded by zero values if the row contains less than \textit{maxnz}.

\textit{lda} Leading dimension of \textit{val} and \textit{indx}.

\textit{indx()} Two dimensional integer \textit{blda-by-maxnz} array such that \textit{indx}(i,:) consists of the column indices of the nonzero elements in row \textit{i}, padded by the integer value \textit{i} if the number of nonzeros is less than \textit{maxnz}.

\textit{maxnz} Max number of nonzero elements per row.

\textit{b()} Rectangular array with leading dimension \textit{ldb}.

\textit{ldb} Leading dimension of \textit{b}.

\textit{beta} Scalar parameter.

\textit{c()} Rectangular array with leading dimension \textit{ldc}.

\textit{ldc} Leading dimension of \textit{c}.

\textit{work()} Scratch array of length \textit{lwork}. \textit{lwork} should be at least \textit{mb x lb x min(lb, n)}.

\textit{lwork} Length of \textit{work} array.
Jagged diagonal matrix-matrix multiply

Name

SJADMM/DJADMM/CJADMM/ZJADMM

Jagged diagonal matrix-matrix multiply

Purpose

Jagged diagonal matrix-matrix multiply. These subprograms compute the matrix-matrix product AB, where A is a m-by-k sparse matrix, and B is a k-by-n matrix. Optionally, A may be replaced by A^T or A^*, where A^T or A^* is a k-by-m matrix, and B is a m-by-n matrix. Here A^T is the transpose and A^* is the conjugate-transpose of A. The product may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the matrix product and the result matrix. Specifically, these subprograms compute matrix products of the form

\[C \leftarrow \alpha AB + \beta C \quad C \leftarrow \alpha A^T B + \beta C \quad C \leftarrow \alpha A^* B + \beta C \]

Usage

VECLIB:

```fortran
SUBROUTINE SJADMM
INTEGER*4 transa, m, n, k, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntr(*), iperm(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SJADMM (transa, m, n, k, alpha, descra, val, pntr, iperm, indx,
maxnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DJADMM
INTEGER*4 transa, m, n, k, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntr(*), iperm(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DJADMM (transa, m, n, k, alpha, descra, val, pntr, iperm, indx,
maxnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CJADMM
INTEGER*4 transa, m, n, k, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntr(*), iperm(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CJADMM (transa, m, n, k, alpha, descra, val, pntr, iperm, indx,
maxnz, b, ldb, beta, c, ldc, work, lwork)
```

Chapter 4 Sparse BLAS Operations 513
SUBROUTINE ZJADMM
INTEGER*4 transa, m, n, k, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntr(*), iperm(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZJADMM (transa, m, n, k, alpha, descra, val, pntr, iperm, indx,
maxnz, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SJADMM
INTEGER*8 transa, m, n, k, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntr(*), iperm(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SJADMM (transa, m, n, k, alpha, descra, val, pntr, iperm, indx,
maxnz, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE DJADMM
INTEGER*8 transa, m, n, k, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntr(*), iperm(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DJADMM (transa, m, n, k, alpha, descra, val, pntr, iperm, indx,
maxnz, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE CJADMM
INTEGER*8 transa, m, n, k, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntr(*), iperm(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CJADMM (transa, m, n, k, alpha, descra, val, pntr, iperm, indx,
maxnz, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZJADMM
INTEGER*8 transa, m, n, k, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntr(*), iperm(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZJADMM (transa, m, n, k, alpha, descra, val, pntr, iperm, indx,
maxnz, b, ldb, beta, c, ldc, work, lwork)

Input
transa Indicates how to operate with the sparse matrix.
0: Operate with matrix
Jagged diagonal matrix-matrix multiply SJADMM/DJADMM/CJADMM/ZJADMM

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>Number of rows in matrix (A).</td>
</tr>
<tr>
<td>(n)</td>
<td>Number of columns in matrix (C).</td>
</tr>
<tr>
<td>(k)</td>
<td>Number of columns in matrix (A).</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Scalar parameter.</td>
</tr>
<tr>
<td>(\text{descra}(\cdot))</td>
<td>Descriptor argument. Five element integer array.</td>
</tr>
</tbody>
</table>
| \(\text{descra}(1) \) | Matrix structure.
0: General
1: Symmetric
2: Hermitian
3: Triangular
4: Skew (Anti)-Symmetric
5: Diagonal |
| \(\text{descra}(2) \) | Upper/Lower triangular indicator.
1: Lower
2: Upper |
| \(\text{descra}(3) \) | Main diagonal type.
0: Non-unit
1: Unit |
| \(\text{descra}(4) \) | Array base.
0: C/C++ compatible Not Supported
1: Fortran compatible |
| \(\text{descra}(5) \) | Repeated indices.
0: Unknown
1: No repeated indices |
| \(\text{val}(\cdot) \) | Array of length \(\text{nnz} \) (the total number of nonzero entries in \(A \)) containing the jagged diagonals of the row-permuted representation of \(A \). (The row-permutations are performed such that the number of nonzero entries in each row is decreasing.) The first
Jagged diagonal matrix-matrix multiply

Jagged diagonal consists of the first nonzero entry of each row, and it is stored first in \(val(*) \); the second jagged diagonal consists of the second nonzero entry of each row, and it is stored second in \(val(*) \); and so on.

- **indx()** Array of length \(nnz \) consisting of the column indices of the corresponding entries in \(val \).
- **pntr()** Array of length \(maxnz+1 \), such that \(pntr(i) \) and \(pntr(i+1)-1 \), respectively, point to the location in \(val \) of the first and last entries of the \(i \)-th jagged diagonal of the row-permuted representation of \(A \).
- **iperm()** Array of length \(m \) such that \(i=iperm(j) \) indicates that row \(j \) of the row-permuted representation of \(A \) corresponds to row \(i \) of the original matrix \(A \). If there is no permutation at all, let \(iperm(1) \) be a negative number (usually -1).
- **maxnz** Max number of nonzero elements per row.
- **b()** Rectangular array with leading dimension \(ldb \).
- **ldb** Leading dimension of \(b \).
- **beta** Scalar parameter.
- **c()** Rectangular array with leading dimension \(ldc \).
- **ldc** Leading dimension of \(c \).
- **work()** Scratch array of length \(lwork \). Not used.
- **lwork** Length of \(work \) array.
Jagged diagonal format triangular solve

Name
SJADSM/DJADSM/CJADSM/ZJADSM

Jagged diagonal format triangular solve

Purpose
Jagged diagonal format triangular solve. Given a scalar α, an upper- or lower-triangular sparse matrix A, and a m-by-n matrix B, these subprograms compute either of the matrix solutions $\alpha A^{-1}B$, or $\alpha DA^{-1}B$, or $\alpha A^{-1}DB$, where D is a diagonal matrix. The size of A is m-by-m. Optionally, A^{-1} may be replaced by A^{-T}, or by A^{-*}. Here, A^{-T} is the transpose-inverse and A^{-*} is the conjugate-transpose-inverse of A. The solution matrix may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the solution matrix and the result matrix. Specifically, these subprograms compute matrix solutions of the form

\[
C \leftarrow \alpha A^{-1}B + \beta C \\
C \leftarrow \alpha A^{-T}B + \beta C \\
C \leftarrow \alpha A^{-*}B + \beta C \\
C \leftarrow \alpha DA^{-1}B + \beta C \\
C \leftarrow \alpha DA^{-T}B + \beta C \\
C \leftarrow \alpha DA^{-*}B + \beta C \\
C \leftarrow \alpha A^{-1}DB + \beta C \\
C \leftarrow \alpha A^{-T}DB + \beta C \\
C \leftarrow \alpha A^{-*}DB + \beta C
\]

Usage
VECLIB:

SUBROUTINE SJADSM
INTEGER*4 transa, m, n, unitd, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntr(*), iperm(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SJADSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, iperm, indx, maxnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DJADSM
INTEGER*4 transa, m, n, unitd, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntr(*), iperm(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DJADSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, iperm, indx, maxnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CJADSM
INTEGER*4 transa, m, n, unitd, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntr(*), iperm(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CJADSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, iperm, indx, maxnz, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZJADSM
INTEGER*4 transa, m, n, unitd, maxnz, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), pntr(*), iperm(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZJADSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, iperm,
indx, maxnz, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SJADSM
INTEGER*8 transa, m, n, unitd, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntr(*), iperm(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SJADSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, iperm,
indx, maxnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DJADSM
INTEGER*8 transa, m, n, unitd, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntr(*), iperm(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DJADSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, iperm,
indx, maxnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CJADSM
INTEGER*8 transa, m, n, unitd, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntr(*), iperm(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CJADSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, iperm,
indx, maxnz, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZJADSM
INTEGER*8 transa, m, n, unitd, maxnz, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), pntr(*), iperm(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZJADSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, iperm,
indx, maxnz, b, ldb, beta, c, ldc, work, lwork)

Input
transa Indicates how to operate with the sparse matrix.
0: Operate with matrix
Jagged diagonal format triangular solve

SJADSM/DJADSM/CJADSM/ZJADSM

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

m
Number of rows in matrix A.

n
Number of columns in matrix C.

unitd
Type of scaling.
1. Identity matrix (argument $dv()$ is ignored)
2. Scale on left (row scaling)
3. Scale on right (column scaling)

dv()
Diagonal scaling array of length M.

alpha
Scalar parameter.

deshra()
Descriptor argument. Five element integer array.

deshra(1)
Matrix structure.
0: General
1: Symmetric
2: Hermitian
3: Triangular
4: Skew (Anti)-Symmetric
5: Diagonal

deshra(2)
Upper/Lower triangular indicator.
1: Lower
2: Upper

deshra(3)
Main diagonal type.
0: Non-unit
1: Unit

deshra(4)
Array base.
0: C/C++ compatible NotSupported
1: Fortran compatible

deshra(5)
Repeated indices.
0: Unknown
1: No repeated indices
val() Array of length \(nnz\) (the total number of nonzero entries in \(A\)) containing the jagged diagonals of the row-permuted representation of \(A\). (The row-permutations are performed such that the number of nonzero entries in each row is decreasing.) The first jagged diagonal consists of the first nonzero entry of each row, and it is stored first in \(val(*)\); the second jagged diagonal consists of the second nonzero entry of each row, and it is stored second in \(val(*)\); and so on.

indx() Array of length \(nnz\) consisting of the column indices of the corresponding entries in \(val\).

pntr() Array of length \(maxnz+1\), such that \(pntr(i)\) and \(pntr(i+1)-1\), respectively, point to the location in \(val\) of the first and last entries of the \(i\)-th jagged diagonal of the row-permuted representation of \(A\).

iperm() Array of length \(m\) such that \(i=iperm(j)\) indicates that row \(j\) of the row-permuted representation of \(A\) corresponds to row \(i\) of the original matrix \(A\). If there is no permutation at all, let \(iperm(1)\) be a negative number (usually -1).

maxnz Max number of nonzero elements per row.

b() Rectangular array with leading dimension \(ldb\).

ldb Leading dimension of \(b\).

beta Scalar parameter.

c() Rectangular array with leading dimension \(ldc\).

ldc Leading dimension of \(c\).

work() Scratch array of length \(lwork\). \(lwork\) should be at least \(mb \times lb \times \min(lb, n)\).

lwork Length of \(work\) array.
Skyline matrix-matrix multiply

Name

SSKYMM/DSKYMM/CSKYMM/ZSKYMM

Skyline matrix-matrix multiply

Purpose

Skyline matrix-matrix multiply. These subprograms compute the matrix-matrix product AB, where A is a m-by-k sparse matrix, and B is a k-by-n matrix. Optionally, A may be replaced by A^T or A^*, where A^T or A^* is a k-by-m matrix, and B is a m-by-n matrix. Here A^T is the transpose and A^* is the conjugate-transpose of A. The product may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the matrix product and the result matrix. Specifically, these subprograms compute matrix products of the form

$$C \leftarrow \alpha AB + \beta C \quad C \leftarrow \alpha A^T B + \beta C \quad C \leftarrow \alpha A^* B + \beta C$$

Usage

VECLIB:

```fortran
SUBROUTINE SSKYMM
INTEGER*4 transa, m, n, k, ldb, ldc, lwork
INTEGER*4 descra(*), pntr(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SSKYMM (transa, m, n, k, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DSKYMM
INTEGER*4 transa, m, n, k, ldb, ldc, lwork
INTEGER*4 descra(*), pntr(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DSKYMM (transa, m, n, k, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CSKYMM
INTEGER*4 transa, m, n, k, ldb, ldc, lwork
INTEGER*4 descra(*), pntr(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CSKYMM (transa, m, n, k, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)
```

Chapter 4 Sparse BLAS Operations 521
SSKYMM/DSKYMM/CSKYMM/ZSKYMM
Skyline matrix-matrix multiply

SUBROUTINE ZSKYMM
INTEGER*4 transa, m, n, k, ldb, ldc, lwork
INTEGER*4 descra(*), pntr(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZSKYMM (transa, m, n, k, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SSKYMM
INTEGER*8 transa, m, n, k, ldb, ldc, lwork
INTEGER*8 descra(*), pntr(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SSKYMM (transa, m, n, k, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DSKYMM
INTEGER*8 transa, m, n, k, ldb, ldc, lwork
INTEGER*8 descra(*), pntr(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DSKYMM (transa, m, n, k, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CSKYMM
INTEGER*8 transa, m, n, k, ldb, ldc, lwork
INTEGER*8 descra(*), pntr(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CSKYMM (transa, m, n, k, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZSKYMM
INTEGER*8 transa, m, n, k, ldb, ldc, lwork
INTEGER*8 descra(*), pntr(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZSKYMM (transa, m, n, k, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)

Input

transa Indicates how to operate with the sparse matrix.
0: Operate with matrix
Skyline matrix-matrix multiply

SSKYMM/DSYKMM/CSKYMM/ZSKYMM

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

m
Number of rows in matrix A.

n
Number of columns in matrix C.

k
Number of columns in matrix A.

alpha
Scalar parameter.

descra()
Descriptor argument. Five element integer array.

descra(1)
Matrix structure.
 0: General
 1: Symmetric
 2: Hermitian
 3: Triangular
 4: Skew (Anti)-Symmetric
 5: Diagonal

descra(2)
Upper/Lower triangular indicator.
 1: Lower
 2: Upper

descra(3)
Main diagonal type.
 0: Non-unit
 1: Unit

descra(4)
Array base.
 0: C/C++ compatible Not Supported
 1: Fortran compatible

descra(5)
Repeated indices.
 0: Unknown
 1: No repeated indices

val()
Array of length pntr(m+1)-1 (see below for pntr) containing all the nonzero entries, and maybe some zero entries of A. A must be a square triangular matrix (m=k). val() is row-oriented if A is a lower triangular matrix (descra(2)=1) and column oriented if A is an
upper triangular matrix \((\text{descra}(2)=2)\). All entries from the first nonzero entry through the diagonal entry of a row (column) are stored.

- **\(\text{pntr}(\quad)\)** Array of length \(m+1\) (A lower triangular) or \(k+1\) (A upper triangular) such that \(\text{pntr}(i)\) and \(\text{pntr}(i)+1\), respectively, point to the location in \(\text{val}\) of the first entry and last entry of the Skyline profile in row (column) \(i\). In any case, the last entry is the diagonal entry.

- **\(b(\quad)\)** Rectangular array with leading dimension \(\text{ldb}\).

- **\(\text{ldb}\)** Leading dimension of \(b\).

- **\(\beta\)** Scalar parameter.

- **\(c(\quad)\)** Rectangular array with leading dimension \(\text{ldc}\).

- **\(\text{ldc}\)** Leading dimension of \(c\).

- **\(\text{work}(\quad)\)** Scratch array of length \(\text{lwork}\). Not used.

- **\(\text{lwork}\)** Length of \(\text{work}\) array.
Skyline format triangular solve

Name

SSKYSM/DSKYSM/CSKYSM/ZSKYSM
Skyline format triangular solve

Purpose

Skyline format triangular solve. Given a scalar \(\alpha \), an upper- or lower-triangular sparse matrix \(A \), and a \(m \times n \) matrix \(B \), these subprograms compute either of the matrix solutions \(\alpha A^{-1}B \), or \(\alpha DA^{-1}B \), or \(\alpha A^{-1}DB \), where \(D \) is a diagonal matrix. The size of \(A \) is \(m \times m \). Optionally, \(A^{-1} \) may be replaced by \(A^{-T} \), or by \(A^{-*} \). Here, \(A^{-T} \) is the transpose-inverse and \(A^{-*} \) is the conjugate-transpose-inverse of \(A \). The solution matrix may be stored in the result matrix \(C \) or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, \(\alpha \) and \(\beta \), which are used as multipliers of the solution matrix and the result matrix. Specifically, these subprograms compute matrix solutions of the form

\[
\begin{align*}
C & \leftarrow \alpha A^{-1}B + \beta C \\
C & \leftarrow \alpha A^{-T}B + \beta C \\
C & \leftarrow \alpha A^{-*}B + \beta C \\
C & \leftarrow \alpha DA^{-1}B + \beta C \\
C & \leftarrow \alpha DA^{-T}B + \beta C \\
C & \leftarrow \alpha DA^{-*}B + \beta C \\
C & \leftarrow \alpha A^{-1}DB + \beta C
\end{align*}
\]

Usage

VECLIB:

SUBROUTINE SSKYSM
INTEGER*4 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*4 descra(*), pntr(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SSKYSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DSKYSM
INTEGER*4 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*4 descra(*), pntr(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DSKYSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CSKYSM
INTEGER*4 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*4 descra(*), pntr(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CSKYSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZSKYSM
INTEGER*4 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*4 descra(*), pntr(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZSKYSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)

VECLIB8:
SUBROUTINE SSKYSM
INTEGER*8 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*8 descra(*), pntr(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SSKYSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DSKYSM
INTEGER*8 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*8 descra(*), pntr(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DSKYSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CSKYSM
INTEGER*8 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*8 descra(*), pntr(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CSKYSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZSKYSM
INTEGER*8 transa, m, n, unitd, ldb, ldc, lwork
INTEGER*8 descra(*), pntr(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZSKYSM (transa, m, n, unitd, dv, alpha, descra, val, pntr, b, ldb, beta, c, ldc, work, lwork)

Input
transa Indicates how to operate with the sparse matrix.
0: Operate with matrix
Skyline format triangular solve

SSKYSM/DSKYSM/CSKYSM/ZSKYSM

1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

\[m \] Number of rows in matrix \(A \).

\[n \] Number of columns in matrix \(C \).

\[\text{unitd} \] Type of scaling.

1. Identity matrix (argument \(dv() \) is ignored)
2. Scale on left (row scaling)
3. Scale on right (column scaling)

\[dv() \] Diagonal scaling array of length \(M \).

\[\text{alpha} \] Scalar parameter.

\[\text{descra}(\) \] Descriptor argument. Five element integer array.

\[\text{descra}(1) \] Matrix structure.
0: General
1: Symmetric
2: Hermitian
3: Triangular
4: Skew (Anti)-Symmetric
5: Diagonal

\[\text{descra}(2) \] Upper/Lower triangular indicator.
1: Lower
2: Upper

\[\text{descra}(3) \] Main diagonal type.
0: Non-unit
1: Unit

\[\text{descra}(4) \] Array base.
0: C/C++ compatible \textbf{Not Supported}
1: Fortran compatible

\[\text{descra}(5) \] Repeated indices.
0: Unknown
1: No repeated indices
val() Array of length $pntr(m+1)-1$ (see below for $pntr$) containing all the nonzero entries, and maybe some zero entries of A. A must be a square triangular matrix ($m=k$). $val()$ is row-oriented if A is a lower triangular matrix ($descra(2)=1$) and column oriented if A is an upper triangular matrix ($descra(2)=2$). All entries from the first nonzero entry through the diagonal entry of a row (column) are stored.

$pntr()$ Array of length $m+1$ (A lower triangular) or $k+1$ (A upper triangular) such that $pntr(i)$ and $pntr(i)+1-1$, respectively, point to the location in val of the first entry and last entry of the Skyline profile in row (column) i. In any case, the last entry is the diagonal entry.

b() Rectangular array with leading dimension ldb.

ldb Leading dimension of b.

beta Scalar parameter.

c() Rectangular array with leading dimension ldc.

ldc Leading dimension of c.

work() Scratch array of length $lwork$. $lwork$ should be at least $mb \times lb \times \min(lb, n)$.

lwork Length of $work$ array.
Variable block row matrix-matrix multiply

SVBRMM/DVBRMM/CVBRMM/ZVBRMM

Name
SVBRMM/DVBRMM/CVBRMM/ZVBRMM
Variable block row matrix-matrix multiply

Purpose
Variable block row matrix-matrix multiply. These subprograms compute the matrix-matrix product AB, where A is a m-by-k sparse matrix, and B is a k-by-n matrix with $m=mb \times lb$ and $k=kb \times lb$. Optionally, A may be replaced by A^T or A^*, where A^T or A^* is a k-by-m matrix, and B is a m-by-n matrix. Here A^T is the transpose and A^* is the conjugate-transpose of A. The product may be stored in the result matrix C or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, α and β, which are used as multipliers of the matrix product and the result matrix. Specifically, these subprograms compute matrix products of the form

$$C \leftarrow \alpha AB + \beta C \quad C \leftarrow \alpha A^T B + \beta C \quad C \leftarrow \alpha A^* B + \beta C$$

Usage
VECLIB:

SUBROUTINE SVBRMM
INTEGER*4 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), bindx(*), rpntr(*), cpntr(*),
 bpntrb(*), bpntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SVBRMM (transa, mb, n, kb, alpha, descra, val, indx, bindx, rpntr,
 cpntr, bpntrb, bpntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DVBRMM
INTEGER*4 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), bindx(*), rpntr(*), cpntr(*),
 bpntrb(*), bpntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DVBRMM (transa, mb, n, kb, alpha, descra, val, indx, bindx, rpntr,
 cpntr, bpntrb, bpntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CVBRMM
INTEGER*4 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), bindx(*), rpntr(*), cpntr(*),
 bpntrb(*), bpntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CVBRMM (transa, mb, n, kb, alpha, descra, val, indx, bindx, rpntr,
 cpntr, bpntrb, bpntre, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZVBRMM
INTEGER*4 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), bindx(*), rpntr(*), cpntr(*),
 bpntrb(*), bpntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZVBRMM (transa, mb, n, kb, alpha, descra, val, indx, bindx, rpntr,
 cpntr, bpntrb, bpntre, b, ldb, beta, c, ldc, work, lwork)

VECLIBS:
SUBROUTINE SVBRMM
INTEGER*8 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), bindx(*), rpntr(*), cpntr(*),
 bpntrb(*), bpntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SVBRMM (transa, mb, n, kb, alpha, descra, val, indx, bindx, rpntr,
 cpntr, bpntrb, bpntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DVBRMM
INTEGER*8 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), bindx(*), rpntr(*), cpntr(*),
 bpntrb(*), bpntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DVBRMM (transa, mb, n, kb, alpha, descra, val, indx, bindx, rpntr,
 cpntr, bpntrb, bpntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CVBRMM
INTEGER*8 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), bindx(*), rpntr(*), cpntr(*),
 bpntrb(*), bpntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CVBRMM (transa, mb, n, kb, alpha, descra, val, indx, bindx, rpntr,
 cpntr, bpntrb, bpntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZVBRMM
INTEGER*8 transa, mb, n, kb, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), bindx(*), rpntr(*), cpntr(*),
 bpntrb(*), bpntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZVBRMM (transa, mb, n, kb, alpha, descra, val, indx, bindx, rpntr,
 cpntr, bpntrb, bpntre, b, ldb, beta, c, ldc, work, lwork)
Variable block row matrix-matrix multiply

SVBRMM/DVBRMM/CVBRMM/ZVBRMM

<table>
<thead>
<tr>
<th>Input</th>
<th>transa</th>
<th>Indicates how to operate with the sparse matrix.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>Operate with matrix</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Operate with transpose matrix</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Operate with conjugate-transpose matrix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mb</th>
<th>Number of block rows in matrix A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of columns in matrix C.</td>
</tr>
<tr>
<td>kb</td>
<td>Number of block columns in matrix A.</td>
</tr>
<tr>
<td>alpha</td>
<td>Scalar parameter.</td>
</tr>
<tr>
<td>descra</td>
<td>Descriptor argument. Five element integer array.</td>
</tr>
<tr>
<td>descra(1)</td>
<td>Matrix structure.</td>
</tr>
<tr>
<td></td>
<td>0: General</td>
</tr>
<tr>
<td></td>
<td>1: Symmetric</td>
</tr>
<tr>
<td></td>
<td>2: Hermitian</td>
</tr>
<tr>
<td></td>
<td>3: Triangular</td>
</tr>
<tr>
<td></td>
<td>4: Skew (Anti)-Symmetric</td>
</tr>
<tr>
<td></td>
<td>5: Diagonal</td>
</tr>
<tr>
<td>descra(2)</td>
<td>Upper/Lower triangular indicator.</td>
</tr>
<tr>
<td></td>
<td>1: Lower</td>
</tr>
<tr>
<td></td>
<td>2: Upper</td>
</tr>
<tr>
<td>descra(3)</td>
<td>Main diagonal type.</td>
</tr>
<tr>
<td></td>
<td>0: Non-unit</td>
</tr>
<tr>
<td></td>
<td>1: Unit</td>
</tr>
<tr>
<td>descra(4)</td>
<td>Array base.</td>
</tr>
<tr>
<td></td>
<td>0: C/C++ compatible Not Supported</td>
</tr>
<tr>
<td></td>
<td>1: Fortran compatible</td>
</tr>
<tr>
<td>descra(5)</td>
<td>Repeated indices.</td>
</tr>
<tr>
<td></td>
<td>0: Unknown</td>
</tr>
<tr>
<td></td>
<td>1: No repeated indices</td>
</tr>
<tr>
<td>val</td>
<td>Scalar array of length nnz containing matrix entries.</td>
</tr>
</tbody>
</table>
SVBRMM/DVBRMM/CVBRMM/ZVBRMM Variable block row matrix-matrix multiply

indx(*) Integer array of length $bnnz+1$ such that the i-th element of $indx()$ points to the location in val of the $(1,1)$ element of the i-th block entry.

bindx() Integer array of length $bnnz$ consisting of the block row indices of the block entries of A.

rpntr() Integer array of length $mb+1$ such that $rpntr(i)-rpntr(1)$ is the row index of the first row in the i-th block row. $rpntr(m+1)$ is set to $m+rpntr(1)$. Thus, the number of point rows in the i-th block row is $rpntr(i+1)-rpntr(i)$.

cpntr() Integer array of length $kb+1$ such that $cpntr(j)-cpntr(1)$ is the column index of the first point column in the j-th block column. $cpntr(kb+1)$ is set to $k+cpntr(1)$. Thus, the number of point columns in the j-th block column is $cpntr(j+1)-cpntr(j)$.

bpntrb() Integer array of length mb such that $bpntrb(i)-bpntrb(1)$ points to location in $bindx$ of the first block entry of the j-th row of A.

bpntre() Integer array of length mb such that $bpntre(i)-bpntre(1)$ points to location in $bindx$ of the last block entry of the j-th block column of A.

lb Dimension of dense blocks composing A.

b() Rectangular array with leading dimension ldb.

ldb Leading dimension of b.

beta Scalar parameter.

e() Rectangular array with leading dimension ldc.

ldc Leading dimension of c.

work() Scratch array of length $lwork$. Not used.

lwork Length of $work$ array.
Variable block row format triangular solve

<table>
<thead>
<tr>
<th>Name</th>
<th>SVBRSM/DVBRSM/CVBRSM/ZVBRSM</th>
</tr>
</thead>
</table>
| Purpose | Variable block row format triangular solve. Given a scalar \(\alpha \), an upper- or lower-triangular sparse matrix \(A \), and a \(m \times n \) matrix \(B \) with \(m = mb \times lb \), these subprograms compute either of the matrix solutions \(\alpha A^{-1}B \), or \(\alpha DA^{-1}B \), or \(\alpha A^{-1}DB \), where \(D \) is a diagonal matrix. The size of \(A \) is \(m \times m \). Optionally, \(A^{-1} \) may be replaced by \(A^{-T} \), or by \(A^{-*} \). Here, \(A^{-T} \) is the transpose-inverse and \(A^{-*} \) is the conjugate-transpose-inverse of \(A \). The solution matrix may be stored in the result matrix \(C \) or optionally may be added to or subtracted from it. This is handled in a convenient, but general way by two scalar arguments, \(\alpha \) and \(\beta \), which are used as multipliers of the solution matrix and the result matrix.

Specifically, these subprograms compute matrix solutions of the form

\[
\begin{align*}
C & \leftarrow \alpha A^{-1}B + \beta C \\
C & \leftarrow \alpha A^{-T}B + \beta C \\
C & \leftarrow \alpha A^{-*}B + \beta C
\end{align*}
\]

<table>
<thead>
<tr>
<th>Usage</th>
<th>VECLIB:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBROUTINE</td>
<td>SVBRSM</td>
</tr>
<tr>
<td>INTEGER*4</td>
<td>transa, mb, n, unitd, blda, ldb, ldc, lwork</td>
</tr>
<tr>
<td>INTEGER*4</td>
<td>desera(), indx(), bindx(), rpntr(), cpntr(), bpntrb(), bpnitre(*),</td>
</tr>
<tr>
<td>REAL*4</td>
<td>alpha, beta</td>
</tr>
<tr>
<td>REAL*4</td>
<td>val(), b(lldb,), c(ldc,), work()</td>
</tr>
<tr>
<td>CALL SVBRSM (transa, mb, n, unitd, dv, alpha, desera, val, indx, bindx, rpntr, cpntr, bpntrb, bpnitre, b, ldb, beta, c, ldc, work, lwork)</td>
<td></td>
</tr>
</tbody>
</table>

SUBROUTINE	DVBRSM
INTEGER*4	transa, mb, n, unitd, blda, ldb, ldc, lwork
INTEGER*4	desera(*), indx(*), rpntr(*), cpntr(*), bindx(*), bpntrb(*), bpnitre(*),
REAL*8	alpha, beta
REAL*8	val(*), b(lldb,*), c(ldc,*), work(*)
CALL DVBRSM (transa, mb, n, unitd, dv, alpha, desera, val, indx, bindx, rpntr, cpntr, bpntrb, bpnitre, b, ldb, beta, c, ldc, work, lwork)	
SUBROUTINE CVBRSM
INTEGER*4 transa, mb, n, unitd, blda, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), bindx(*), rpntr(*), cpntr(*),
 bnptrb(*), bpntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CVBRSM (transa, mb, n, unitd, dv, alpha, descra, val, indx, bindx,
 rpntr, cpntr, bnptrb, bpntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE ZVBRSM
INTEGER*4 transa, mb, n, unitd, blda, ldb, ldc, lwork
INTEGER*4 descra(*), indx(*), bindx(*), rpntr(*), cpntr(*),
 bnptrb(*), bpntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZVBRSM (transa, mb, n, unitd, dv, alpha, descra, val, indx, bindx,
 rpntr, cpntr, bnptrb, bpntre, b, ldb, beta, c, ldc, work, lwork)

VECLIBS:

SUBROUTINE SVBRSM
INTEGER*8 transa, mb, n, unitd, blda, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), bindx(*), rpntr(*), cpntr(*),
 bnptrb(*), bpntre(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SVBRSM (transa, mb, n, unitd, dv, alpha, descra, val, indx, bindx,
 rpntr, cpntr, bnptrb, bpntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE DVBRSM
INTEGER*8 transa, mb, n, unitd, blda, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), bindx(*), rpntr(*), cpntr(*),
 bnptrb(*), bpntre(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DVBRSM (transa, mb, n, unitd, dv, alpha, descra, val, indx, bindx,
 rpntr, cpntr, bnptrb, bpntre, b, ldb, beta, c, ldc, work, lwork)

SUBROUTINE CVBRSM
INTEGER*8 transa, mb, n, unitd, blda, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), bindx(*), rpntr(*), cpntr(*),
 bnptrb(*), bpntre(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CVBRSM (transa, mb, n, unitd, dv, alpha, descra, val, indx, bindx,
 rpntr, cpntr, bnptrb, bpntre, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE ZVBRSM
INTEGER*8 transa, mb, n, unitd, blda, ldb, ldc, lwork
INTEGER*8 descra(*), indx(*), bindx(*), rpntr(*), cpntr(*),
 bpntrb(*), bpntre(*)
COMPLEX*16 alpha, beta
COMPLEX*16 val(*), b(ldb,*), c(ldc,*), work(*)
CALL ZVBRSM (transa, mb, n, unitd, dv, alpha, descra, val, indx, bindx,
 rpntr, cpntr, bpntrb, bpntre, b, ldb, beta, c, ldc, work, lwork)

Input

transa Indicates how to operate with the sparse matrix.
0: Operate with matrix
1: Operate with transpose matrix
2: Operate with conjugate-transpose matrix

mb Number of block rows in matrix A.

n Number of columns in matrix C.

unitd Type of scaling.
1. Identity matrix (argument dv() is ignored)
2. Scale on left (row scaling)
3. Scale on right (column scaling)

dv() Diagonal scaling array of length lb*lb*mb.

alpha Scalar parameter.

descra() Descriptor argument. Five element integer array.

descra(1) Matrix structure.
0: General
1: Symmetric
2: Hermitian
3: Triangular
4: Skew (Anti)-Symmetric
5: Diagonal

descra(2) Upper/Lower triangular indicator.
1: Lower
2: Upper
SVBRSM/DVBRSM/CVBRSM/ZVBRSM

Variable block row format triangular solve

\[\text{descra(3)} \]
Main diagonal type.
0: Non-unit
1: Unit

\[\text{descra(4)} \]
Array base.
0: C/C++ compatible Not Supported
1: Fortran compatible

\[\text{descra(5)} \]
Repeated indices.
0: Unknown
1: No repeated indices

\[\text{val()} \]
Scalar array of length \(nnz \) containing matrix entries.

\[\text{indx()} \]
Integer array of length \(bnnz+1 \) such that the \(i \)-th element of \(\text{indx()} \) points to the location in \(\text{val} \) of the \((1, 1)\) element of the \(i \)-th block entry.

\[\text{bindx()} \]
Integer array of length \(bnnz \) consisting of the block column indices of the block entries of \(A \).

\[\text{rpntr()} \]
Integer array of length \(mb+1 \) such that \(\text{rpntr}(i)-\text{rpntr}(1) \) is the row index of the first point row in the \(i \)-th block row. \(\text{rpntr}(mb+1) \) is set to \(m+\text{rpntr}(1) \). Thus, the number of point rows in the \(i \)-th block row is \(\text{rpntr}(i+1)-\text{rpntr}(i) \).

\[\text{cpntr()} \]
Integer array of length \(kb+1 \) such that \(\text{cpntr}(j)-\text{cpntr}(1) \) is the column index of the first point column in the \(j \)-th block column. \(\text{cpntr}(kb+1) \) is set to \(k+\text{cpntr}(1) \). Thus the number of point columns in the \(j \)-th block column is \(\text{cpntr}(j+1)-\text{cpntr}(j) \).

\[\text{bptnrb()} \]
Integer array of length \(mb \) such that \(\text{bptnrb}(i)-\text{bptnrb}(1) \) points to location in \(\text{bindx} \) of the first block entry of the \(j \)-th block row of \(A \).

\[\text{bptnre()} \]
Integer array of length \(mb \) such that \(\text{bptnre}(i)-\text{bptnre}(1) \) points to location in \(\text{bindx} \) of the last block entry of the \(j \)-th block row of \(A \).

\[\text{b()} \]
Rectangular array with leading dimension \(ldb \).

\[\text{ldb} \]
Leading dimension of \(b \).
Variable block row format triangular solve

SVBRSM/DVBRSM/CVBRSM/ZVBRSM

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta</td>
<td>Scalar parameter.</td>
</tr>
<tr>
<td>c()</td>
<td>Rectangular array with leading dimension ldc.</td>
</tr>
<tr>
<td>ldc</td>
<td>Leading dimension of c.</td>
</tr>
<tr>
<td>work()</td>
<td>Scratch array of length lwork. lwork should be at least (mb \times lb \times \min(lb, n)).</td>
</tr>
<tr>
<td>lwork</td>
<td>Length of work array.</td>
</tr>
</tbody>
</table>
SVBRSM/DVBRSM/CVBRSM/ZVBRSM Variable block row format triangular solve
Index

Symbols
+noppu 14, 639, 701, 732
Itanium processor 15, 640, 703, 733
Itanium processors 15, 640, 703, 733
PA-RISC 14, 640, 702, 733
+pnu 14, 639, 701, 732
Itanium processor 15, 640, 703, 733
Itanium processors 15, 640, 703, 733
PA-RISC 14, 640, 702, 733
1-way Dissection reordering 934

A
accessing
VECLIB 3
accessing VECLIB 3
accuracy of computed eigenvalues
and eigenvectors 1018
apply Givens rotation
general 114
modified 123
sparse 120
arguments
BLAS Standard 36
array
Fortran argument association 34
Fortran storage 34
sort 620
auxiliary subprograms 651–685

B
backward storage 35
band symmetric matrix
compute norm 666
Basic Linear Algebra Subprograms. See
BLAS.
BCSLIB-EXT 1081–1083
accessing 1082
associated documentation 1082
functionality 1082
bibliography xxv
BLAS
calling XERBLA 337
defined 31
extended, defined 205
indexing conventions 35
Level 2 and 3 defined 205
sparse 31, 421
BLAS legacy routines 211
BLAS Standard 3, 31, 36, 152, 209, 339, 437
error handling 605
operate with complex conjugate 26
operator arguments 25
routines, alphabetical list 152–189,
339–361
See _ for alphabetical list of routines

C
C language
calling LAPACK from 627, 1085
calling MLIB routines from 1087
calling VECLIB from 1085
header files 1089
C1DFFT 541
C2DFFT 547
C3DFFT 551
CAXPY 65
CAXPYC 65
CAXPYI 68
CBCOMM 441
CBDIMM 445
CBIHSM 449
CBEIHM 453
CBEIHM 457
CBSCHM 461
CBSCHM 465
CBSRMM 469
CBSRSM 473
CCOOMM 477
CCOPY 80
CCOPYC 80
CCSCMM 481
CCSCSM 485
CCSRRM 489, 497
CCSRRM 493
CDIASM 501
CDOTC 84
CDOTCI 88
CDOTU 84
CDOTUI 88
CELLMM 505, 513
CELLSM 509, 517
CPFETS 556
CGEMV 212
CGECPY 219
CGEMM 222
CGEMMS 227
CGEMV 232
CGERC 237
CGERU 237
CGEYRA 241
CGTHR 94
CGTHRE 96
CHMM 244
check accuracy of eigenvalue
and eigenvector results 1018
CHEMM 265
CHEMV 270
CHER 275
CHER2 279
CHER2K 284
CHERK 289
CHMFV 249
CHPR 254
CHPR2 259
CLANGB 657
CLANGE 661
CLANGT 663
CLANHB 666
CLANHE 680
CLANHP 671
CLANHT 676
CLANSB 666
CLANSP 671
clear vector 150
clip vector
left-sided 74
right-sided 77
two-sided 71
CLSTEQ 99
CLSTNE 99
combine AXPY and DOT 164
compiling
linking LAPACK 629
linking libisamstub.a 8, 633, 695, 726
linking libveclib 3
linking ScalAPACK 691
linking SuperLU 721
linking VECLIB 5
VECLIB 3
compute
dot product 84, 88
Euclidean norm 107
Euclidean norm squared 110
magnitude sum 62
magnitudes
maximum 56
minimum 59
maximum magnitudes 56
minimum magnitudes 59
sum, magnitudes 62
weighted dot product 145
condition number
estimate
sparse symmetric matrix 891
CZERO 150

D

D1DFFT 544
D2DFFT 549
D3DFFT 553
DAMAX 56
DAMIN 59
DASUM 62
data types 23
DAXPY 65
DAXPYI 68
DBCOMM 441
DBDIMM 445
DBDISM 449
DBELMM 453
DBELSM 457
DBSCMM 461
DBSCSM 465
DBSRMM 469
DBSRSM 473
DCLIP 71
DCLIPL 74
DCLIPR 77
DCONV 594, 599
DCOMM 477
DCOPY 80
DCSCMM 481
DCSCSM 485
DCSRMM 489, 497
DCSRSM 493
DDIASM 501
DDOT 84
DDOTI 88
deallocate working storage 894, 1020
DELLMM 505, 513
DELLSM 509, 517
determine extent of parallelism 607, 608
DFPTS 560
DFRAC 92
DFT 540
DGEMV 212
DGECPY 219
DGEEA 1098
DGEMM 222
DGEMV 232
DGER 237
dgels 1100
getrf 241
gthr 94
gthrz 96
diag 36, 209
defined 25
discrete Fourier transform (DFT) 540
DLAMCH 655
DLANGB 657
E

eigenextraction
- general 1030, 1036
- return eigenvalue results 1061

eigenvalues
- check accuracy of results 1018
- return results 1059, 1061
- sparse
 - initialize 1054
 - subprograms 1003-1079
 - symmetric matrix 1030, 1036

eigenvectors
- check accuracy of results 1018
- return results 1059
- sparse
 - initialize 1054
 - subprograms 1003-1079
 - symmetric matrix 1030, 1036

elementary operation, vector
- 65, 68

elementary reflector
- See Householder matrix

elements
- count selected vector 46
- find selected vector 99
- index
 - maximum of vector 49
 - minimum of vector 51
- list selected vector 99
- maximum of vector, index 49
- minimum of vector, index 51
- return diagonal of matrix 941
- search vector for 53
- sum 139

end of matrix structure input
- 916, 1049

environment variables
- MLIB_NUMBER_OF_THREADS 18, 643
- MLIB_SETNUMTHREADS 19, 644
- MP_NUMBER_OF_THREADS 19, 644

environmental inquiry
- CMACH argument 172, 354
- F_SFPINFO 172, 354
- return values 173

error handler
- basic matrix operations 337
- BLAS Standard routines 605
- F_BLASERROR 605
- sparse systems 883
- XERBLA 337
- XERVEC 623

error handling
- 649, 684
- high-level subprograms 28-29
- low-level subprograms 28
- error reporting 28

estimate condition number
- sparse symmetric matrix 891
- Euclidean norm
compute 107
squared 110
extended BLAS 205
extract fractional parts 92
factorization numeric and condition number estimate 891 no condition number estimate 896 symbolic 937, 1057 fast Fourier transforms See FFT complex array one-dimensional 556 simultaneous 556 general one-dimensional 541 three-dimensional 551 two-dimensional 547 real array one-dimensional complex array 556 general 541 real array real-to-complex 564, 567, 582, 587 separate real arrays 544, 560 simultaneous 556, 560, 582, 587 real array one-dimensional 567 real-to-complex 567 real-to-complex one-dimensional 564, 567, 582, 587 real array 567 simultaneous 582, 587 three-dimensional 576, 579 two-dimensional 570, 573 separate real arrays one-dimensional 544, 560 simultaneous 560 three-dimensional 553 two-dimensional 549 simultaneous complex array 556
one-dimensional 556, 560, 582, 587
real-to-complex 582, 587
separate real arrays 560

two-dimensional
general 547
real-to-complex 570, 573
separate real arrays 549

find
first vector element 53
selected vector element 99

floating point
machine specific characteristics 172, 354
parameters for F_FPINFO 173

Fortran
array argument association 34
storage of arrays 34
forward storage 35
fractional parts, extract 92
full Hermitian matrix
compute norm 680
full symmetric matrix
compute norm 680

gather and zero sparse vector 96
gather sparse vector 94
generate
linear ramp 112
random numbers 610, 612, 615, 617
GETNUMTHREADS 607
given rotation
apply 114, 174
apply sparse 120
construct 118
modified
apply 123
construct 127

Hermitian matrix
band
compute norm 666
compute norm 680
matrix-matrix multiply with m-by-n
matrix 265
matrix-vector multiply 244
matrix-vector multiply with n-vector 270
packed
compute norm 671
packed matrix-vector multiply 249
tridiagonal
compute norm 676
Householder matrix 38
Householder transform 175

I
IAMAX 56
IAMIN 59
IASUM 62
ICAMAX 40
ICAMIN 43
ICCTESEQ 46
ICCTNEQ 46
ICLIP 71
ICLIPR 74
ICLPL 74
ICDCTEQ 46
ICDCTGE 46
ICDCTGT 46
ICDCTL 46
ICDCTLT 46
IDCTN 46
IDMAX 49
IDMIN 51
IDSVQ 53
IDSVGE 53
IDSVGT 53
IDSVLE 53
IDSVLT 53
IDSVNE 53
ier error output 28, 883
IGTHR 94
IGTHRE 96
IIAMAX 40
IIAMIN 43
IICTESEQ 46
IICTGE 46
IICTGT 46
IICTL 46
IICTLT 46
IICTNE 46

IICTN 46

IICTLE 46

IICTL 46

IICTNE 46

IIMAX 49

IIMIN 51

IIISVQ 53

IIISVGE 53

IIISVGT 53

IIISVLE 53

IIISVLT 53

IIISVNE 53
ill-conditioned problems
See roundoff effects
ILSTEQ 99
ILSTGE 99
ILSTGT 99
ILSTLE 99
ILSTLT 99
ILSTNE 99
IMAX 103
IMIN 105
index
element of vector
maximum 49
minimum 51
magnitudes
maximum 40
minimum 43
maximum
element of vector 49
magnitudes 40
minimum
element of vector 51
magnitudes 43
Indexed Sequential Access Method
See ISAM
initialize
sparse eigenvalues/eigenvectors 1054
sparse linear equations 921
vector to zero 150
initMLIB 1094
inner rotation 26
input
matrix structure
by column 911, 1045
by finite element 914, 1047
by matrix 917, 1050
by single entry 909, 1043
end 916, 1049
matrix value
by column 950, 1068
by finite element 954, 1073
by matrix 957, 1076
by single entry 947, 1066
to main diagonal 1071
input arguments 25
inquiry, environmental
See _F_SFPINFO 172, 354
installation directory
VECLIB 3
interchange permutations 37
interchange vectors 141, 200
interlanguage programming 1085
IRAMP 112
ISAM 8, 633, 695, 726
ISAMAX 40
ISAMIN 43
ISCTEQ 46
ISCTGE 46
ISCTGT 46
ISCTLE 46
ISCTLT 46
ISCTNE 46
ISCTR 136
ISMAX 49
ISMIN 51
ISORT 620
ISSVEQ 53
ISSVGGE 53
ISSVGT 53
ISSVLE 53
ISSVLT 53
ISSVNE 53
ISUM 139
ISWAP 141
IZAMAX 40
IZAMIN 43
IZCTEQ 46
IZCTNE 46
IZERO 150
IZSVNE 53
IZSVEQ 53
Jacobi rotation
apply 178
jrot 36, 178, 209
defined 25
L
LAPACK xviii, 627, 644
left hand side 26
left-sided vector clip 74
libisamstub.a 8, 633, 695, 726
linear equations
sparse
initialize 921
solve 944
specify 929
subprograms 875-962
linear ramp, generate 112
link time, controlling non parallel
processing 643
link time, controlling parallel
processing 18, 643
linking
archive VECLIB library and ISAM 8, 633, 695, 726
LAPACK 629
ScalAPACK 691
VECLIB 3, 5, 721
LINPACK
DGEFA 1097
DGESL 1097
subprograms in VECLIB 1098
list selected vector elements 99
long period random number generator
scalar 615
vector 617
LSAME 606
LU factorization 1098

M
machine independence 655
machine specific characteristics
See F_SFPINFO
machine-dependent parameters, return 655
magnitudes
compute
maximum 56
minimum 59
index
magnitudes 40
maximum 40
minimum 43
maximum
compute 56
index 40
minimum
compute 59
index 43
sum 62
man pages 30, 650
matrix
band
compute norm 657
band symmetric
compute norm 666
compute norm
general band 657
general full 661
general tridiagonal 663
Hermitian band 666
packed symmetric 671
symmetric band 666
symmetric full 680
tridiagonal symmetric 676
full symmetric, compute norm 680
general band
compute norm 657
general full
compute norm 661
general tridiagonal
compute norm 663
Hermitian band, compute norm 666
matrix-matrix copy
general 358
matrix-matrix copy general 219
matrix-matrix multiply
block coordinate matrix-matrix multiply 441
block diagonal matrix-matrix multiply 445
block Ellpack matrix-matrix multiply 453
block sparse column matrix-matrix multiply 461
block sparse row matrix-matrix multiply 469
compressed sparse column matrix-matrix multiply 481
compressed sparse row matrix-matrix multiply 489, 497
coordinate matrix-matrix multiply 477
Ellpack matrix-matrix multiply 505, 513
general 222, 362
Hermitian matrix and m-by-n matrix 265
SKyline matrix-matrix multiply 521
Strassen method 227
triangular 318
variable block row matrix-matrix multiply 529
matrix-vector multiply
band matrix 212, 355
band matrix and n-vector 294
general 232
Hermitian band matrix 340
Hermitian band matrix and n-vector 244
Hermitian matrix 342
Hermitian matrix and n-vector 270
Hermitian packed matrix 348
Hermitian packed matrix and n-vector 249
multiple 372
multiple triangular 411
packed triangular matrix and n-vector 308
rank-2 update 368
symmetric band matrix 378
symmetric matrix 389
symmetric packed matrix 381
triangular band matrix 397
triangular matrix 408
triangular matrix and n-vector 323
triangular packed matrix 403
nonsymmetric
sample program 888
operations 205–338
operations, BLAS Standard 339–361
packed symmetric
compute norm 671
return diagonal elements 941
structure input
by column 911, 1045
by finite element 914, 1047
by matrix 917, 1050
by single entry 909, 1043
end 916, 1049
symmetric
 sample program 887
symmetric band
 compute orm 666
symmetric full
 compute norm 680
symmetric packed
 compute norm 671
symmetric tridiagonal, compute norm 676
transposition 360
tridiagonal
 compute norm 676
tridiagonal general
 compute norm 663
value input
 by column 950, 1068
 by finite element 954, 1073
 by matrix 957, 1076
 by single entry 947, 1066
to main diagonal 1071
maximum
 absolute vector 153
 compute magnitudes 56
 element of vector, index 49
 index
 element of vector 49
 magnitudes 40
 magnitudes
 compute 56
 index 40
 vector 103, 181
measure
 CPU time 604
 wall-clock time 622
METIS xx
 mlib_METIS_EdgeND 990
 mlib_METIS_EstimateMemory 1001
 mlib_METIS_mCPartGraphKway 976
 mlib_METIS_mCPartGraphRecursive 973
 mlib_METIS_MeshToDual 999
 mlib_METIS_MeshToNodal 997
 mlib_METIS_NodeND 992
 mlib_METIS_NodeNWD 995
 mlib_METIS_PartGraphKway 969
 mlib_METIS_PartGraphRecursive 967
 mlib_METIS_PartGraphVKway 971
 mlib_METIS_PartMeshDual 988
 mlib_METIS_PartMeshNodal 986
 mlib_METIS_WPartGraphKway 981
 mlib_METIS_WPartGraphRecursive 979
 mlib_METIS_WPartGraphVKway 984
MLIB_NUMBER_OF_THREADS 18, 643
MLIB_SETNUMTHREADS 19, 644
multiple
 Minimum Degree reordering 934
multiply
 matrix-matrix
 general 222, 362
 Hermitian matrix and m-by-n matrix 265
 Strassen method 227
 triangular 318
 matrix-vector
 band matrix 212, 355
 band matrix and n-vector 294
 general 232
 Hermitian band matrix 340
 Hermitian band matrix and n-vector 244
 Hermitian matrix 342
 Hermitian matrix and n-vector 270
 Hermitian packed matrix 348
 Hermitian packed matrix and n-vector 249
 multiple 372
 multiple triangular 411
 packed triangular matrix and n-vector 308
 rank-2 update 368
 symmetric band matrix 378
compute magnitudes 59
 element of vector, index 51
 index
 element of vector 51
 magnitudes 43
 magnitudes
 compute 59
 index 43
 vector 105, 183
MLIB_GETNUMTHREADS 607, 608
See Also MLIB_SETNUMTHREADS
mlib_METIS_EdgeNC 990
mlib_METIS_EstimateMemory 1001
mlib_METIS_mCPartGraphKway 976
mlib_METIS_mCPartGraphRecursive 973
mlib_METIS_MeshToDual 999
mlib_METIS_MeshToNodal 997
mlib_METIS_NodeND 992
mlib_METIS_NodeNWD 995
mlib_METIS_PartGraphKway 969
mlib_METIS_PartGraphRecursive 967
mlib_METIS_PartGraphVKway 971
mlib_METIS_PartMeshDual 988
mlib_METIS_PartMeshNodal 986
mlib_METIS_WPartGraphKway 981
mlib_METIS_WPartGraphRecursive 979
mlib_METIS_WPartGraphVKway 984
MLIB_SETNUMTHREADS 19, 644
Multiple Minimum Degree reordering 934
multiply
 matrix-matrix
 general 222, 362
 Hermitian matrix and m-by-n matrix 265
 Strassen method 227
 triangular 318
 matrix-vector
 band matrix 212, 355
 band matrix and n-vector 294
 general 232
 Hermitian band matrix 340
 Hermitian band matrix and n-vector 244
 Hermitian matrix 342
 Hermitian matrix and n-vector 270
 Hermitian packed matrix 348
 Hermitian packed matrix and n-vector 249
 multiple 372
 multiple triangular 411
 packed triangular matrix and n-vector 308
 rank-2 update 368
 symmetric band matrix 378
symmetric matrix 389
symmetric packed matrix 381
triangular band matrix 397
triangular matrix 408
triangular matrix and n-vector 323
triangular packed matrix 403

N
naming conventions
 Extended BLAS 207–209
 Sparse BLAS 423–424
 VECLIB subroutines 24–25
natural reordering 934
non parallel processing
 controlling at link time 643
nonsymmetric matrix
 sample program 888
norm 36, 185, 209
defined 25
general band matrix 657
general full matrix 661
general tridiagonal matrix 663
Hermitian band matrix 666
Hermitian full matrix 680
Hermitian packed matrix 671
Hermitian tridiagonal matrix 676
symmetric band matrix 666
symmetric full matrix 680
symmetric packed matrix 671
symmetric tridiagonal matrix 676
numeric factorization 891, 896

O
one-call usage
 sparse eigenvalue package 1021
 sparse linear equation solution
 package 903, 923
online documentation 30, 650
operator arguments 25–26, 36, 209, 437
optimization 17
outer rotation 26
output control 931, 1056

P
packed Hermitian matrix
 compute norm 671
packed symmetric matrix
 compute norm 671
parallel processing 18, 644
 controlling at link time 18, 643
 controlling at runtime 18, 643
description 643
determine extent of 607, 608
 using compiler directives 20, 645
 parallelized subprograms 5, 630, 723, 1103
parameters
 machine-dependent 655
 pdgsrfs 766
 pdgsrfs_ABXglobal 769
 pdgssvx_ABglobal 772
 pdgstrf 785, 787
 pdgstrs_Bglobal 789
permuted matrix 37
permute vector 187
plane rotation 158
precision 23
print statistics 940, 1058
problem state
 restore from savefile 1064
 save to savefile 1065
pthread library 22, 647
pzgsrfs 766
pzgsrfs_ABXglobal 769
pzgssvx 772
pzgssvx_ABglobal 772
pzgstrf 785, 787
pzgstrs_Bglobal 789

R
ramp, generate linear 112
RAN 610
random-number generator 610, 612, 615, 617
rank-1 update 237, 254, 275, 344, 350, 375, 384, 392
rank-2 update 259, 279, 346, 352, 368, 386, 394
rank-2k update 284
rank-k update 289
RANV 612
reciprocal scale 190
reordering
 1-way Dissection 934
 Constrained Minimum Degree 934
 matrix 937, 1057
 METIS 934
 Multiple Minimum Degree 934
 natural 934
 Reverse Curhill McKee 934
 select scheme 933
restore problem state from savefile 1064
return
diagonal elements of matrix in its
 current form 941
eigenvalue results 1059, 1061
eigenvector results 1059
Reverse Curhill McKee reordering 934
right hand side 26
right-sided vector clip 77
rotation
apply plane 158
Givens 174
Jacobi 178
roundoff effects 23, 648
runtime, controlling parallel processing 18, 643

S
S1DFFT 544
S2DFFT 549
S3DFFT 553
SAMAX 56
SAMIN 59
SASUM 62
save problem state to savefile 1065
SAXPY 65
SAXPYI 68
SCCOMM 441
SBDIMM 445
SBDISM 449
SBEILMM 453
SBEILSM 457
SBSCMM 461
SBSCSM 465
SBSRMM 469
SBSRSM 473
ScalAPACK xviii, 689–716
arguments 709
array 714
INFO 716
option 709
scalar 714
associated documentation 690
functionality 705
linear equations 706
linear least squares 707
naming conventions 704
singular value problems 708
symmetric eigenproblems 707
work arrays 715
scalar long period random-number generator 615
scale vector
reciprocal 130, 190
regular 133
SCAMAX 56
SCAMIN 59
SCASUM 62
scatter sparse vector 136
SCLIP 71
SCLPL 74
SCLPR 77
SCNRM2 107
SNRNSQ 110
SCONV 594, 599
SCOCH 477
SCOPY 80
SCSCHM 481
SCSCHSM 485
SCSRMM 489, 497
SCSRSM 493
SDIASM 501
SDOT 84
SDOTI 88
search vector for element 53, 99
select reordering scheme 933
SELLMM 505, 513
SELLSM 509, 517
sequential processing 643
SFFTS 560
SFRAc 92
SGHVM 212
SGECPY 219
SGEMM 222
SGEMV 232
SGER 237
SGETRA 241
SGTHR 94
SGTHRZ 96
shared-memory parallelism 607
side 36, 209
defined 25
singularity treatment, specify 900
SLAMCH 655
SLANGB 657
SLANGE 661
SLANGT 663
SLANSB 666
SLANSP 671
SLANST 676
SLANSY 680
SLSTEQ 99
SLSTGE 99
SLSTGT 99
SLSTLE 99
SLSTLT 99
SLSTNE 99
SMAX 103
SMIN 105
SNRM2 107
SNRNSQ 110
solve
sparse linear equations 944
triangular band system 301, 400
triangular packed 406
triangular system 313, 327, 332, 414, 417
SOLVERS xix
sort 36, 209
defined 25
sort array 620
sort order 26
sort vector 192, 193
sorted rotation 26
sparse 120
 BLAS 31, 421
dot product 88
eigenextraction 1030, 1036
eigenvalues
 initialize 1054
 one-call usage 1021
 subprograms 1003–1079
eigenvectors
 initialize 1054
 subprograms 1003–1079
Givens rotation, apply 120
linear equations
 initialize 921
 solve 944
 specify 929
 subprograms 875–962
vector
 elementary operation 68
gather 94
gather and zero 96
scatter 136
zero and gather 96
specify
 coefficient matrix
 sparse linear equations 929
 singularility treatment 900
SRAMP 112
SRAN 615
SRANV 617
SRC1PT 567
SRC2PT 573
SRC3PT 579
SRCFT5 587
SROT 114
SRODG 118
SROT 120
SROM 123
SRTOM 127
SRSCL 130
SSBMV 244
SSCAL 133
SSCAL 133
SSCTR 136
SSKYMM 521
SSKYSM 525
SSORT 620
SSPMV 249
SSPR 254
SSPRK 259
SSUM 139
SSWAP 141
SSYMM 265
SSYMV 270
SSYR 275
SSYRK 279
SSYR2K 284
SSYR2K 289
Standard BLAS 3, 15, 36, 152, 209, 339
 error handling 605
 operator arguments 25
 routines, alphabetical list 152–189,
 339–361
 standardization 3
 statistics
 print 940, 1058
 STBMV 294
 STBSV 301
 storage
 backward 35
 conventions, BLAS 33
 forward 35
 storage, working 648
 STPMM 308
 STPSV 313
 Strassen matrix-matrix multiply 227
 STRMM 318
 STRMV 323
 STRSM 327
 STRSV 332
 subprograms
 auxiliary 651–685
 success/error code ier 883
 success/error code, ier 28
 sum
 magnitudes 62
 vector 139, 195
 sum of squares 197
 SuperLU xix, 719–790
 associated documentation 720
 computational routines 737
 data structures 739
 driver routines 736
 routines 765
 SuperLU_DIST
 calling routines 738
 header files 739
 MPI issue 749
 sample program 755
 SVBRMM 529
 SVBRSR 533
 swap rows in vector 37
 swap two vectors 141, 200
 SWDOT 145
 symbolic factorization 937, 1057
 symmetric band matrix
 compute norm 666
 symmetric full matrix
 compute norm 680
 symmetric matrix
 sample program 887
 symmetric packed matrix
 compute norm 671
symmetric tridiagonal matrix
compute norm 676
SZERO 150

T
thread definition 643
time
CPU time 604
wall-clock time 622
trans 36, 209
defined 25
transform
Householder 175
transposition 360
triangular
band system solve 301, 400
multiply
matrix-matrix 318
matrix-vector 308
matrix-vector and n-vector 323
packed solve 406
system solve 313, 327, 332, 414, 417
triangular factorization 1098, 1100
triangular solve
block diagonal format triangular
solve 449, 457
block sparse column format triangular
solve 465
block sparse row format triangular
solve 473
compressed sparse column format
triangular solve 485
compressed sparse row format triangular
solve 493
diagonal format triangular solve 501
Ellpack format triangular solve 509, 517
Skyline format triangular solve 525
variable block row format triangular
solve 533
tridiagonal matrix
Hermitian
compute norm 676
symmetric
compute norm 676
two-sided vector clip 71

U
update
rank-1 237, 254, 344, 350, 375, 384, 392
rank-1, Hermitian 344, 350
rank-1, symmetric 392
rank-1, symmetric packed 384
rank-2 259, 279, 346, 352, 368, 386, 394
rank-2, Hermitian 346, 352
rank-2, symmetric 386, 394
rank-2k 284
rank-k 289
updates
rank-1 275
uplo 36, 209
defined 25
using LAPACK 644

V
vcos 797
vccos, sin 798
vdAcos 810
vdacos 841
vdAcosh 811
vdacosh 842
vdasin 843
vdasinh 844
vdAtan 814
vdAtanh 816
vdatan 845
vdatanh 847
vdCbrt 817
vdcbrt 848
vdCos 818
vdCosh 819
vdCosh 850
vdDiv 820
vddiv 851
vdErf 821
vderf 852
vdErf 822
vderfc 853
vdExp 823
vDEXp 854
vdInv 824
vdinv 856
vdInvCbrt 825
vdinvcbrt 857
vdInvSqrt 826
vdinvsqrt 858
vdLn 827
vdln 859
vdLog10 828
vdlog10 860
vdPackI 829
vdPackM 829
vdpackm 861
vdPackV 829
vdpackv 861
vdPow 831
vdpow 863
vdPowx 832
vdPowx 864
vdSin 831
gather 94
vdSIn 812
gather and zero 96
vdSinCos 834
scatter 136
vdSincos 866
zero and gather 96
vdSinh 835
sum 139, 195
vdSinh 813, 867
swap two 141, 200
vdSqrt 836
zero 150
vdSqrt 868
vexp 799
vdTan 837
vlog 800
vdTan 869
VMATH xx, 793
vdTanh 838
compiling and linking 795
vdTanh 870
include files 795
vdUnpackI 839
vmlClearErrStatus 801
vdUnpacki 871
vmlClearerrstatus 805, 807
vdUnpackM 839
vmlGetErrStatus 801
vdUnpackm 871
vmlGeterrstatus 805, 807
vdUnpackV 839
vmlGetMode 803
vdUnpackv 871
vmlSetErrStatus 801
VECLIB 1
vmlSetMode 803
error handling 684
VECLIB, accessing 3
VECLIB8 1
libraries 3
vector
compiling and linking 795
clear 150
copied 80, 167
clip
left-sided 74
elements 3
right-sided 77
vector
list selected elements 99
two-sided 71
long period random-number generator 617
vmlClearErrStatus 801
elementary operation 65
elements, count selected 46
elementary operation 68
index of maximum element 49, 51
list selected elements 99
list selected elements 99
long period random-number generator 617
vmlClearErrStatus 801
elementary operation 65
elements, count selected 46
elementary operation 68
index of maximum element 49, 51
list selected elements 99
long period random-number generator 617
vmlClearErrStatus 801
elementary operation 65
elements, count selected 46
elementary operation 68
index of maximum element 49, 51
list selected elements 99
long period random-number generator 617
vmlClearErrStatus 801
elementary operation 65
elements, count selected 46
elementary operation 68
index of maximum element 49, 51
list selected elements 99
long period random-number generator 617
vmlClearErrStatus 801
elementary operation 65
elements, count selected 46
elementary operation 68
index of maximum element 49, 51
list selected elements 99
long period random-number generator 617
vmlClearErrStatus 801
elementary operation 65
elements, count selected 46
elementary operation 68
index of maximum element 49, 51
list selected elements 99
long period random-number generator 617
vmlClearErrStatus 801
elementary operation 65
elements, count selected 46
elementary operation 68
index of maximum element 49, 51
list selected elements 99
long period random-number generator 617
vmlClearErrStatus 801
elementary operation 65
elements, count selected 46
elementary operation 68
index of maximum element 49, 51
list selected elements 99
long period random-number generator 617
vmlClearErrStatus 801
elementary operation 65
elements, count selected 46
elementary operation 68
index of maximum element 49, 51
list selected elements 99
long period random-number generator 617
vmlClearErrStatus 801
elementary operation 65
elements, count selected 46
elementary operation 68
index of maximum element 49, 51
list selected elements 99
long period random-number generator 617
vmlClearErrStatus 801
elementary operation 65
elements, count selected 46
elementary operation 68
index of maximum element 49, 51
list selected elements 99
long period random-number generator 617
vmlClearErrStatus 801
elementary operation 65
elements, count selected 46
elementary operation 68
index of maximum element 49, 51
list selected elements 99
long period random-number generator 617
vmlClearErrStatus 801
elementary operation 65
elements, count selected 46
elementary operation 68
index of maximum element 49, 51
list selected elements 99
long period random-number generator 617
vmlClearErrStatus 801
elementary operation 65
elements, count selected 46
elementary operation 68
index of maximum element 49, 51
list selected elements 99
long period random-number generator 617
vmlClearErrStatus 801
elementary operation 65
elements, count selected 46
elementary operation 68
index of maximum element 49, 51
list selected elements 99
long period random-number generator 617
vmlClearErrStatus 801
matrix-vector multiply
copy 80, 167
band matrix 212
vmlClearErrStatus 805, 807
band matrix and n-vector 294
general 232
Hermitian matrix and n-vector 244, 270
Hermitian packed matrix and
n-vector 249
packed triangular matrix and
n-vector 308
triangular matrix and n-vector 323
maximum 103
minimum 105
norm 185
operations 31–151
permute 187
scale
reciprocal 130
regular 133
search for element 53, 99
sort 192, 193
sparse
elementary operation 68
vmlClearErrStatus 805, 807
vmlGetErrStatus 801
vmlGetMode 803
vmlSetErrStatus 801
vmlSetMode 803
vlSinh 835
vexp 799
vlSqrt 836
vlog 800
vlTan 837
VMATH xx, 793
vlTanh 838
compiling and linking 795
vlTanh 870
include files 795
vlUnpackI 839
vmlClearErrStatus 801
vlUnpacki 871
vmlClearerrstatus 805, 807
vlUnpackM 839
vmlGetErrStatus 801
vlUnpackm 871
vmlGeterrstatus 805, 807
vlUnpackV 839
vmlGetMode 803
vlUnpackv 871
vmlSetErrStatus 801
vrecip 809
vsAcos 810
vsacos 841
vsAcosh 811
vsacos 842
vsAsin 812
vsAsin 843
vsAsinh 813
vsAsinh 844
vsAtan 814
vsAtanh 847
vsAtan2 815
vsAtan2 846
vsAtan 816
vsAtanh 847
vsCbrt 817
vscbrt 848
vsCos 818
vsCos 849
vsCosh 819
vscosh 850
vsDiv 820
vstdiv 851
vsErf 821
vsErfc 822
vsErfc 853
vsExp 823
vsexp 854
vsin 855
vsInv 824
vsinV 856
vsInvChrt 825
vsinvchrt 857
vsInvSqrt 826
vsinvsqrt 858
vsln 827
vsln 859
vsLog10 828
vslog10 860
vsPackI 829
vspacki 861
vsPackM 829
vspackm, vdpacki 861
vsPackV 829
vspackv 861
vsPow 831
vspow 863
vsPowx 832
vspowx 864
vsqrt 865
vsSin 833
vsSinCos 834
vsSincos 866
vsSinh 835
vsSinh 867
vsSqrt 836
vsSqrt 868
vsTan 837
vstan 869
vsTanb 838
vstanb 870
vsUnpackI 839
vsunpacki 871
vsUnpackM 839
vsunpackm 871
vsUnpackV 839
vsunpackv 871

W

wall-clock time 622
WALLTIME 622
weighted dot product, compute 145
working storage 648
working storage, deallocate 894, 1020

X

XERBLA 337, 649, 684
+noppu 14, 639, 701, 732
+noppu Itanium processor 15, 640, 703, 733
+noppu PA-RISC 14, 640, 702, 733
+ppu 14, 639, 701, 732
+ppu Itanium processor 15, 640, 703, 733
+ppu PA-RISC 14, 640, 702, 733
XERVEC 623

Z

Z1DFFFT 541
Z2DFFFT 547
Z3DFFFT 551
ZAXPY 65
ZAXPYC 65
ZAXPYI 68
ZBCOMM 441
ZBDIMM 445, 453
ZBDISN 449
ZBSCMM 461
ZBSCSM 465
ZBSRMN 469
ZBSRSM 473
ZCOOMM 477
ZCOPY 80
ZCOPYC 80
ZCSCHM 481
ZCSCHM 485
ZCRRMM 489, 497
ZCRRSM 493
ZDIASM 501
ZDOTC 84
ZDOTCI 88
ZDOTU 84
ZDOTUI 88
ZDOT 114
ZDRCOL 130
ZDSCL 133
ZELLMM 505, 513
ZELLSM 509, 517
zero
sparse vector 96
vector 150
ZFFTS 556
ZGEMV 212
ZGEMPY 219
ZGEMMV 222
ZGEMMS 227
ZGEMV 232
ZGERC 237
ZGERU 237
ZGETRA 241
ZGTHR 94
ZGTHRZ 96
ZHBMV 244
ZHEMV 265
ZHEMV 270
ZHER 275
ZHER2 279
ZHER2K 284
ZHERK 289
ZHFMV 249
ZHPMV 254
ZHPR 254
ZHPR2 259
ZLANGB 657
ZLANE 661
ZLANG 663
ZLANHB 666
ZLANHE 680
ZLANHP 671
ZLANHT 676
ZLANSB 666
ZLANSP 671
ZLANSY 680
ZLSTEQ 99
ZLSTNE 99
ZRC1FT 564
ZRC2FT 570
ZRC3FT 576
ZRCFTS 582
ZROT 114
ZROTG 118
ZRSCL 130
ZSCAL 133
ZSCALC 133
ZCT 136
ZSKYMM 521
ZSKYSM 525
ZSUM 139
ZSWAP 141
ZSYMM 265
ZSYRK 284
ZSYRK 289
ZTBMV 294
ZTBSV 301
ZTPMV 308
ZTPSV 313
ZTRMM 318
ZTRMV 323
ZTRSM 327
ZTRSV 332
ZVBRMM 529
ZVBRSM 533
ZWDOTC 145
ZWDOTU 145
ZZERO 150