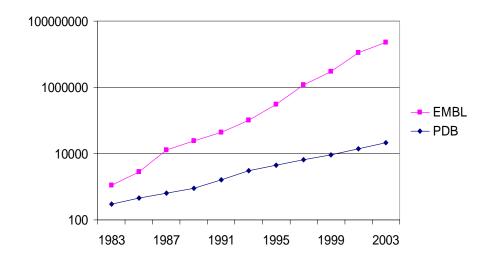
Structural Genomics

Iosif Vaisman


Email: ivaisman@gmu.edu

Protein Folding Problem

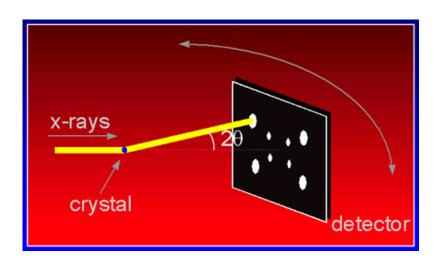
Given: sequence Find: structure

The problem is NP-complete

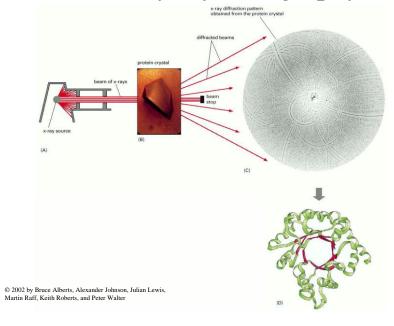
Dynamics of Database Growth

Protein Structure Determination

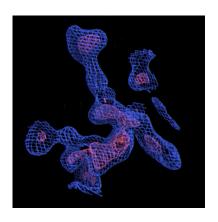
X-ray crystallography

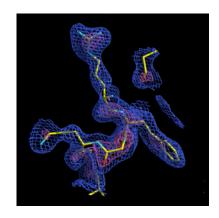

NMR spectroscopy

Neutron diffraction

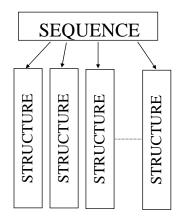

Electron microscopy

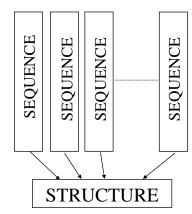
Atomic force microscopy


X-ray crystallography



X-ray crystallography


X-ray crystallography



Electron density map created from multi-wavelength data (Arg)

Threading

Sequence-structure compatibility (fold recognition)

Structure-sequence compatibility (inverse folding)

Sequence-structure correlations

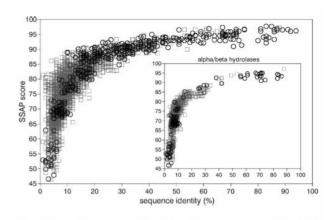
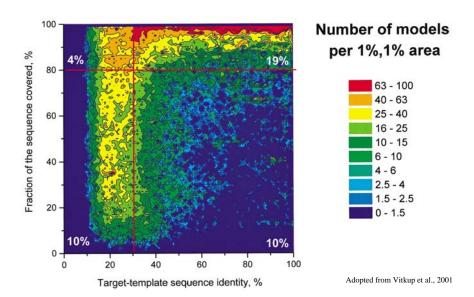



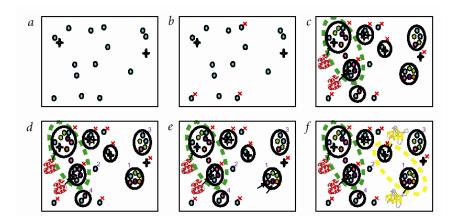
Fig. 1. Correlation between structure similarity (measured by the SSAP structure comparison algorithm, 0–100) and sequence similarity (measured by sequence identity) for all pairs of homologous domain structures in the CATH domain database.

Redfern and Orengo, 2005

Model structure coverage in sequence space

Structural Genomics Project

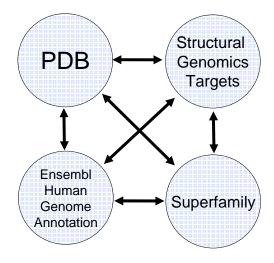
- Organize known protein sequences into families.
- Select family representatives as targets.
- Solve the 3D structure of targets by X-ray crystallography or NMR spectroscopy.
- Build models for other proteins by homology to solved 3D structures.


History of Structural Genomics

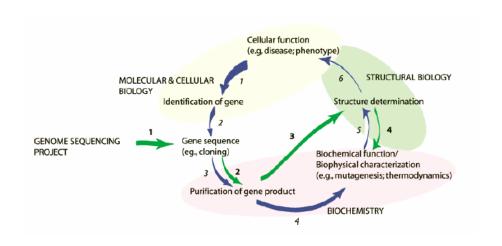
Goals of structural genomics

- •Provision of enough structural templates to facilitate homology modeling of most proteins
- •Structures of all proteins in a complete proteome
- •Structural elucidation of a complete biological pathway
- •Structural elucidation of a complete disease

Phil Bourne, 2005


Target selection

- a) realm of interest
- b) family exclusion impossible
- c) family exclusion known
- d) prioritization
- e) selection
- f) analysis and interpretation


S.Brenner, 2000

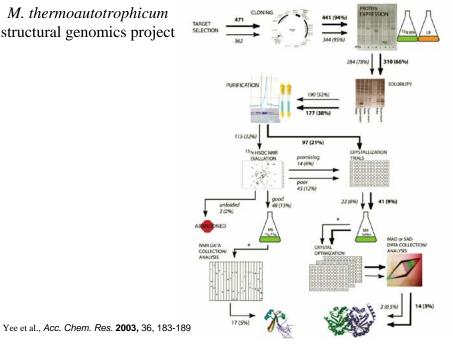
Coverage of the Human Genome By Structure

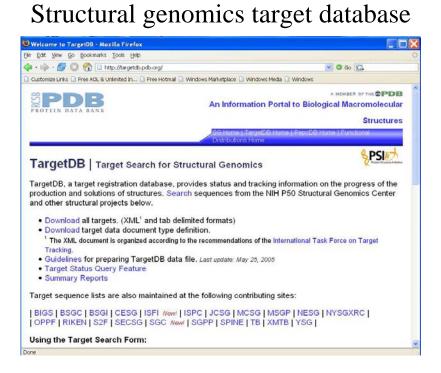
Xie and Bourne, 2005

Structural genomics shortcuts

Yee et al., Acc. Chem. Res. 2003, 36, 183-189

NIGMS Protein Structure Initiative


	12/4/2001	12/4/2002	12/4/2003	12/1/2004
Selected	11214	21872	42726	74637
Cloned	5465	11277	23237	45353
Expressed	2860	6115	13602	25536
Purified	1505	2823	5291	8398
Crystallized	336	1161	1876	3199
Diffraction	96	438	767	1651
Crystal structure	87	314	545	1260
PDB	76	247	569	1488


Targets by genome

Organism	Number of targets	% Of all targets
Caenorhabditis elegans	4674	17.4
Arabidopsis thaliana	3900	14.5
Homo sapiens	3257	12.1
Pyrococcus furiosus	2179	8.1
Thermotoga maritima	1860	6.9
Mycobacterium tuberculosis	1476	5.5
Escherichia coli	1272	4.7
Saccharomyces cerevisiae	1254	4.7
Bacillus subtilis	1220	4.5
$Bacillus\ stear other mophilus$	764	2.8

Adopted from O'Toole et al., 2004

M. thermoautotrophicum structural genomics project

