Lecture 13 Systems Biology Saleet Jafri

What is Systems Biology?

In traditions science a *reductionist approach* is typically used with an individual system or subsystem is dissected and studied in detail

Systems biology integrates information from different sources to understand how larger more complex systems work.

Systems Biology and Integration

- Molecule (Gene and Protein)
- Organelle (cellular subsystem)
- Cell
- Organ
- Organism
- Environment

- The Human Genome Project and modern biotechnology have created the ability to gather large amount of information about an organism.
- Due to the inherent complexity of biological systems, computational methods and models must be used to understand and integrate the data.

Systems Biology Methods

- There are many methods used in systems biology and each has its strengths and weaknesses
- Much of what is called systems biology relates to modeling genetic networks and biochemical reaction networks, however they are not the only methods.

I will present an example from my own research that integrates biochemical, biophysical, and microstructural information to explain the basic mechanisms that initiate contraction in the heart.

Condition	Peak Amplitude	Peak duration	%Spark rate (Sim.)	%Spark rate (Exp.)
Control	128 μM	24 ms	100%	100%
Increased CSQ expression	147 μM	150 ms	28%	27%
Decreased CSQ expression	120 μM	18 ms	190 %	183%
Citrate	156 µM	170 ms	27%	38%

Summary/Conclusions

- Our "sticky cluster" model of a Ca²⁺ release unit can simulate Ca²⁺ sparks that terminate reliably. Termination occurs through coupled gating and the influence of lumenal calcium.
- Reducing coupling between RyRs increases Ca²⁺ spark duration, consistent with experimental effects of FK506.
- Ca²⁺ spark magnitude is only mildly sensitive to the number of RyR's in the cluster and the Ca²⁺ spark duration is even less sensitive to this number.
- Release from adjacent sights might combine to give spark widths of 2 μm as observed experimentally.
- The spontaneous spark rate alteration due to SR buffers is likely due to their effect on refilling of the SR.

