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Lecture 7
Phylogenetic Analysis

Additional Reference

Molecular Evolution: A Phylogenetic Approach
Roderic D. M. Page and Edward C. Holmes
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Uses of Phylogentic Analysis

• Evolutionary trees
• Multiple sequence alignment

Evolutionary Problems

i) The fossil record suggests that modern man diverged from 
apes about 5-6 million years ago.  Modern Homo sapiens 
emerged between 100,000-60,000 years ago

ii) DNA and sequence alignment by Paabo support this.
iii) Work based on mitochondrial DNA by Wilson et al 

suggest the modern man emerged only 200,000 years ago 
with the divergence into different races 50,000 years ago
1. mitochondrial DNA circular
2. maternal inheritance
3. 10x faster mutation rate than nuclear DNA
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From Page and Holmes 
Molecular Evolution: A Phylogenetic Approach

Preliminaries

Taxon (taxa plural) or operation taxon unit is a entity 
whose distance from other entities can be measures 
(ie species, amino acid sequence, language, etc.)

Comparisons are made on measurements or 
assumptions concerning rates of evolutionary 
change. This is complicated by back mutations, 
parallel mutations, and variations in mutation rate.  
We will only consider substitutions.
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i)  For example, the amino acid substitution rate per 
site per year is 5.3 x 10-9 for guinea pig but only 0.33 
x 10-9 for other organisms.

ii)  The evolutionary time is the average time to 
produce one substitution per 100 amino acids

Amino Acid Sequences

λ100
1

=uT

≈=
uT100

1λ

Amino Acid Sequences

Example – There are 2 differences in a sequence of 100 
amino acids when comparing calf and pea histone H4.  
Since plants and animals diverged 1 billion years ago, Tu= 
0.5 billion years

10-11

iii)  probability of substitution – several way to calculate it.  
The best way is using the PAM matrices.

≈=
uT100

1λ
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Nucleotide Sequences
i) Different from amino acid sequences due to redundancy 

in the genetic code (ie several codons can code for a 
particular amino acid.  

ii) Most substitutions in the 3rd position are synonomous
(UC* is the RNA coding for serine – the corresponding 
DNA would be AG*).  Since evolution should depend on 
function and this is conferred by the amino acid 
sequence, it has been suggested that the “molecular 
clock” should be based on the substitution rate in the 
third position of the codon.  In fact, in the 
fibrinopeptides, this is as high as the amino acid 
substitution rate.

Nucleotide Sequences

iii) In the definition of PAM matrices, one assumes a 
discrete Markov Chain, with the PAM matrix 
being the transition matrix for the Markov Chain.
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Markov Chains

Assume that we have a process that has discrete 
observable states x1, x2, … .  When we monitor 
this over time we get a sequence of the states 
occupied q1, q2, ….  where  qi = any of  x1, x2, ….  

This sequence is a Markov Chain.  Note that while 
there can be an infinite number of states, the 
Markov chain has a countable number of 
elements.

Markov Chains

Another property of a Markov process is that “history does 
not matter”.  This means that the state assumed at time t+1  
depends on the state assumed on t (not on any other 
previous state).  This is called the Markov property.  Let X 
= {Xn, n = 1, 2, …} be a discrete time random process with 
state space S whose elements are s1, s2, … X is a Markov 
chain if for any n  0, the probability that Xn+1 takes on any 
value sk S is conditional on the value of Xn but does not 
depend on the values of Xn-1, Xn-2, … . The one-time-step 
transition probabilities

pjk(n) = Pr{Xn = sk | Xn-1 = sj} j,k=1,2,… n = 1,2, …

Since X0 is a random variable called the initial condition, 
pj(0) = Pr{X0 = sj}  j=1,2,…
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Markov Chains

•Transition matrix – put the pjk into a matrix P.

•A sequence of amino acids can be thought of as a Markov 
chain.

•Stationary Markov process – the probabilities pjk(n) do not 
depend on n, that is they are constant.  Another way of 
saying this is an initial distribution π is said to be 
stationary if  πP(t)=π.  

•Irreducible – every state can be reached from every other 
state

Application of Markov processes to 
evolutionary models

i) The PAM matrix has its substitution probabilities 
determined from closely related amino acid sequences, it 
assumes that the substitutions have occurred through one 
application of the transition matrix (i.e. no multiple 
substitutions and a given site) and assumes that 
evolutionary distance results from repeated application of 
the same PAM matrix.

ii) A better evolutionary model is needed.  (text p 140-144)  
This requires the use of a continuous Markov process 
rather than a discrete Markov chain.  This still has the 
Markov property.
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Application of Markov processes to 
evolutionary models

A time homogenous Markov process for the 
stochastic function X(t) consists of a set of 
states Q={1,2,…,n}, a set of initial state 
distributions π=(π1,…,πn), and transition 
probability functions

P(t)=
pp1,,11,,1(t)(t) ……pp1,n1,n(t)(t)
.      .      ..
.. ..
ppn,1n,1(t)(t)……ppn,nn,n(t(t))

))
Application of Markov processes to 

evolutionary models
We can apply this to nucleotide sequences.  

Let Q={1,2,3,4} correspond to {A,C,G,T}.

P(t)=
p1,,1(t) …p1,4(t)
.      .
. .
pn,4(t)…p4,4(t)

))

P[A|A,tP[A|A,t]] P[C|A,tP[C|A,t]] P[G|A,tP[G|A,t] ] P[T|A,tP[T|A,t]]
P[A|C,tP[A|C,t]] P[C|C,tP[C|C,t]] P[G|C,tP[G|C,t] ] P[T|C,tP[T|C,t]]
P[A|G,tP[A|G,t]] P[C|G,tP[C|G,t]] P[G|G,tP[G|G,t] ] P[T|G,tP[T|G,t]]
P[A|T,tP[A|T,t]] P[C|T,tP[C|T,t]] P[G|T,tP[G|T,t] ] P[T|T,tP[T|T,t]]

))
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Jukes-Cantor Model

A                                       G

C                                        T

αααα

αα

αα

αα

αα

Transitions = Transversions

Rates of Nucleic Acid Change

The Jukes Cantor model assumes that u1=u2=u3=u4=a, yielding the 
rate matrix.

ΛΛ ==

-3α α α α
α -3α α α
α α -3α α
α α α -3α

)

Then p1=p2=p3=p4=a

Use in Maimum Likelihood Calculation

)
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HKY 
Model

A G

C T

αα

αα

Transitions > Transitions > TransversionsTransversions
αα > > ββ

PurinesPurines

PyrimidinesPyrimidines

ββββββββ

Definitions

-taxa – entities whose distance from other entities can be 
measured
-A directed graph G(V, E) consists of a set V of nodes or 
vertices and a set E(V) of directed edges.  Then (i,j) E 
means that there is a directed edge from i to j.  
-A graph is undirected if the edge relation is symmetric, 
that is, (i,j) E iff (j,i) E.  
-A directed graph is connected if there is a directed path 
between any two nodes.



11

Definitions

-A directed graph is acyclic if it does not contain a 
cycle. (i.e. (i,j), (j,k), and (k,i) all belong to E.
-A tree is a undirected, connected, acyclic graph.
-A rooted tree has a starting node called a root.
-The parent node is immediately before a node on 
the path from the root.
-The child node is a node that is follows a node.

Definitions

-An ancestor is any node that came before a node 
on the path from a root.
-A leaf or external node is a node that had no 
children.
-Non-leaf nodes are called internal nodes.
-The depth of a tree is one less than the maximal 
number of nodes on a path from the root to a leaf.
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Definitions

-An ordered tree is a tree where the children of 
internal nodes are numbered.
-A binary tree is a tree where each node has at 
most two children.  Otherwise it is multifurcating.

Trees

Question:  Draw all binary trees on 1, 2, and 3 
taxa.

A phylogenetic tree on n taxa is a tree with leaves 
labeled by 1,…,n.  

a b
c

a c
b

b c
a
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How do you tell if two trees are the 
same?

If you can convert one tree into another without 
breaking any branches they are topologically 
equivalent.

Phylogenetic Trees

Phylogenetic trees or evolutionary trees are binary
trees that describe the “relations” between species.

Trees consist of nodes or vertices and taxa or  leaves.
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Phylogenetic Trees

To understand the data, we must understand some of 
the methods behind phylogenetic trees or 
evolutionary trees

i) Clustering methods
ii) Maximum likelihood methods
iii) Quartet puzzling

What do we do with phylogenetic trees?

• measuring evolutionary change on a tree

If the leaves of a tree each signify a sequence, the sum of 
the weights of the edges gives the evolutionary distance 
between the two sequences.

• molecular phylogenetics

Convert information in sequences into an evolutionary tree 
for those sequences.
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Cluster methods vs. search methods
There are two basic methods for constructing trees.  

Cluster methods use an algorithm (set of steps) to generate a tree.  
These methods are very easy to implement and hence can be 
computationally efficient.  They also typically produce a single
tree.  A big disadvantage to this method is that it depends upon the 
order in which we add sequences to the tree.  Hence, there could
be a different tree that explains the data just as well.

Search methods use some sort of optimality criteria to choose 
among the set of all possible trees.  The optimality criteria gives 
each tree a score that is based on the comparison of the tree to
data.  The advantage of search methods is that they use an explicit 
function relating the trees to the data (for example, a model of how 
the sequences evolve).  The disadvantage is that they are 
computationally very expensive (NP complete problem). 

How do we compare different tree 
methods?

• Efficiency – How fast is the method?

• power –How much data does the method require?

• consistency – Will the tree converge on the right answer give 
enough data? 

• robustness – Will minor violations of the method’s 
assumptions result in poor estimates of phylogeny? 

• falsifiability – Will the method tell us when its assumptions 
are violated?
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How do assign weights for the edges of 
our trees?

• Distance methods first convert aligned sequences into a 
pairwise distance matrix then input that matrix into a tree 
building method. The major objections to distance methods 
are that summarizing a set of sequences by distance data 
loses information and branch lengths estimated by some 
distance methods might not be evolutionarily determinable. 

• Discrete methods consider each nucleotide site (of some 
function of each site) directly.

Distance Methods

•Two distance methods are neighbor joining and 
minimum evolution. 
• Minimum evolution finds the tree that minimizes the sum 
of the branch lengths where the lengths are calculated from 
the pairwise distances between the sequences.   Linear 
programming or least squares methods can be used to do 
this. 
•Neighbor joining is a clustering method that is 
computationally fast and gives a unique result.  This can 
use something like the four-point condition and clusters the 
closest elements.



17

Discrete Methods
The two major discrete methods are maximum parsimony 
and maximum likelihood.  Both these are search methods.
i) With maximum parsimony we try to reconstruct the 
evolution at a particular site with the fewest possible 
evolutionary changes.  The advantages of parsimony are 
that it makes relatively few assumptions about the 
evolutionary process, it has been studied extensively 
mathematically, and some very powerful software 
implementations are available.  The major disadvantage to 
using parsimony is that under some models of evolution, it 
is inconsistent , that is if more data is added the wrong result
might occur.

Discrete Methods

ii) The maximum likelihood approach looks for the tree 
that makes the data the most probable evolutionary 
outcome.    This approach requires a explicit model of 
evolution which is both a strength and weakness because 
the results depend on the model used.  This method can 
also be very computationally expensive. 
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Types of metrics

For the four point condition or additive metric, given the 
leaves i, j, k, and l 

d(i,j) + d(k,l)     d(i,k) + d(j,l) = d(i,l) + d(j,k) 

For an ultrametric metric the ultrametric or 3-point condition
holds

That is given the leaves i, j, and k
d(i,j)    d(i,k)  = d(j,k) ≤

≤

Ultrametric trees

• Clustering methods attempt to repeated cluster the data by 
grouping the closest elements together.  They are used for 
phylogeny and gene expression microarray analysis.

• The pair group method (PGM) is a technique where the 
pairs are repeatedly amalgamated.

• The unweighted paired group method with arithmetic 
mean (UPGMA) is used to cluster molecular data where 
sequence alignment distance between sequences has been 
determined in a distance matrix.  
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UPGMA
Input an  n x n distance matrix D
1. Initialize  a set C to consist of n singleton clusters
2. Initialize dist(c,d) on C by defining for all {i} and {j} in C

dist({i},{j}) = D(i,j)
3. Repeat  the following n-1 times

a) determine a pair c,d of clusters in C such that dist (c,d) in
minimal;  define dmin= dist(c,d)
b) define a new cluster e = c U d; define C = C – {c,d} U {e}
c) define a node with label e and daughters c and d, where 
the e has distance dmin/2 to its leaves
d) define for all f in C with f different from e

dist(e,f) = dist(f,e) = [dist(c,f) + dist(d,f)]/2

UPGMA Example

a c d eb

13 3
13

2

2

2

6021010d
0661010e

c
b
a

6201010
10101006
10101060
edcba

Ultrametric Topology Distance Table

d(i,j)     d(i,k)  = d(j,k) ≤
from Clote and Backofen Computational Molecular Biology
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UPGMA Example

6021010d
0661010e

c
b
a

6201010
10101006
10101060
edcba

Given the distance table 1. We have five singleton clusters 
{a}, {b}, {c}, {d}, and {e} 
from the set C = {a,b,c,d,e}

2. Get the distances from the 
distance table (left)

3. a) Find the closest two clusters, 
namely, clusters {c} and {d} 
with dmin = 2
b) f = {c,d} and C= {a,b,e,f}
c) f is the root for c and d
d) Define new distance table

Repeat 3

UPGMA Example

6021010d
0661010e

c
b
a

6201010
10101006
10101060
edcba

The old distance table

6
0

10
10
e

01010f
e
b
a

61010
1006
1060
fba

The new distance table
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UPGMA example
Tree formation

c d

1 1

f

a c d eb

13 3
13

2

hg

f
+

a c d eb

13 3
13

2

2

2

f

g h

r

WPGMA
Input an  n x n distance matrix D
1. Initialize  a set C to consist of n singleton clusters
2. Initialize dist(c,d) on C by defining for all {i} and {j} in C

dist({i},{j}) = D(i,j)
3. Repeat  the following n-1 times

a) determine a pair c,d of clusters in C such that dist (c,d) in
minimal;  define dmin= dist(c,d)
b) define a new cluster e = c U d; define C = C – {c,d} U {e}
c) define a node with label e and daughters c and d, where 
the e has distance dmin/2 to its leaves
d) define for all f in C with f different from e

dist(e,f) = dist(f,e) = [|c|dist(c,f) + |d|dist(d,f)]/[|c|+|d|]
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Farris Transform - Example

a c d eb

28 8
101

1

1

1

Additive, non-ultrametric topology Distance Table

190122114d
019111811e

c
b
a

11120136
18211309
1114690
edcba

d(i,j) + d(k,l)     d(i,k) + d(j,l) = d(i,l) + d(j,k) 

from Clote and Backofen Computational Molecular Biology

≤

Farris Transform - Example

a

c
d

e

b

UPGMA incorrectly Distance Table
reconstructed topology

190122114d
019111811e

c
b
a

11120136
18211309
1114690
edcba

2.75

9.19
6.38

2.5

from Clote and Backofen Computational Molecular Biology
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Farris Transform

• Sometimes the data will satisfy an additive metric and not 
a ultrametric.  This will yield a tree with the incorrect 
topology if UPGMA or WPGMA is used.

• The Farris Transformed Distance Method converts the 
data for an additive, non-ultrametric metric so that it 
satisfies the ultrametric.  Then UPGMA or WPGMA can 
be used to yield a tree with the correct topology

Farris Transform

∑
=

=

+
−−

=

n

i
rir

r
rjriji

ji

d
n

d

where

d
ddd

e

1
,

,,,
,

1

2

If we have a phylogenetic tree with root r and leaves (taxa) 
1,…,n and di,j is the distance between two nodes, then we have 
the transformed distance

You must assume a root r.  This can be the leaf that is farthest
from all the others.  Unfortunately, depending on the root selected
the method might not give the right topology.
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Farris Transform - Example

a c d eb

28 8
101

1

1

1

Additive, non-ultrametric topology Distance Table

190122114d
019111811e

c
b
a

11120136
18211309
1114690
edcba

What is the distance to the root?
r 912492

edcba

Farris Transform - Example
Original Distance Table
with assumed root

6.205.27.27.2d
06.26.27.27.2e

c
b
a

6.25.207.27.2
7.27.27.206.2
7.27.27.26.20
edcba

Transformed Distance Table

9
12
4
9
2
r

190122114d
019111811e

c
b
a

11120136
18211309
1114690
edcba

2.7
2

,,,
, =+

−−
= rr

rjriji
ji dwhered

ddd
e
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Farris Transform - Example

a c d eb

2.63.1 3.1
2.63.1

0.5

0.5

0.5

Farris transformed tree topology Distance Table

d(i,j) + d(k,l)     d(i,k) + d(j,l) = d(i,l) + d(j,k) 

6.205.27.27.2d
06.26.27.27.2e

c
b
a

6.25.207.27.2
7.27.27.206.2
7.27.27.26.20
edcba

≤

Farris Transform – Pick d as root
Original Distance Table
with assumed root

13.2013.213.213.2d
013.23.22.22.2e

c
b
a

3.213.203.23.2
2.213.23.200.2
2.213.23.20.20
edcba

Transformed Distance Table

190122114d
019111811e

c
b
a

11120136
18211309
1114690
edcba

2.13
2

,,,
, =+

−−
= rr

rjriji
ji dwhered

ddd
e
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Farris Transform – Correct Topology!

a c deb

0.1
1.1 1.61.0

0.1

0.5 6.6

5.0

Farris transformed tree topology Distance Table

d(i,j) + d(k,l)     d(i,k) + d(j,l) = d(i,l) + d(j,k) ≤

13.2013.213.213.2d
013.23.22.22.2e

c
b
a

3.213.203.23.2
2.213.23.200.2
2.213.23.20.20
edcba

Algorithms

Maximum 
Parsimony
Maximum 
Likelihood

Minimum 
Evolution

O
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C

riterion
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Joining

C
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From Page and Holmes 
Molecular Evolution: A Phylogenetic Approach
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Phylogeny: Distance Methods

•Parsimony
•Maximum Likelihood

• Look at changes in each column of alignment
• Metric to estimate Population Drift
• Computationally more expensive

Neighbor Joining

• Combines computational speed with 
uniqueness of result

• Clustering method – hence has no 
optimality criteria.

• Often used in conjunction with Minimum 
Evolution to estimate the minimum 
evolution tree
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Neighbor Joining and Minimum 
Evolution

• Compute the Neighbor Joining Tree and see 
if any local rearrangement produces a 
shorter tree.

• Not guaranteed to give the minimum 
evolution tree.

Neighbor Joining Algorithm

• Related to cluster analysis but removes the 
assumption of ultrametric data

• Does not assume data comes close to fitting an 
additive tree (need to use an appropriate model of 
evolution).

• Keeps track of nodes on tree
• Considers only closest pairs and not all possible 

pairs in each step of star decomposition.



29

Nieghbor Joining
• FROM: 

http://www.icp.ucl.ac.be/~opperd/p
rivate/neighbor.html

• Author: Fred Opperdoes
• Suppose we have the following 

tree:
• Since B and D have accumulated 

mutations at a higher rate than A. 
The Three-point criterion is 
violated and the UPGMA method 
cannot be used since this would 
group together A and C rather than 
A and B. In such a case the 
neighbor-joining method is one of 
the recommended methods. 

Neighbor Joining
The raw data of the tree are represented by the 

following distance matrix:
A B C D E

B 5
C 4 7
D 7 10 7
E 6 9 6 5
F 8 11 8 9 8

We have in total 6 OTUs (N=6). 
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Neighbor Joining
Step 1: We calculate the net divergence r (i) for each 

OTU from all other OTUs

r(A) =  5+4+7+6+8=30
r(B) = 42
r(C) = 32
r(D) = 38
r(E) = 34
r(F) = 44 

Neighbor Joining
Step 2: Now we calculate a new distance matrix using for 

each pair of OTUs the formula:
M(I,j)=d(i,j) - [r(i) + r(j)]/(N-2) or in the case of the pair A,B:
M(AB)=d(AB) -[(r(A) + r(B)]/(N-2) = -13

A         B C D       E
B -13
C -11.5 -11.5
D -10 -10 -10.5
E -10 -10 -10.5  -13
F -10.5 -10.5 -11    -11.5  -11.5
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Neighbor Joining
Now we start with a star tree:

A
F    |    B

\ |  /   
\ | /    
\|/    
/|\

/ | \
/  |  \

E    |    C 
D 

Neighbor Joining

• Step 3: Now we choose as neighbors those two 
OTUs for which Mij is the smallest. These are A 
and B and D and E. Let's take A and B as 
neighbors and we form a new node called U. Now 
we calculate the branch length from the internal 
node U to the external OTUs A and B.

• S(AU) =d(AB) / 2 + [r(A)-r(B)] / 2(N-2) = 1 
S(BU) =d(AB) -S(AU) = 4 
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Neighbor Joining

• Step 4: Now we define new distances from 
U to each other terminal node:

• d(CU) = d(AC) + d(BC) - d(AB) / 2 = 3 
d(DU) = d(AD) + d(BD) - d(AB) / 2 = 6 
d(EU) = d(AE) + d(BE) - d(AB) / 2 = 5 
d(FU) = d(AF) + d(BF) - d(AB) / 2 = 7 and 
we create a new matrix:

Neighbor Joining
U C D E

C 3
D 6 7
E 5 6 5
F 7 8 9 8

The resulting tree will be the following:

C
D  | 

\ |     A
\|___/ 1   
/|      \
/ |        \ 4   

E  |         \
F           \

B 
N= N-1 = 5 

The entire prodcedure is repeated starting at step 1
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Quartet Puzzling
Quartet puzzling is a less computationally expensive method 

than maximum likelihood to determine the phylogentic tree.

Procedure:
1. Compute the      maximum likelihood trees for all possible 

quartets
2. (Quartet Puzzling step) Combine the quartet trees into a n-

taxon tree that tries to conform to all the neighbor relations 
of all the quartet trees.

3. Repeat steps 1. and 2. many times and use the majority 
consensus tree.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
4
n

Quartet Puzzling
Given the original tree
topology for 5 taxa

a

db

ce

a

db

c

Two possible quartets

e

db

c
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Quartet Puzzling

a

de

c

Possible quartets

a

de

b

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
4
5

a

db

c

e

db

c

a

ce

b

N(a,b;c,d)

N(a,e;b,d)

N(e,b;c,d)

N(a,e;c,d)

N(a,e;b,c)

All

Quartet Puzzling
Quartet puzzling step procedure:
1. Take one of the quartet with the neighbor relation 

N(a,b;c,d)
2. Add a penalty of 1 to every edge such that the addition of 

the new taxa e will yield the incorrect topology.
3. Repeat for all the neighbor relations
4. The branch with the lowest weight is the branch where the 

taxa e show be added
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Quartet Puzzling
Quartet with neighbor
relation N(a,b;c,d)

a

db

c

Adding taxa e between 
c and d

a

db

c

e

Yields wrong topology!

Quartet Puzzling

a

db

c

a

db

c

a

db

c

a

db

c

a

db

c

N(a,e;c,d)

N(a,e;b,d)

N(a,e;b,c)

N(b,e;c,d)

0

00

0 0

10

1

2

2
0

0

3

3
2

0

2

30

1

0
0

1

2

0
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Quartet Puzzling

• Chose one quartet tree.
• Pick the taxa to add
• Use all neighbor relations (other than the 

one deciding the quartet tree used) to find 
weights on branches

• Add the taxa to the branch with the lowest 
penalty.

Minimum Evolution

• Given an unrooted metric tree for n 
sequences, there are (2n-3) branches each 
with branch length ei.

• The sum of these branch lengths is the 
length L of the tree.

• The minimum evolution tree is the tree 
which minimizes L
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Minimum Evolution

• similar to parsimony
• But length comes from pairwise distances 

between the sequences (not from fit of 
nucleotide sites)

• Use linear programming or least squares to 
find optimal solution.

Minimum Evolution
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Phylogeny: Character State Methods

•Parsimony
•Maxmum Likelihood

• Look at changes in each column of alignment
• Metric to estimate Population Drift
• Computationally more expensive

PHYLOGENY: Character States

Taxa 1 ATT-GCCATT
Taxa 2 ATG-GC-ATT
Taxa 3 ATC-TATCTT
Taxa 4 ATCAAATCTT
Taxa 5 ACT-G--ACC

Informative characters (columns)
Look at all possible trees
For each column, calculate cost
Minimum score = best tree
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Maximum Parsimony

Taxa 1 ATT-GCCATT
Taxa 2 ATG-GC-ATT
Taxa 3 ATC-TATCTT
Taxa 4 ATCAAATCTT
Taxa 5 ACT-G--ACC

Informative characters
Minimum number of changes
Multiple substitutions = homoplasy

Maximum Parsimony

•• Smallest number of evolutionary changesSmallest number of evolutionary changes
•• First used on protein data (Eck & First used on protein data (Eck & DayhoffDayhoff, , 

1966)1966)
•• Applied to Nucleotide data (Fitch, 1977)Applied to Nucleotide data (Fitch, 1977)
•• Brute force search of tree spaceBrute force search of tree space
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Cost of Parsimony Tree

22 4411 5533

• Character by character
• Column 3
• Parsimony score = 0+0+3

TT

CC

CC TTCC

GG

CC

GGTT

Taxa 1 ATT- GCCATT
Taxa 2 ATG-GC - ATT
Taxa 3 ATC- TAT CTT
Taxa 4 ATCAAAT CTT
Taxa 5 ACT- G - - ACC

11

11

11

Cost of Parsimony Tree

22 4411 5533

• Character by character
• Parsimony score = 0+0+3+0+2

= 5= 5TT--GG

CC--GG

CAACAA TT--GGCC--TT

GG--GG

CC--GG

GG--GGTT--GG

11

11

Taxa 1 ATT- GCCATT
Taxa 2 ATG-GC - ATT
Taxa 3 ATC- TAT CTT
Taxa 4 ATCAAAT CTT
Taxa 5 ACT- G - - ACC
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Tree Space

22 44 1133 55 2244 113355

55 2244 11 33

Topology

Taxa Order

Search Tree Space

• Exhaustive Search (Brute Force)
• Branch and Bound (Efficient?)
• Heuristic Methods (Hill Climbing)
• Genetic Algorithms (GAML)
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Maximum Likelihood
• Goal: Construct a phylogenetic tree from DNA sequences 

whose likelihood is a maximum. (Felsenstein 1981)
• Procedure

– Start with a given topology and use the maximum 
likelihood method to optimize branch lengths

– Make local modifications to the topology and re-optimize 
the branch lengths

– New taxa are added one by one, optimizing branch lengths 
and topologies each time

– Assumes an evolutionary process that is a reversible 
Markov process

– Very computationally expensive to use

Likelihood of a Tree

We want to find L(tree) = Pr[data|tree]
Given the data a1=CT, a2=CG and a3=AT
Consider the tree

We can calculate the likelihood of this tree if we fill 
in the internal nodes

CT CG
AT

d1

d4
d3

d2
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Likelihood of a Tree

Since this is a Markov process, we can consider each site 
separately from the other which reduces the complexity of 
the calculation.

Example

tree 1 tree 2 tree3
Pr[data|tree 1] = Pr[data|tree 2] + Pr[data|tree 3]

CT CG

ATCA

AC

C C

AC

A

T G

TA

C

=

d1

d4
d3

d2 d1
d2 d1 d2

d4
d3 d4

d3

Likelihood of a site specific tree
We can calculate from the transition matrix and the 

distances on each branch the probability of each 
change.  The product of these multiplied by the 
probability of the original base gives the 
likelihood of a site specific tree.

Since there are two unknown nodes the double sum 
of all possible values for each (ACTG) gives the 
likelihood for the original tree.
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Maximum Likelihood

• Statistical model for changes in nucleotides
• Likelihood that that change occurred
• Much more computational intensive than parsimony
• Hypothesis Testing

•Transitions/Transversions
•HKY (Kimura 2 parameter model) 
• Jukes Cantor (1 parameter)

Maximum Likelihood
Taxa 1 ATT-GCCATT
Taxa 2 ATG-GC-ATT
Taxa 3 ATC-TATCTT
Taxa 4 ATCAAATCTT
Taxa 5 ACT-G--ACC

• Statistical model for changes in nucleotides
• Transitions/Transversions
• HKY (Kimura 2 parameter model) 
• Jukes Cantor (1 parameter)
• Likelihood that that change occurred
• Much more computational intensive than parsimony
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Likelihood of a Tree

L(tree) = Pr [data|tree]

• Multiply likelihood for each character position
• Recursive definition of Likelihood
• Saves computational time

Likelihood of a Tree

L(tree) = Pr [data|tree]

Multiply likelihood for each character position

Recursive definition of Likelihood
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Likelihood of a Tree

11 22 33 44

6655

00

dd11 dd22 dd33
dd44

dd55 dd66


