
BINF 636:  Lecture 9: Clustering: How Do They Make and Interpret Those 
Dendrograms and Heat Maps; Differences Between Unsupervised Clustering 
and Classification. 
Description: Clustering, for the purpose of this lecture, is the exploratory partitioning of 
a set of data points into subgroups (clusters) such that members of each subgroup are 
relatively similar to each other and members of distinct clusters are relatively dissimilar.  
For example, one might have gene expression profiles from a set of samples of a 
particular type of tumor and wish to see if the samples separate out into distinct 
subgroups.  In this case one could be looking to uncover evidence of previously unknown 
subtypes, or one might wish to see if the results of clustering the gene expression profiles 
are consistent with classification by histopathology.   
    In this class we will describe how dendrograms, such as the example 
to the right, are constructed using hierarchical agglomerative clustering, 
where one starts with each of the data points as an individual cluster,  
and in successive steps combines the pair of clusters that are “closest” 
to each other into one new cluster.  This requires specifying a distance 
measure between data points and between clusters.  Each clustering  
step reduces by one the number of existing clusters until at the end of the final step there 
is one cluster containing all the data points.  If one has ordered the data points along a 
line so that at each step the clusters that are joined together are adjacent to each other, one 
can draw a corresponding diagram (dendrogram) where the heights of the vertical lines 
reflect the distance between the pair of clusters joined at each stage of the procedure.  If 
one has, e.g., microarray data from a set of tumor samples, one can cluster both the tissue 
sample gene expression profiles and the expression profiles  
of the genes across the tissue samples, thus determining a  
corresponding ordering of the tumor samples and of the  
genes.  One can then color code each rectangle representing  
the expression level of one gene in one tumor sample, 
producing a heat map such as the example to the right.   
     We will describe how these procedures are carried out, 
and how the resulting hierarchies of clusters can depend  
on the specifications for distances between data points and between clusters.  The type of 
changes in appearance that may occur in a dendrogram in response to small changes in 
the data points will also be illustrated.   An individual dendrogram is essentially a one-
dimensional ordering of a data set, in contrast with two or three dimensional 
visualizations that can be obtained by principal component analysis (PCA) which is the 
subject of Lecture 10. The difference between exploratory (unsupervised) clustering and 
classification will be noted, along with the importance of proper validation of 
classification methods. 
  
                                                                   
Alan E. Berger, Ph.D.,  JHBMC Lowe Family Genomics Core, Johns Hopkins University 
School of Medicine,    aberger9@jhmi.edu  (410) 550-5089  
 
 



Clustering example; modified version 
of Figure 1 of A A Alizadeh et alof Figure 1 of A. A. Alizadeh et al.,
Distinct Types of Diffuse Large B-Cell 
Lymphoma Identified by Gene 
Expression Profiling, Nature 403,         
3 Feb. 2000, pp. 503-511. 

Centroid clustering on log of fold 
changes of measured expression 
levels with Pearson correlation 
similarity for tissue samples (columns) 
and cos(angle) similarity for genes 
(rows) Fold changes are ratios of

G
enes(rows). Fold changes are ratios of 

mRNA expression level in tissue 
sample relative to mRNA level in 
reference pool.  The values in each 

( ) di t d

s

row (gene) were median centered 
before the clustering / heat map plot.

Heat map color code for coloring of 
h [ti l ] t l

log2(fold change)

fold change

each [tissue sample × gene] rectangle 
is at the bottom of the figure
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Points       
being 
clustered,   
each          
point is an     
n-tuple
of numbers,     
here have   
(x,y)  pairs, in 
general, could 
have 1000’s of 
components for each point, e.g., microarray data

Information from a Clustering

1-Dimensional 
ordering of the 
points

Hierarchical 
associations 
of groupings 
of the points

Each point has form P = (x1, x2, … , xn)



Clustering: How Do They Make Those                 
Dendrograms and Heat Maps – Outline 

• Definition of unsupervised clustering

• Dendrogram construction by hierarchical agglomerative clustering
. given specified inter-cluster and inter-point distance measures

• Uniqueness of the dendrogram if an unambiguous choice of       
. left/right ordering is specified for each join of two clusters 
. in the dendrogram construction 

• Dependence of the clustering dendrogram on the definition of   
. inter-cluster distance. 

• Additional examples, Heat map construction

• Briefly noting other methods for clustering and data visualization       

• The difference between exploratory and supervised clustering   .



    Some References for Clustering 
 
[1]  R. O. Duda, P. E. Hart and D. G. Stork, Pattern  
      Classification, Second Edition, John Wiley & Sons,  
      2001, Chapter 10 – Unsupervised Learning and Clustering 
 
[2]  R. A. Johnson and D. W. Wichern, Applied Multivariate  
       Statistical Analysis, Fourth Edition, Prentice Hall,  
      1998, Chapter 12 – Clustering, Distance Methods, and Ordination 
 
[3]  J. Quackenbush, Computational Analysis of Microarray Data,   
      Nature Reviews Genetics, 2 (2001), pp. 418-427. 
 
[4]  R. Simon, M. D. Radmacher, K. Dobbin and L. M. McShane,   
       Pitfalls in the Use of DNA Microarray Data for Diagnostic and                
.      Prognostic Classification, Journal of the National Cancer Institute,  
       95 (2003), pp. 14-18. <exploratory class discovery, supervised                       
.      classification, proper use of cross-validation> see also, M. West et al.,      
.      Predicting the Clinical Status of Human Breast Cancer by Using Gene    
.      Expression Profiles, PNAS, 98 (2001), pp. 11462-11467. 
 
[5]  http://en.wikipedia.org/wiki/Data_clustering 
  
[6]  M. B. Eisen, P. T. Spellman, P. O. Brown and D. Botstein, Cluster           
.      Analysis and Display of Genome-wide Expression Patterns,   
       PNAS, 95 (1998), pp. 14863-14868 
 
[7] .Software for performing a variety of clustering methods is available in 
<with usual disclaimers>, e.g., R (open source) & open source R programs 
(see in particular the Bioconductor suite of software), and in general data 
analysis software such as MATLAB and IDL, statistics packages (SAS etc.), 
 

commercial packages for microarray analysis  (such as Partek, GeneSpring, 
GeneSifter, JMP Genomics, and the MATLAB Bioinformatics Toolbox),  
  

free software such as Cluster (http://rana.lbl.gov/EisenSoftware.htm), and 
GenePattern (http://www.broad.mit.edu/cancer/software/genepattern/), 
  

software available at NIH, including the Mathematical and Statistical 
Computing Lab toolbox of scripts that complement and interface with the 
JMP statistics package (http://abs.cit.nih.gov/MSCLtoolbox/),   BRB Array 



Tools (http://linus.nci.nih.gov/BRB-ArrayTools.html) and                              
mAdb (http://nciarray.nci.nih.gov/).     
 
 
[8]  M. Zvelebil and J. O. Baum, Understanding Bioinformatics, Garland       
.      Science, NY, 2008, Chapter 16 – Clustering Methods and Statistics 
 
[9]  D. Stekel, Microarray Bioinformatics, Cambridge University Press,        
.      Cambridge, 2003, Chapter 8 – Analysis of Relationships Between           
.      Genes, Tissues or Treatments 
 



CLUSTERING
(Without Training Data: Unsupervised Clustering)  
Exploratory separation of data  into groups of points.  
Points in distinct groups to be more different than 
points within one group. Discovery of classes. 
Information about the data may be used to evaluate  
the results but is NOT used in doing the clustering.

(With Training Data: Supervised Clustering)  
Accurate classification of new data points. 
Verification of accuracy of  the training data.  
Discovery of additional classes. Information about the 
training data is used to do the clustering/classification.
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Distances 
between the 
points being 
clustered

Components of the Clustering Process

Each “point” or item being                                                  
clustered could, e.g., be a set of gene expression values from a tumor 
sample. A cluster is a subset of the items being clustered.  Start with 
each individual point as a cluster, and successively combine the
closest pair of clusters into one new cluster. End with one cluster.

Definition of 
the distance 
between 
clusters
being 
combined at 
each step of 
the overall 
clustering 
process

Ordering of the 
items being 
clustered



Standard (Euclidean) Distance
. between two points

X

Y

O
x

y
(x,y)

(r,s)

Distance2 between (x,y) and (r,s) is  (x-r)2 + (y-s)2

Distance2 between (p1,…,pn) and (q1,…,qn) is:            
. 
. (p1-q1)2 +        + (pn-qn)2…



Definitions of Inter-cluster Distances

Complete Linkage  
max

Single Linkage  
min

Average Linkage

Centroid



Hierarchical Agglomerative Clustering

1. Make choice of inter-cluster distance (and specify 
the distances (dissimilarities) between points). 

2. Start with each point as a singleton cluster.  

3. At each step, join the pair of clusters that have the 
smallest distance between them. Draw vertical line 
from top of each joined cluster up to height = distance 
between them, connect with horizontal line. Top of 
new joined cluster is midway between them.

4. To avoid crossed lines, must have ordered the 
points so that at each step, joined clusters are next to 
each other (get unique dendrogram if specify rule for 
left-right order at each join)
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3. At each step, join the pair of clusters that have the smallest distance 
between them. Draw vertical line from top of each joined cluster up to 
height = distance between them, connect with horizontal line. Top of new 
joined cluster is midway between them.



Consequences of Improper Ordering of the Points

Totally Uninformative



Single Linkage Example   

starting with the ordering   0 1 2 3 4 5 6 7

first merge is 1-6  so form         0 16 2 3 4 5 7                     
next merge is 16-3 so form        0 163 2 4 5 7                
next merge is 0-4 so form          04 163 2 5 7                
next merge is 04-7 so form        047 163 2 5                 
next merge is 2-5 so form          047 163 25                   
next merge is 047-163 so form  047163 25                     
last merge is 047163-25 so corresponding ordering of the 
points is   0 4 7 1 6 3 2 5: with this ordering there will be 
no “crisscrossing” of lines when draw the dendrogram

Finding an Admissible Ordering by   
“Left Sliding”

Exercise: try starting with:  5 3 7 6 4 1 2 0 



Single Linkage Example   

starting with the ordering   5 3 7 6 4 1 2 0

first merge is 1-6  so form         5 3 7 61 4 2 0                     
next merge is 16-3 so form        5 361 7 4 2 0                
next merge is 0-4 so form          5 361 7 40 2                
next merge is 04-7 so form        5 361 740 2                 
next merge is 2-5 so form          52 361 740                   
next merge is 047-163 so form  52 361740                     
last merge is 52-361740 so corresponding ordering of the 
points is   5 2 3 6 1 7 4 0: with this ordering there will be 
no “crisscrossing” of lines when draw the dendrogram

Finding an Admissible Ordering by   
“Left Sliding”
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In Class Exercise:             
start with the admissible  
ordering  2 5 0 4 7 6 1 3 
and draw the resulting 
single-linkage dendrogram



3 At each step join the pair3. At each step, join the pair 
of clusters that have the 
smallest distance between 
them. Draw vertical line from 
top of each joined cluster up 
to height = distance between 
them, connect with 
horizontal line Top of newhorizontal line. Top of new 
joined cluster is midway 
between them.



















Clustering: How Do They Make Those                 
Dendrograms and Heat Maps – Outline 

• Definition of unsupervised clustering

• Dendrogram construction by hierarchical agglomerative clustering
. given specified inter-cluster and inter-point distance measures

• Uniqueness of the dendrogram if an unambiguous choice of        
. left/right ordering is specified for each join of two clusters 
. in the dendrogram construction

• Dependence of the clustering dendrogram on the definition of   
. inter-cluster distance. 

• Additional examples, Heat map construction

• Briefly noting other methods for clustering and data visualization       

• The difference between exploratory and supervised clustering   .
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Examples of Point Rankings

Example of a way
of specifying left/right orderings
Examples of Point Rankings

left    0  7  1  4  6  2  3  5    (Gene X)  At each join of two subclusters, place the one  L
left    5  2  7  4  0  3  6  1    (Gene Y)  containing the “leftmost” point number on the left.     
left 5 2 3 6 1 7 4 0 (Gene Z) Different orderings give rearranged dendrograms.left    5  2  3  6  1  7  4  0    (Gene Z)  Different orderings give rearranged dendrograms.
left    1  2  3  0  4  7  5  6    (Gene G)  Could also use average gene expression (Eisen et al.)

Dendrogram is indep. of original order given unique left/right orderings



Single Linkage Example   

starting with the ordering   6 5 7 4 3 2 1 0

Gene X  left / right  point ranking = 0 7 1 4 6 2 3 5

first merge is 1-6  so form         16 5 7 4 3 2 0                    
next merge is 16-3 so form        163 5 7 4 2 0               
next merge is 0-4 so form          163 5 7 04 2                
next merge is 04-7 so form        163 5 047 2                 
next merge is 2-5 so form          163 25 047                  
next merge is 047-163 so form  047163 25                     
last merge is 047163-25 so get  0 4 7 1 6 3 2 5

Finding an Admissible Ordering by   
“Left Sliding” Left/Right by Gene X   .

Exercise: try starting with:  3 5 0 2 6 7 1 4  



Ordering 
from 
Gene Z 

Ordering 
from 
Gene Y

Ordering 
from 
Gene X 

Ordering 
from 
Gene G



Clustering: How Do They Make Those                 
Dendrograms and Heat Maps – Outline 

• Definition of unsupervised clustering

• Dendrogram construction by hierarchical agglomerative clustering
. given specified inter-cluster and inter-point distance measures

• Uniqueness of the dendrogram if an unambiguous choice of       
. left/right ordering is specified for each join of two clusters 
. in the dendrogram construction 

• Dependence of the clustering dendrogram on the definition of    
. inter-cluster distance. 

• Additional examples, Heat map construction

• Briefly noting other methods for clustering and data visualization       

• The difference between exploratory and supervised clustering   .



v1--v2---v3----v4-----v5------v6--------v7----------v8   points on line
10   11    12     14      17         21          25   distances(Vi+1,Vi) 

Data for 1-Dimensional Clustering Example





Warning: hierarchical agglomerative 
clustering programs will always return 
dendrograms, even for random data

should use any information available 
about data to judge usefulness of 
clustering, as well as compactness and 
separation of clusters; use, e.g., PCA to 
visualize data and clusters.



Correlation Distances
Suppose each point is a vector of log(fold changes), e.g., 
log(treated gene expression level / control expression level).

Two such vectors V, W are well (positively) correlated if when 
an entry in V is > 0, the corresponding entry in W is > 0, and 
when Vj is < 0 then Wj is < 0. 

Two such vectors V, W are highly negatively correlated if 
when an entry in V is > 0, the corresponding entry in W is < 0, 
and when Vj is < 0 then Wj is > 0. 

Two common choices of correlation distance are 

d(V,W) = 1 – cos(angle between the vectors V and W)

d(V,W) = 1 – |.cos(angle between the vectors V and W).|

O
V

W
θ



Clustering: How Do They Make Those                 
Dendrograms and Heat Maps – Outline 

• Definition of unsupervised clustering

• Dendrogram construction by hierarchical agglomerative clustering
. given specified inter-cluster and inter-point distance measures

• Uniqueness of the dendrogram if an unambiguous choice of       
. left/right ordering is specified for each join of two clusters 
. in the dendrogram construction 

• Dependence of the clustering dendrogram on the definition of   
. inter-cluster distance. 

• Additional examples, Heat map construction

• Briefly noting other methods for clustering and data visualization       

• The difference between exploratory and supervised clustering   .



Molecular Classification of
Cancer: Class Discovery and

Class Prediction by Gene
Expression Monitoring

T. R. Golub,1,2*† D. K. Slonim,1† P. Tamayo,1 C. Huard,1

M. Gaasenbeek,1 J. P. Mesirov,1 H. Coller,1 M. L. Loh,2

J. R. Downing,3 M. A. Caligiuri,4 C. D. Bloomfield,4

E. S. Lander1,5*

Although cancer classification has improved over the past 30 years, there has
been no general approach for identifying new cancer classes (class discovery)
or for assigning tumors to known classes (class prediction). Here, a generic
approach to cancer classification based on gene expression monitoring by DNA
microarrays is described and applied to human acute leukemias as a test case.
A class discovery procedure automatically discovered the distinction between
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without
previous knowledge of these classes. An automatically derived class predictor
was able to determine the class of new leukemia cases. The results demonstrate
the feasibility of cancer classification based solely on gene expression moni-
toring and suggest a general strategy for discovering and predicting cancer
classes for other types of cancer, independent of previous biological knowledge.

The challenge of cancer treatment has been to
target specific therapies to pathogenetically
distinct tumor types, to maximize efficacy
and minimize toxicity. Improvements in can-
cer classification have thus been central to
advances in cancer treatment. Cancer classi-
fication has been based primarily on morpho-
logical appearance of the tumor, but this has
serious limitations. Tumors with similar his-
topathological appearance can follow signif-
icantly different clinical courses and show
different responses to therapy. In a few cases,
such clinical heterogeneity has been ex-
plained by dividing morphologically similar
tumors into subtypes with distinct pathogen-
eses. Key examples include the subdivision
of acute leukemias, non-Hodgkin’s lympho-
mas, and childhood “small round blue cell
tumors” [tumors with variable response to
chemotherapy (1) that are now molecularly
subclassified into neuroblastomas, rhabdo-
myosarcoma, Ewing’s sarcoma, and other
types (2)]. For many more tumors, important
subclasses are likely to exist but have yet to

be defined by molecular markers. For exam-
ple, prostate cancers of identical grade can
have widely variable clinical courses, from
indolence over decades to explosive growth
causing rapid patient death. Cancer classifi-
cation has been difficult in part because it has
historically relied on specific biological in-
sights, rather than systematic and unbiased
approaches for recognizing tumor subtypes.
Here we describe such an approach based on
global gene expression analysis.

We divided cancer classification into two
challenges: class discovery and class predic-
tion. Class discovery refers to defining pre-
viously unrecognized tumor subtypes. Class
prediction refers to the assignment of partic-
ular tumor samples to already-defined class-
es, which could reflect current states or future
outcomes.

We chose acute leukemias as a test case.
Classification of acute leukemias began with
the observation of variability in clinical out-
come (3) and subtle differences in nuclear
morphology (4 ). Enzyme-based histochemi-
cal analyses were introduced in the 1960s to
demonstrate that some leukemias were peri-
odic acid-Schiff positive, whereas others
were myeloperoxidase positive (5). This pro-
vided the first basis for classification of acute
leukemias into those arising from lymphoid
precursors (acute lymphoblastic leukemia,
ALL) or from myeloid precursors (acute my-
eloid leukemia, AML). This classification
was further solidified by the development in
the 1970s of antibodies recognizing either
lymphoid or myeloid cell surface molecules
(6 ). Most recently, particular subtypes of

acute leukemia have been found to be asso-
ciated with specific chromosomal transloca-
tions—for example, the t(12;21)(p13;q22)
translocation occurs in 25% of patients with
ALL, whereas the t(8;21)(q22;q22) occurs in
15% of patients with AML (7 ).

Although the distinction between AML
and ALL has been well established, no single
test is currently sufficient to establish the
diagnosis. Rather, current clinical practice
involves an experienced hematopathologist’s
interpretation of the tumor’s morphology,
histochemistry, immunophenotyping, and cy-
togenetic analysis, each performed in a sep-
arate, highly specialized laboratory. Although
usually accurate, leukemia classification re-
mains imperfect and errors do occur.

Distinguishing ALL from AML is critical
for successful treatment; chemotherapy regi-
mens for ALL generally contain corticoste-
roids, vincristine, methotrexate, and L-asparagi-
nase, whereas most AML regimens rely on a
backbone of daunorubicin and cytarabine (8).
Although remissions can be achieved using
ALL therapy for AML (and vice versa), cure
rates are markedly diminished, and unwarrant-
ed toxicities are encountered.

We set out to develop a more systematic
approach to cancer classification based on the
simultaneous expression monitoring of thou-
sands of genes using DNA microarrays (9). It
has been suggested (10) that such microar-
rays could provide a tool for cancer classifi-
cation. Microarray studies to date (11), how-
ever, have primarily been descriptive rather
than analytical and have focused on cell cul-
ture rather than primary patient material, in
which genetic noise might obscure an under-
lying reproducible expression pattern.

We began with class prediction: How
could one use an initial collection of samples
belonging to known classes (such as AML
and ALL) to create a “class predictor” to
classify new, unknown samples? We devel-
oped an analytical method and first tested it
on distinctions that are easily made at the
morphological level, such as distinguishing
normal kidney from renal cell carcinoma
(12). We then turned to the more challenging
problem of distinguishing acute leukemias,
whose appearance is highly similar.

Our initial leukemia data set consisted of
38 bone marrow samples (27 ALL, 11 AML)
obtained from acute leukemia patients at the
time of diagnosis (13). RNA prepared from
bone marrow mononuclear cells was hybrid-
ized to high-density oligonucleotide microar-
rays, produced by Affymetrix and containing
probes for 6817 human genes (14 ). For each
gene, we obtained a quantitative expression
level. Samples were subjected to a priori
quality control standards regarding the
amount of labeled RNA and the quality of the
scanned microarray image (15).

The first issue was to explore whether
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Note sometimes the 
heights at which 
combine successive 
subclusters can 
decrease when 
using  the centroid 
set distance.

This never happens 
when using single, 
complete or average 
linkage. 
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Successive centroid distances are 10, 
10, 22, 20 (note sqrt(521) ≅ 22.825)



PCA of Golub training data, using 600 top variance genes 
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Broad patterns of gene expression revealed by clustering analysis
of tumor and normal colon tissues probed by
oligonucleotide arrays

U. ALON*†, N. BARKAI*†, D. A. NOTTERMAN*, K. GISH‡, S. YBARRA‡, D. MACK‡, AND A. J. LEVINE*§

Departments of *Molecular Biology and †Physics, Princeton University, Princeton, NJ 08540; and ‡EOS Biotechnology, 225A Gateway Boulevard,
South San Francisco, CA 94080

Contributed by A. J. Levine, April 13, 1999

ABSTRACT Oligonucleotide arrays can provide a broad
picture of the state of the cell, by monitoring the expression
level of thousands of genes at the same time. It is of interest
to develop techniques for extracting useful information from
the resulting data sets. Here we report the application of a
two-way clustering method for analyzing a data set consisting
of the expression patterns of different cell types. Gene expres-
sion in 40 tumor and 22 normal colon tissue samples was
analyzed with an Affymetrix oligonucleotide array comple-
mentary to more than 6,500 human genes. An efficient two-
way clustering algorithm was applied to both the genes and the
tissues, revealing broad coherent patterns that suggest a high
degree of organization underlying gene expression in these
tissues. Coregulated families of genes clustered together, as
demonstrated for the ribosomal proteins. Clustering also
separated cancerous from noncancerous tissue and cell lines
from in vivo tissues on the basis of subtle distributed patterns
of genes even when expression of individual genes varied only
slightly between the tissues. Two-way clustering thus may be
of use both in classifying genes into functional groups and in
classifying tissues based on gene expression.

Recently introduced experimental techniques based on oligo-
nucleotide or cDNA arrays now allow the expression level of
thousands of genes to be monitored in parallel (1–9). To use
the full potential of such experiments, it is important to
develop the ability to process and extract useful information
from large gene expression data sets. Elegant methods recently
have been applied to analyze gene expression data sets that are
comprised of a time course of expression levels. Examples of
such time-course experiments include following a develop-
mental process or changes as the cell undergoes a perturbation
such as a shift in growth conditions. The analysis methods were
based on clustering of genes according to similarity in their
temporal expression (5, 6, 9–11). Such clustering has been
demonstrated to identify functionally related families of genes,
both in yeast and human cell lines (5, 6, 9, 11). Other methods
have been proposed for analyzing time-course gene expression
data, attempting to model underlying genetic circuits (12, 13).

Here we report the application of methods for analyzing
data sets comprised of snapshots of the expression pattern of
different cell types, rather than detailed time-course data. The
data set used is composed of 40 colon tumor samples and 22
normal colon tissue samples, analyzed with an Affymetrix
oligonucleotide array (8) complementary to more than 6,500
human genes and expressed sequence tags (ESTs) (14). We
focus here on generally applicable analysis methods; a more
detailed discussion of the cancer-specific biology associated
with this study will be presented elsewhere (D.A.N. and A.J.L.,

unpublished work). The correlation in expression levels across
different tissue samples is demonstrated to help identify genes
that regulate each other or have similar cellular function. To
detect large groups of related genes and tissues we applied
two-way clustering, an effective technique for detecting pat-
terns in data sets (see e.g., refs. 15 and 16). The main result is
that an efficient clustering algorithm revealed broad, coherent
patterns of genes whose expression is correlated, suggesting a
high degree of organization underlying gene expression in
these tissues. It is demonstrated, for the case of ribosomal
proteins, that clustering can classify genes into coregulated
families. It is further demonstrated that tissue types (e.g.,
cancerous and noncancerous samples) can be separated on the
basis of subtle distributed patterns of genes, which individually
vary only slightly between the tissues. Two-way clustering thus
may be of use both in classifying genes into functional groups
and in classifying tissues based on their gene expression
similarity.

MATERIALS AND METHODS

Tissues and Hybridization to Affymetrix Oligonucleotide
Arrays. Colon adenocarcinoma specimens (snap-frozen in
liquid nitrogen within 20 min of removal) were collected from
patients (D.A.N. and A.J.L., unpublished work). From some of
these patients, paired normal colon tissue also was obtained.
Cell lines used (EB and EB-1) have been described (17). RNA
was extracted and hybridized to the array as described (1, 8).

Treatment of Raw Data from Affymetrix Oligonucleotide
Arrays. The Affymetrix Hum6000 array contains about 65,000
features, each containing '107 strands of a DNA 25-mer
oligonucleotide (8). Sequences from about 3,200 full-length
human cDNAs and 3,400 ESTs that have some similarity to
other eukaryotic genes are represented on a set of four chips.
In the following, we refer to either a full-length gene or an EST
that is represented on the chip as EST. Each EST is repre-
sented on the array by about 20 feature pairs. Each feature
contains a 25-bp sequence, which is either a perfect match
(PM) to the EST, or a single central-base mismatch (MM). The
hybridization signal f luctuates between different features that
represent different 25-mer oligonucleotide segments of the
same EST. This fluctuation presumably reflects the variation
in hybridization kinetics of different sequences, as well as the
presence of nonspecific hybridization by background RNAs.
Some of the features display a hybridization signal that is many
times stronger than their neighbors ('4% of the intensities are
.3 SD away from the mean for their EST). These outliers
appear with roughly equal incidence in PM or MM features. If
not filtered out, outliers contribute significantly to the reading
of the average intensity of the gene. Because most features
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Leave-One-Out Crossvalidation for Alon et al. Data: 
Misclassified points (3 tumor     ,   3 normal      ) are larger size



Clustering: How Do They Make Those                 
Dendrograms and Heat Maps – Outline 

• Definition of unsupervised clustering

• Dendrogram construction by hierarchical agglomerative clustering
. given specified inter-cluster and inter-point distance measures

• Uniqueness of the dendrogram if an unambiguous choice of       
. left/right ordering is specified for each join of two clusters 
. in the dendrogram construction 

• Dependence of the clustering dendrogram on the definition of   
. inter-cluster distance. 

• Additional examples, Heat map construction

• Briefly noting other methods for clustering and data visualization

• The difference between exploratory and supervised clustering   .



kmeans2.tex

K-Means Clustering

1. Choose number of clusters

2. Choose initial cluster centers

3. Assign each point to the cluster whose center is
closest

4. Redefine each cluster center as center of mass
of all the points assigned to that cluster

5. Repeat 3. & 4. until clusters stabilize









The color of the perimeter of each square designates it’s correct group; 
the color of the inside of each square gives its K-Means cluster
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The color of the perimeter of each square designates it’s correct group; 
the color of the inside of each square gives its K-Means cluster
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The color of the perimeter of each square designates it’s correct group; 
the color of the inside of each square gives its K-Means cluster
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K-Means 
Clusters



Clustering: How Do They Make Those                 
Dendrograms and Heat Maps – Outline 

• Definition of unsupervised clustering

• Dendrogram construction by hierarchical agglomerative clustering
. given specified inter-cluster and inter-point distance measures

• Uniqueness of the dendrogram if an unambiguous choice of       
. left/right ordering is specified for each join of two clusters 
. in the dendrogram construction 

• Dependence of the clustering dendrogram on the definition of   
. inter-cluster distance. 

• Additional examples, Heat map construction

• Briefly noting other methods for clustering and data visualization       

• The difference between exploratory and supervised clustering .



CLUSTERING
(Without Training Data: Unsupervised Clustering)  
Exploratory separation of data  into groups of points.  
Points in distinct groups to be more different than 
points within one group. Discovery of classes. 
Information about the data is used to evaluate the 
results but is NOT used in doing the clustering.

(With Training Data: Supervised Clustering)  
Accurate classification of new data points. 
Verification of accuracy of  the training data.  
Discovery of additional classes. Information about the 
data is used in doing the clustering/classification.



t-like statistic for selecting genes to be used in a classifier

τ(g) ≡ |m1 – m2| / (V1/N1 + V2/N2 + δ)1/2

mi = mean of gene g expression levels over training group i

Vi = variance of gene g expression levels over training group i

Ni = number of samples in training group i 

δ = a small constant to prevent division by (nearly) 0           
.

Genes with large τ are more likely to be useful discriminators



BERGERAE




Top situation is better as 
classifier even though the 
red and blue group 
centroids are closer -
because variances are 
smaller

Variance Matters



K-Nearest Neighbor Classifier
The class assigned to a 
“new” data point       is 
that of its nearest neighbor 
<or weighted vote of  K 
nearest neighbors>



 

    Must Do Sound Validation of Any Proposed Classification Method                             
.     (use cross-validation, test on independent data, see, e.g., 
 
       R. Simon, M. D. Radmacher, K. Dobbin and L. M. McShane,   
       Pitfalls in the Use of DNA Microarray Data for Diagnostic and                
.      Prognostic Classification, Journal of the National Cancer Institute,  
       95 (2003), pp. 14-18. <exploratory class discovery, supervised                       
.      classification, proper use of cross-validation> 
 
  



Clustering: How Do They Make Those                 
Dendrograms and Heat Maps – Summary 

• Dendrogram construction by hierarchical agglomerative clustering
. given specified inter-cluster and inter-point distance measures, and a 
. proper ordering of the points

• Uniqueness of the dendrogram if an unambiguous choice of       
. left/right ordering is specified for each join of two clusters 
. in the dendrogram construction 

• Dependence of the clustering dendrogram on the definition of   
. inter-cluster distance. 

• Heat map construction

• Other methods for clustering and data visualization (k-means, PCA)   

• The difference between exploratory and supervised clustering   .



Hierarchical Methods for clustering a set of n points:  
 
Suppose one has n "points" one wants to hierarchically cluster -- 
"draw the hierarchical dendrogram for" 
in order to get an exploratory look to see if there 
appears to be naturally occurring subgroups. 
the points could be expression patterns of n genes across 
a set of experiments, or the points could be the expression 
patterns of n patient samples. 
In general, one then has n vectors V1,...,Vj,...,Vn  
each of length, say, m, 
so each point Vj has m components:  
column(V1j, V2j, ..., Vij, ..., Vmj) 
(I tend to think of vectors as column vectors, but that is 
just personal preference). 
Thus each Vj could be the expression of a given gene across 
m experiments, or the expression level of a given tissue  
sample measured for m genes. If one considers a customary 
"summary" of a set of microarray experiments -- the matrix M 
of expression levels where the entry in row g, column e 
is the (suitably normalized and often transformed by taking log)  
expression level of gene g in 
experiment (or sample) e, then the vectors Vj are either the rows 
or the columns of M, depending on whether one wishes to cluster 
genes or samples. 
 
To carry out the clustering, one wants to form successive  
hierarchical groups (clusters), 
combining 2 subsets of points at each step of the process. 
To do this, one needs to specify TWO distance measures; 
 
1. a distance measure d(V,W) between any two vectors V and W 
of size m, e.g., the Euclidean distance  
d(V,W) = sqrt( (V1-W1)^2 + ... + (Vm - Wm)^2 ) 
 
or the absolute value distance 
d(V,W) = |V1-W1| + ... + |Vm - Wm| 
 
2. given a particular choice of distance d in item 1. above, 
one also needs to specify a distance measure  
between any two sets A and B of vectors. 
common set distances are: 
 
single linkage  --- the distance between set A and set B of points 
is the minimum of the distances d(a,b) where  a  ranges over vectors 
in the set A and  b  ranges over vectors in the set B       
 
complete linkage ---  the distance between set A and set B of points 
is the maximum of the distances d(a,b) where  a  ranges over vectors 
in the set A and  b  ranges over vectors in the set B     
 
average linkage ---  the distance between set A and set B of points 
is the average of the distances d(a,b) where  a  ranges over vectors 
in the set A and  b  ranges over vectors in the set B     
 
simple example: 
given "vectors" with only one component (points on a line) 



with (Euclidean) distances as indicated <picture not to scale> 
 
v1--v2---v3----v4-----v5------v6--------v7----------v8   points on line 
  10   11    12      14      17        21           25   distances(Vi+1,Vi) 
 
single linkage produces successive joinings  
v1 with v2  <distance 10> 
v3 with {v1,v2} <distance 11> 
v4 with {v1,v2,v3}  <distance 12> 
... 
v8 with {v1,v2,v3,v4,v5,v6,v7}  <distance 25> 
illustrating the so-called "chaining" effect often 
associated with single linkage unless there are well 
separated groups of points 
 
complete linkage produces successive joinings 
v1 with v2  <distance 10> 
but now the distance from {v1,v2} to v3 is 21, not 11,  
so the next join 
is {v3,v4}, 
then {v5,v6} 
then {v7,v8}, 
then {v1,v2, v3,v4}  <distance 33 between {v1,v2} and {v3,v4}> 
then (by narrow margin) {v5,v6,v7,v8}   
<distance 63 between {v5,v6} & {v7,v8}> 
           (vs distance of 64 between {v1,v2,v3,v4} and {v5,v6}) 
then (lastly) the join of the latter two size 4 subsets, 
so one gets apparent structure where arguably in this  
case there really isn't much. 
by nature of using maximum inter-set distance, 
complete linkage tends to force formation of a larger number 
of more compact clusters. 
 
average linkage produces joinings 
{v1,v2} 
then {v3,v4}, 
then {v5,v6} 
then {v7,v8}, 
then {v1,v2, v3,v4} as before, 
but here the next join is 
{v1,v2,v3,v4} with {v5,v6}  
<average distance (with some arithmetic) is 41.625> 
(average distance between {v5,v6} and {v7,v8} is 42) 
and so the last join is 
{v1,v2,v3,v4,v5,v6} with {v7,v8} 
so here (and arguably in general) 
average linkage gives clustering somewhat between 
single linkage and complete linkage. 
note the "unstable" nature of the clustering results 
depending on choice of inter-set distance measure and 
specific point locations. 
 
the dendrograms are drawn by arranging the point numbers equally 
spaced along the x-axis, in an ordering compatible with the 
order in which the subsets are joined. At each step of the 
process (initially there are n "clusters" - the individual points) 
each subset has associated with it an x-axis location and a height 



(heights are initially 0). If subsets A and B are joined, then  
I. a vertical line is drawn at the x location of A  
   from y=height of A  to  y=d(A,B),  
II. a vertical line is drawn at the x location of B  
    from y=height of B  to  y=d(A,B), and 
III. a horizontal line is drawn between  x=x location of A 
     and x=x location of B  at the height  y=d(A,B) 
IV. the x location of the new cluster A union B is the 
    average of the x location of A and the x location of B, 
    and the height of the new cluster is d(A,B). 
 
WARNING: clustering algorithms produce clusters, 
whether or not there is real structure to the points. 
feed any computer program that does clustering vectors from a 
random number generator and it will return a dendrogram! 
So one always needs to verify whether apparent  
cl
 
ustering results make biological sense. 

 
last -- one may consider "correlation distance."  
One might, for example, be interested in whether two genes  
have responses that either both go up (or down) in tandem, 
or that go in opposite directions in each experiment (as  
might be the case if they were in "competing"  
pathways (when 1 is up the other is downregulated)). 
Consider the case when are working with vectors whose components 
are log(expression level in "treatment"/expression 
                                           level in control), 
so the "null case" is a value of 0. 
Thus if two genes are expressed in a coordinated fashion, 
the dot product of their vectors should have "large" magnitude; 
   V dot W = V.W is defined as  V1*W1 + ... + Vm*Wm  
if V and W go in "opposite directions" then V.W would be 
negative with large magnitude. If in some cases both are 
up (or both down regulated) while in other experiments one 
is up while the other is down, there will be  
cancellation within the sums in the dot product. 
Here let's take the view that we are interested 
in whether both go up or both go down (positive correlation) 
or always go oppositely (one is up while other is down) which 
is negative correlation, so rather than weighing the magnitude of individual  
gene expression levels, we'll normalize each vector by multiplying 
each component by the same constant (v ---> cV) so the 
length of each expression ratio vector is now 1 
(scale so V1^2 + ...+ Vm^2 = 1 for each V) 
before doing the dot products. 
Then V.W will always be between -1 and 1 so a 
standard way of defining a "correlation distance" is to set 
d(V,W) = 1 - [absolute value of(V.W)] 
(when correlation is high, distance is low) 
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