BINF 636: Lecture 9: Clustering: How Do They Make and Interpret Those
Dendrograms and Heat Maps; Differences Between Unsupervised Clustering
and Classification.

Description: Clustering, for the purpose of this lecture, is the exploratory partitioning of
a set of data points into subgroups (clusters) such that members of each subgroup are
relatively similar to each other and members of distinct clusters are relatively dissimilar.
For example, one might have gene expression profiles from a set of samples of a
particular type of tumor and wish to see if the samples separate out into distinct
subgroups. In this case one could be looking to uncover evidence of previously unknown
subtypes, or one might wish to see if the results of clustering the gene expression profiles
are consistent with classification by histopathology.

In this class we will describe how dendrograms, such as the example
to the right, are constructed using hierarchical agglomerative clustering,
where one starts with each of the data points as an individual cluster, ﬁL‘—

% 11

and in successive steps combines the pair of clusters that are “closest”
to each other into one new cluster. This requires specifying a distance
measure between data points and between clusters. Each clustering
step reduces by one the number of existing clusters until at the end of the final step there
is one cluster containing all the data points. If one has ordered the data points along a
line so that at each step the clusters that are joined together are adjacent to each other, one
can draw a corresponding diagram (dendrogram) where the heights of the vertical lines
reflect the distance between the pair of clusters joined at each stage of the procedure. If
one has, e.g., microarray data from a set of tumor samples, one can cluster both the tissue
sample gene expression profiles and the expression profiles
of the genes across the tissue samples, thus determining a
corresponding ordering of the tumor samples and of the
genes. One can then color code each rectangle representing
the expression level of one gene in one tumor sample,
producing a heat map such as the example to the right.

We will describe how these procedures are carried out,
and how the resulting hierarchies of clusters can depend
on the specifications for distances between data points and between clusters. The type of
changes in appearance that may occur in a dendrogram in response to small changes in
the data points will also be illustrated. An individual dendrogram is essentially a one-
dimensional ordering of a data set, in contrast with two or three dimensional
visualizations that can be obtained by principal component analysis (PCA) which is the
subject of Lecture 10. The difference between exploratory (unsupervised) clustering and
classification will be noted, along with the importance of proper validation of
classification methods.
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Clustering example; modified version
of Figure 1 of A. A. Alizadeh et al.,
Distinct Types of Diffuse Large B-Cell
Lymphoma Identified by Gene
Expression Profiling, Nature 403,

3 Feb. 2000, pp. 503-511.

Centroid clustering on log of fold
changes of measured expression
levels with Pearson correlation
similarity for tissue samples (columns)
and cos(angle) similarity for genes
(rows). Fold changes are ratios of
MRNA expression level in tissue
sample relative to mRNA level in
reference pool. The values in each
row (gene) were median centered
before the clustering / heat map plot.

Heat map color code for coloring of
each [tissue sample x gene] rectangle
Is at the bottom of the figure
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Information from a Clustering

Example of Single Linkage Hierarchical Clustering

Hierarchical
/ assoclations

/ of groupings
of the points
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points

clustered,
each
point Is an
n-tuple

of numbers,
here have
(X,y) pairs, in
general, could
have 1000’s of
components for each point, e.g., microarray data

Each point has form P = (X, X,, ..., X,)
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Clustering: How Do They Make Those
Dendrograms and Heat Maps - Outline

e Definition of unsupervised clustering

» Dendrogram construction by hierarchical agglomerative clustering
given specified inter-cluster and inter-point distance measures

 Uniqueness of the dendrogram if an unambiguous choice of
left/right ordering is specified for each join of two clusters
In the dendrogram construction

* Dependence of the clustering dendrogram on the definition of
Inter-cluster distance.

« Additional examples, Heat map construction
* Briefly noting other methods for clustering and data visualization

 The difference between exploratory and supervised clustering



Some References for Clustering

[1] R. O. Duda, P. E. Hart and D. G. Stork, Pattern
Classification, Second Edition, John Wiley & Sons,
2001, Chapter 10 — Unsupervised Learning and Clustering

[2] R. A. Johnson and D. W. Wichern, Applied Multivariate
Statistical Analysis, Fourth Edition, Prentice Hall,
1998, Chapter 12 — Clustering, Distance Methods, and Ordination

[3] J. Quackenbush, Computational Analysis of Microarray Data,
Nature Reviews Genetics, 2 (2001), pp. 418-427.

[4] R. Simon, M. D. Radmacher, K. Dobbin and L. M. McShane,
Pitfalls in the Use of DNA Microarray Data for Diagnostic and
Prognostic Classification, Journal of the National Cancer Institute,
95 (2003), pp. 14-18. <exploratory class discovery, supervised
classification, proper use of cross-validation> see also, M. West et al.,
Predicting the Clinical Status of Human Breast Cancer by Using Gene
Expression Profiles, PNAS, 98 (2001), pp. 11462-11467.

[5] http://en.wikipedia.org/wiki/Data_clustering

[6] M. B. Eisen, P. T. Spellman, P. O. Brown and D. Botstein, Cluster
Analysis and Display of Genome-wide Expression Patterns,
PNAS, 95 (1998), pp. 14863-14868

[7] Software for performing a variety of clustering methods is available in
<with usual disclaimers>, e.g., R (open source) & open source R programs
(see in particular the Bioconductor suite of software), and in general data
analysis software such as MATLAB and IDL, statistics packages (SAS etc.),

commercial packages for microarray analysis (such as Partek, GeneSpring,
GeneSifter, JMP Genomics, and the MATLAB Bioinformatics Toolbox),

free software such as Cluster (http://rana.lbl.gov/EisenSoftware.htm), and
GenePattern (http://www.broad.mit.edu/cancer/software/genepattern/),

software available at NIH, including the Mathematical and Statistical
Computing Lab toolbox of scripts that complement and interface with the
JMP statistics package (http://abs.cit.nih.gov/MSCLtoolbox/), BRB Array




Tools (http://linus.nci.nih.gov/BRB-ArrayTools.html) and
mAdb (http://nciarray.nci.nih.gov/).

[8] M. Zvelebil and J. O. Baum, Understanding Bioinformatics, Garland
Science, NY, 2008, Chapter 16 — Clustering Methods and Statistics

[9] D. Stekel, Microarray Bioinformatics, Cambridge University Press,
Cambridge, 2003, Chapter 8 — Analysis of Relationships Between
Genes, Tissues or Treatments



CLUSTERING

(Without Training Data: Unsupervised Clustering)
Exploratory separation of data into groups of points.
Points In distinct groups to be more different than
points within one group. Discovery of classes.
Information about the data may be used to evaluate
the results but Is NOT used in doing the clustering.

(With Training Data: Supervised Clustering)
Accurate classification of new data points.
Verification of accuracy of the training data.

. Information about the
training data is used to do the clustering/classification.



Distances
between the
points being
clustered

Components of the Clustering Process

Example of Single Linkage Hierarchical Clustering

Inter-cluster Distance

Each “point” or item being

|

Definition of
the distance
between
clusters
being
combined at

the overall

~‘ each step of
clustering

I process
E'

Ordering of the
items being
clustered

clustered could, e.g., be a set of gene expression values from a tumor
sample. A cluster is a subset of the items being clustered. Start with
each individual point as a cluster, and successively combine the
closest pair of clusters into one new cluster. End with one cluster.



Standard (Euclidean) Distance
between two points

Y
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(X,y)

A
U

X

Distance? between (X,y) and (r,s) is (X-r)? + (y-s)?

Distance? between (p,,...,p,) and (q,,...,q,) is:

(P1-0)% + - +(p,-0,)?



Definitions of Inter-cluster Distances
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Hierarchical Agglomerative Clustering

1. Make choice of inter-cluster distance (and specify
the distances (dissimilarities) between points).

2. Start with each point as a singleton cluster.

3. At each step, join the pair of clusters that have the
smallest distance between them. Draw vertical line
from top of each joined cluster up to height = distance
between them, connect with horizontal line. Top of
new joined cluster is midway between them.

4. To avoid crossed lines, must have ordered the
points so that at each step, joined clusters are next to
each other (get unigue dendrogram if specify rule for
left-right order at each join)



Example of Single Linkage Hierarchical Clustering

Distances

dij 1
relevant  416=0.8
for

Single _
Linkage U
are given

Inter-cluster Distance

d25=2.5

3. At each step, join the pair of clusters that have the smallest distance
between them. Draw vertical line from top of each joined cluster up to
height = distance between them, connect with horizontal line. Top of new
joined cluster is midway between them.



Consequences of Improper Ordering of the Points
8 -
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“Left Sliding” |
=

%" Finding an Admissible Ordering by
_ = ||

Single Linkage Example

_ HERRR
sfé‘rting with the ordering 01234567 '

first merge iIs 1-6 so form 01623457

next merge Is 16-3 so form 01632457

next merge Is 0-4 so form 04163257

next merge Is 04-7 so form 04716325

next merge Is 2-5 so form 047 163 25

next merge IS 047-163 so form 047163 25

last merge 1s 047163-25 so corresponding ordering of the
pointsis 04 716 325: with this ordering there will be

no “crisscrossing” of lines when draw the dendrogram
Exercise: try starting with: 53764120



wy' % Finding an Admissible Ordering by
“Left Sliding”
Single Linkage Example

sfé‘rting with the ordering 53764120

first merge iIs 1-6 so form 53761420
next merge Is 16-3 so form 53617420

next merge is 0-4 so form 53617402 ¢
next merge is 04-7 so form 53617402 ¢
next merge is 2-5 so form 52 361 740 ** IS

o]
|

[e)]
L

oS
I

next merge is 047-163 so form 52361740  !!lil...
last merge Is 52-361740 so corresponding ordering of the
pointsis 5236174 0:with this ordering there will be
no “crisscrossing” of lines when draw the dendrogram



Example of Single Linkage Hierarchical Clustering
Distances
fei{evam 1 15 In Class Exercise:
el | start with the admissible
E:rr]]aLeQe d06=3 ordering 25047613
and draw the resulting
single-linkage dendrogram

are given d04=1.4



Intercluster Distance
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3. At each step, join the pair
of clusters that have the
smallest distance between
them. Draw vertical line from
top of each joined cluster up
to height = distance between
them, connect with
horizontal line. Top of new
joined cluster is midway
between them.
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ntercluster Distance

ntercluster Distance
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Clustering: How Do They Make Those
Dendrograms and Heat Maps - Outline

e Definition of unsupervised clustering

« Dendrogram construction by hierarchical agglomerative clustering
given specified inter-cluster and inter-point distance measures

 Uniqueness of the dendrogram if an unambiguous choice of
left/right ordering is specified for each join of two clusters
In the dendrogram construction

* Dependence of the clustering dendrogram on the definition of
Inter-cluster distance.

« Additional examples, Heat map construction
* Briefly noting other methods for clustering and data visualization

 The difference between exploratory and supervised clustering



Example of Single Linkage Hierarchical Clustering

Distances
dij 1
relevant  416=0.8 ymd63=1.2
for

Single _
Linkage d06=3
are given

Inter-cluster Distance

cf. Eisen et al. [6]
d72=75

Example of a way 5
of specifying left/right orderings
Examples of Point Rankings

left 07 146 235 (GeneX) Ateach join of two subclusters, place the one

left 52740361 (GeneY) containing the “leftmost” point number on the left.
left 523617 40 (GeneZ) Different orderings give rearranged dendrograms.
left 12304756 (GeneG) Could also use average gene expression (Eisen et al.)

Dendrogram is indep. of original order given unique left/right orderings

d25=2.5



d06=3

“r., “Left Sliding” Left/Right by Gene X

Finding an Admissible Ordering by

« . oingle Linkage Example i 111
starting with the ordering 65743210
Gene X left /right pointranking=07146235

first merge iIs 1-6 so form 16574320
next merge Is 16-3 so form 16357420
next merge Is 0-4 so form 16357042
next merge Is 04-7 so form 1635047 2
next merge Is 2-5 so form 163 25 047
next merge 1S 047-163 so form 047163 25
last merge 1s 047163-25soget 04716325

Exercise: try starting with: 35026714

At 41 6 i
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Clustering: How Do They Make Those
Dendrograms and Heat Maps - Outline

e Definition of unsupervised clustering

« Dendrogram construction by hierarchical agglomerative clustering
given specified inter-cluster and inter-point distance measures

» Uniqueness of the dendrogram if an unambiguous choice of
left/right ordering is specified for each join of two clusters
In the dendrogram construction

e Dependence of the clustering dendrogram on the definition of
Inter-cluster distance.

« Additional examples, Heat map construction
* Briefly noting other methods for clustering and data visualization

 The difference between exploratory and supervised clustering



Data for 1-Dimensional Clustering Example

v1--v2---v3----v4-----V5------ V6-------- V/-mmmmmmnes v8 points on line
10 11 12 14 17 21 25 distances(V.,,V)



Intereluster Distance

Hierarchical Clustering of Linear Example Hierarchical Clustering of Linear Example
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Warning: hierarchical agglomerative
clustering programs will always return
dendrograms, even for random data

should use any information available
about data to judge usefulness of
clustering, as well as compactness and
separation of clusters; use, e.g., PCA to
visualize data and clusters.




Correlation Distances

Suppose each point is a vector of log(fold changes), e.g.,
log(treated gene expression level / control expression level).

Two such vectors V, W are well (positively) correlated if when
an entry in V is > 0, the corresponding entry in W is > 0, and
when V; is <0 then W; is < 0.

Two such vectors V, W are highly negatively correlated if
when an entry in V is > 0, the corresponding entry in W is < 0,
and when V; is < 0 then W; is > 0.

Two common choices of correlation distance are
d(V,W) = 1 — cos(angle between the vectors V and W)
d(V,W) =1 —| cos(angle between the vectors VV and W) |

G/@V

W



Clustering: How Do They Make Those
Dendrograms and Heat Maps - Outline

e Definition of unsupervised clustering

« Dendrogram construction by hierarchical agglomerative clustering
given specified inter-cluster and inter-point distance measures

» Uniqueness of the dendrogram if an unambiguous choice of
left/right ordering is specified for each join of two clusters
In the dendrogram construction

* Dependence of the clustering dendrogram on the definition of
Inter-cluster distance.

« Additional examples, Heat map construction
* Briefly noting other methods for clustering and data visualization

 The difference between exploratory and supervised clustering



REPORTS

Molecular Classification of
Cancer: Class Discovery and
Class Prediction by Gene

Expression Monitoring

T. R. Golub,’?*{ D. K. Slonim,"{ P. Tamayo,’ C. Huard,"
M. Gaasenbeek, J. P. Mesirov,” H. Coller,” M. L. Loh,?
J. R. Downing,® M. A. Caligiuri,* C. D. Bloomfield,*

E. S. Lander™-5*

Although cancer classification has improved over the past 30 years, there has
been no general approach for identifying new cancer classes (class discovery)
or for assigning tumors to known classes (class prediction). Here, a generic
approach to cancer classification based on gene expression monitoring by DNA
microarrays is described and applied to human acute leukemias as a test case.
A class discovery procedure automatically discovered the distinction between
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without
previous knowledge of these classes. An automatically derived class predictor
was able to determine the class of new leukemia cases. The results demonstrate
the feasibility of cancer classification based solely on gene expression moni-
toring and suggest a general strategy for discovering and predicting cancer
classes for other types of cancer, independent of previous biological knowledge.

The challenge of cancer treatment has been to
target specific therapies to pathogenetically
distinct tumor types, to maximize efficacy
and minimize toxicity. Improvements in can-
cer classification have thus been central to
advances in cancer treatment. Cancer classi-
fication has been based primarily on morpho-
logical appearance of the tumor, but this has
serious limitations. Tumors with similar his-
topathological appearance can follow signif-
icantly different clinical courses and show
different responses to therapy. In a few cases,
such clinical heterogeneity has been ex-
plained by dividing morphologically similar
tumors into subtypes with distinct pathogen-
eses. Key examples include the subdivision
of acute leukemias, non-Hodgkin’s lympho-
mas, and childhood “small round blue cell
tumors” [tumors with variable response to
chemotherapy (/) that are now molecularly
subclassified into neuroblastomas, rhabdo-
myosarcoma, Ewing’s sarcoma, and other
types (2)]. For many more tumors, important
subclasses are likely to exist but have yet to

"Whitehead Institute/Massachusetts Institute of
Technology Center for Genome Research, Cambridge,
MA 02139, USA. 2Dana-Farber Cancer Institute and
Harvard Medical School, Boston, MA 02115, USA. 3St.
Jude Children’s Research Hospital, Memphis, TN
38105, USA. “Comprehensive Cancer Center and Can-
cer and Leukemia Group B, Ohio State University,
Columbus, OH 43210, USA. *Department of Biology,
Massachusetts Institute of Technology, Cambridge,
MA 02142, USA.

*To whom correspondence should be addressed. E-
mail: golub@genome.wi.mit.edu; lander@genome.wi.
mit.edu.

fThese authors contributed equally to this work.

www.sciencemag.org SCIENCE VOL 286

be defined by molecular markers. For exam-
ple, prostate cancers of identical grade can
have widely variable clinical courses, from
indolence over decades to explosive growth
causing rapid patient death. Cancer classifi-
cation has been difficult in part because it has
historically relied on specific biological in-
sights, rather than systematic and unbiased
approaches for recognizing tumor subtypes.
Here we describe such an approach based on
global gene expression analysis.

We divided cancer classification into two
challenges: class discovery and class predic-
tion. Class discovery refers to defining pre-
viously unrecognized tumor subtypes. Class
prediction refers to the assignment of partic-
ular tumor samples to already-defined class-
es, which could reflect current states or future
outcomes.

We chose acute leukemias as a test case.
Classification of acute leukemias began with
the observation of variability in clinical out-
come (3) and subtle differences in nuclear
morphology (4). Enzyme-based histochemi-
cal analyses were introduced in the 1960s to
demonstrate that some leukemias were peri-
odic acid-Schiff positive, whereas others
were myeloperoxidase positive (). This pro-
vided the first basis for classification of acute
leukemias into those arising from lymphoid
precursors (acute lymphoblastic leukemia,
ALL) or from myeloid precursors (acute my-
eloid leukemia, AML). This classification
was further solidified by the development in
the 1970s of antibodies recognizing either
lymphoid or myeloid cell surface molecules
(6). Most recently, particular subtypes of

acute leukemia have been found to be asso-
ciated with specific chromosomal transloca-
tions—for example, the t(12;21)(p13;q22)
translocation occurs in 25% of patients with
ALL, whereas the t(8;21)(q22;q22) occurs in
15% of patients with AML (7).

Although the distinction between AML
and ALL has been well established, no single
test is currently sufficient to establish the
diagnosis. Rather, current clinical practice
involves an experienced hematopathologist’s
interpretation of the tumor’s morphology,
histochemistry, immunophenotyping, and cy-
togenetic analysis, each performed in a sep-
arate, highly specialized laboratory. Although
usually accurate, leukemia classification re-
mains imperfect and errors do occur.

Distinguishing ALL from AML is critical
for successful treatment; chemotherapy regi-
mens for ALL generally contain corticoste-
roids, vincristine, methotrexate, and L-asparagi-
nase, whereas most AML regimens rely on a
backbone of daunorubicin and cytarabine (8).
Although remissions can be achieved using
ALL therapy for AML (and vice versa), cure
rates are markedly diminished, and unwarrant-
ed toxicities are encountered.

We set out to develop a more systematic
approach to cancer classification based on the
simultaneous expression monitoring of thou-
sands of genes using DNA microarrays (9). It
has been suggested (/0) that such microar-
rays could provide a tool for cancer classifi-
cation. Microarray studies to date (/7), how-
ever, have primarily been descriptive rather
than analytical and have focused on cell cul-
ture rather than primary patient material, in
which genetic noise might obscure an under-
lying reproducible expression pattern.

We began with class prediction: How
could one use an initial collection of samples
belonging to known classes (such as AML
and ALL) to create a “class predictor” to
classify new, unknown samples? We devel-
oped an analytical method and first tested it
on distinctions that are easily made at the
morphological level, such as distinguishing
normal kidney from renal cell carcinoma
(12). We then turned to the more challenging
problem of distinguishing acute leukemias,
whose appearance is highly similar.

Our initial leukemia data set consisted of
38 bone marrow samples (27 ALL, 11 AML)
obtained from acute leukemia patients at the
time of diagnosis (/3). RNA prepared from
bone marrow mononuclear cells was hybrid-
ized to high-density oligonucleotide microar-
rays, produced by Affymetrix and containing
probes for 6817 human genes (/4). For each
gene, we obtained a quantitative expression
level. Samples were subjected to a priori
quality control standards regarding the
amount of labeled RNA and the quality of the
scanned microarray image (/5).

The first issue was to explore whether

15 OCTOBER 1999
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Intercluster Distance

Golub et al. ALL/AML Microarray Data Clusters
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Intercluster Distance

Golub et al. ALL/AML Microarray Data Clusters
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T. Golub et al. ALL/AML Microarray Data Clusters

Intercluster Distance
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T. Golub et al. ALL/AML Microarray Data Clusters

54 - Note sometimes the
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PCA of Golub training data, using 600 top variance genes
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T. R. Golub et al. Acute Leukemia Data  (Science, V286, 15 Oct 1999)

ALL — B is B—cell acute lymphoblastic leukemia
ALL — T is T—cell acute lymphoblastic leukemia

AML is acute myeloid leukemia
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Broad patterns of gene expression revealed by clustering analysis
of tumor and normal colon tissues probed by

oligonucleotide arrays

U. ALoN*T, N. BARKAT*T, D. A. NOTTERMAN*, K. GIsH¥, S. YBARRAT, D. MACK¥, AND A. J. LEVINE*$

Departments of *Molecular Biology and TPhysics, Princeton University, Princeton, NJ 08540; and ¥EOS Biotechnology, 225A Gateway Boulevard,

South San Francisco, CA 94080

Contributed by A. J. Levine, April 13, 1999

ABSTRACT Oligonucleotide arrays can provide a broad
picture of the state of the cell, by monitoring the expression
level of thousands of genes at the same time. It is of interest
to develop techniques for extracting useful information from
the resulting data sets. Here we report the application of a
two-way clustering method for analyzing a data set consisting
of the expression patterns of different cell types. Gene expres-
sion in 40 tumor and 22 normal colon tissue samples was
analyzed with an Affymetrix oligonucleotide array comple-
mentary to more than 6,500 human genes. An efficient two-
way clustering algorithm was applied to both the genes and the
tissues, revealing broad coherent patterns that suggest a high
degree of organization underlying gene expression in these
tissues. Coregulated families of genes clustered together, as
demonstrated for the ribosomal proteins. Clustering also
separated cancerous from noncancerous tissue and cell lines
from in vivo tissues on the basis of subtle distributed patterns
of genes even when expression of individual genes varied only
slightly between the tissues. Two-way clustering thus may be
of use both in classifying genes into functional groups and in
classifying tissues based on gene expression.

Recently introduced experimental techniques based on oligo-
nucleotide or cDNA arrays now allow the expression level of
thousands of genes to be monitored in parallel (1-9). To use
the full potential of such experiments, it is important to
develop the ability to process and extract useful information
from large gene expression data sets. Elegant methods recently
have been applied to analyze gene expression data sets that are
comprised of a time course of expression levels. Examples of
such time-course experiments include following a develop-
mental process or changes as the cell undergoes a perturbation
such as a shift in growth conditions. The analysis methods were
based on clustering of genes according to similarity in their
temporal expression (5, 6, 9-11). Such clustering has been
demonstrated to identify functionally related families of genes,
both in yeast and human cell lines (5, 6, 9, 11). Other methods
have been proposed for analyzing time-course gene expression
data, attempting to model underlying genetic circuits (12, 13).

Here we report the application of methods for analyzing
data sets comprised of snapshots of the expression pattern of
different cell types, rather than detailed time-course data. The
data set used is composed of 40 colon tumor samples and 22
normal colon tissue samples, analyzed with an Affymetrix
oligonucleotide array (8) complementary to more than 6,500
human genes and expressed sequence tags (ESTs) (14). We
focus here on generally applicable analysis methods; a more
detailed discussion of the cancer-specific biology associated
with this study will be presented elsewhere (D.A.N. and A.J.L.,

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked “advertisement” in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

PNAS is available online at www.pnas.org.
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unpublished work). The correlation in expression levels across
different tissue samples is demonstrated to help identify genes
that regulate each other or have similar cellular function. To
detect large groups of related genes and tissues we applied
two-way clustering, an effective technique for detecting pat-
terns in data sets (see e.g., refs. 15 and 16). The main result is
that an efficient clustering algorithm revealed broad, coherent
patterns of genes whose expression is correlated, suggesting a
high degree of organization underlying gene expression in
these tissues. It is demonstrated, for the case of ribosomal
proteins, that clustering can classify genes into coregulated
families. It is further demonstrated that tissue types (e.g.,
cancerous and noncancerous samples) can be separated on the
basis of subtle distributed patterns of genes, which individually
vary only slightly between the tissues. Two-way clustering thus
may be of use both in classifying genes into functional groups
and in classifying tissues based on their gene expression
similarity.

MATERIALS AND METHODS

Tissues and Hybridization to Affymetrix Oligonucleotide
Arrays. Colon adenocarcinoma specimens (snap-frozen in
liquid nitrogen within 20 min of removal) were collected from
patients (D.A.N. and A.J.L., unpublished work). From some of
these patients, paired normal colon tissue also was obtained.
Cell lines used (EB and EB-1) have been described (17). RNA
was extracted and hybridized to the array as described (1, 8).

Treatment of Raw Data from Affymetrix Oligonucleotide
Arrays. The Affymetrix Hum6000 array contains about 65,000
features, each containing ~107 strands of a DNA 25-mer
oligonucleotide (8). Sequences from about 3,200 full-length
human cDNAs and 3,400 ESTs that have some similarity to
other eukaryotic genes are represented on a set of four chips.
In the following, we refer to either a full-length gene or an EST
that is represented on the chip as EST. Each EST is repre-
sented on the array by about 20 feature pairs. Each feature
contains a 25-bp sequence, which is either a perfect match
(PM) to the EST, or a single central-base mismatch (MM). The
hybridization signal fluctuates between different features that
represent different 25-mer oligonucleotide segments of the
same EST. This fluctuation presumably reflects the variation
in hybridization kinetics of different sequences, as well as the
presence of nonspecific hybridization by background RNAs.
Some of the features display a hybridization signal that is many
times stronger than their neighbors (=4% of the intensities are
>3 SD away from the mean for their EST). These outliers
appear with roughly equal incidence in PM or MM features. If
not filtered out, outliers contribute significantly to the reading
of the average intensity of the gene. Because most features

Abbreviation: EST, expressed sequence tag.

8To whom reprint requests should be sent at present address: Presi-
dent’s Office, Rockefeller University, 1230 York Avenue, New York,
NY 10021. e-mail: ajlevine@rockvax.rockefeller.edu.



Intercluster Distance

J. Alon et al. Colon Microarray Data Clusters
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Leave-One-Out Crossvalidation for Alon et al. Data:
Misclassified points (3 tumor ® , 3 normal @ ) are larger size




Clustering: How Do They Make Those
Dendrograms and Heat Maps - Outline

e Definition of unsupervised clustering

« Dendrogram construction by hierarchical agglomerative clustering
given specified inter-cluster and inter-point distance measures

» Uniqueness of the dendrogram if an unambiguous choice of
left/right ordering is specified for each join of two clusters
In the dendrogram construction

* Dependence of the clustering dendrogram on the definition of
Inter-cluster distance.

« Additional examples, Heat map construction
* Briefly noting other methods for clustering and data visualization

 The difference between exploratory and supervised clustering



kmeans2.tex

K-Means Clustering

. Choose number of clusters
. Choose initial cluster centers

. Assign each point to the cluster whose center is
closest

. Redefine each cluster center as center of mass
of all the points assigned to that cluster

. Repeat 3. & 4. until clusters stabilize
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Part of the Anderson Fisher Iris Data Set
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column 5 1 = Setosa
?2 = Versicolor
3 = Verginica

full data set is
50 samples of each iris flower species
(data from BE. A. Johnson and D. W. Wichern)

each row is the data from one flower

columns 1, 2, 3, 4 are measured properties
of each flower (sepal length, sepal width,
petal length, petal width)

Botany definitions: the calyx is the outermost
group of floral parts, usually green; sepals
are the individual leawves or parts of the
calyx



Centroid Hierarchical Clustering of Anderson Iris Data

Intercluster Distance
N
\
\

! ! R I

0 30 60 90 120 150
Point Number

plotted Wed May 29 12:21:09 2002  cenhieriris.pro——May 29, 2002 cenhiermay29



Principal Component Plot of Anderson Iris Data

Second Principal Component
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data from Table 11.5 of Johnson and Wichern 1998



K—Means Clustering of Anderson Iris Data
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The color of the perimeter of each square designates it’s correct group;
the color of the inside of each square gives its K-Means cluster
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data from Toble 11.5 of Johnson and Wichern 1998



K—Means Clustering of Anderson Iris Dato
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First Principal Component

The color of the perimeter of each square designates it's correct group;
the color of the inside of each square gives its K-Means cluster

nclusters

cay ovolues =

Tue Apr 23 18:24:14 2002

3

4278 0243 0.078 0.024

iriskmeons2.pro  Apal 25, 2002

dota from Toble 11.5 of Johnson ond Wichern 1998

irskmeans2cll.ps



K—Means Clustering of Anderson Iris Data
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The color of the perimeter of each square designates it's correct group;
the color of the inside of each square gives its K-Means cluster
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Clustering: How Do They Make Those
Dendrograms and Heat Maps - Outline

e Definition of unsupervised clustering

« Dendrogram construction by hierarchical agglomerative clustering
given specified inter-cluster and inter-point distance measures

» Uniqueness of the dendrogram if an unambiguous choice of
left/right ordering is specified for each join of two clusters
In the dendrogram construction

* Dependence of the clustering dendrogram on the definition of
Inter-cluster distance.

« Additional examples, Heat map construction
* Briefly noting other methods for clustering and data visualization

 The difference between exploratory and supervised clustering



CLUSTERING

(Without Training Data: Unsupervised Clustering)
Exploratory separation of data into groups of points.
Points In distinct groups to be more different than
points within one group. Discovery of classes.
Information about the data Is used to evaluate the
results but 1Is NOT used in doing the clustering.

(With Training Data: Supervised Clustering)
Accurate classification of new data points.
Verification of accuracy of the training data.

. Information about the
data is used In doing the clustering/classification.



t-like statistic for selecting genes to be used in a classifier

IM. = mean of gene g expression levels over training group |
Vi = variance of gene g expression levels over training group |
N. = number of samples in training group i

o = a small constant to prevent division by (nearly) 0

Genes with large T are more likely to be useful discriminators



T vs. M 30 GCenes B vs. M 30 GCenes B wvs. T

30 Cenes

Expression Levels for Genes Classifying Tumor Type
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Color scale for z ranges of expression for each gene (o units)
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T. R. Golub et al. Acute Leukemia Data  (Science, V286, 15 Oct 1999)

ALL — B is B—cell acute lymphoblastic leukemia
ALL — T is T—cell acute lymphoblastic leukemia

AML is acute myeloid leukemia

C:\berger\biochem\golubdata\allaml3x30genes3ps.ps
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Top situation is better as
classifier even though the
red and blue group
centroids are closer -
because variances are
smaller



The class assigned to a
“new” data point @ Is
that of its nearest neighbor
<or weighted vote of K
nearest neighbors>



Must Do Sound Validation of Any Proposed Classification Method
(use cross-validation, test on independent data, see, e.g.,

R. Simon, M. D. Radmacher, K. Dobbin and L. M. McShane,
Pitfalls in the Use of DNA Microarray Data for Diagnostic and
Prognostic Classification, Journal of the National Cancer Institute,
95 (2003), pp. 14-18. <exploratory class discovery, supervised
classification, proper use of cross-validation>



Clustering: How Do They Make Those
Dendrograms and Heat Maps - Summary

* Dendrogram construction by hierarchical agglomerative clustering
given specified inter-cluster and inter-point distance measures, and a
proper ordering of the points

 Uniqueness of the dendrogram if an unambiguous choice of
left/right ordering is specified for each join of two clusters
In the dendrogram construction

» Dependence of the clustering dendrogram on the definition of
Inter-cluster distance.

» Heat map construction
 Other methods for clustering and data visualization (k-means, PCA)

 The difference between exploratory and supervised clustering



Hierarchical Methods for clustering a set of n points:

Suppose one has n "points™ one wants to hierarchically cluster --
"draw the hierarchical dendrogram for"

in order to get an exploratory look to see if there

appears to be naturally occurring subgroups.

the points could be expression patterns of n genes across

a set of experiments, or the points could be the expression
patterns of n patient samples.

In general, one then has n vectors V1,...,Vj,...,Vn

each of length, say, m,

so each point Vj has m components:

column(vij, V2§, ..., Vij, ..., Vmj)

(1 tend to think of vectors as column vectors, but that is

Just personal preference).

Thus each Vj could be the expression of a given gene across

m experiments, or the expression level of a given tissue

sample measured for m genes. If one considers a customary
"summary' of a set of microarray experiments -- the matrix M

of expression levels where the entry in row g, column e

is the (suitably normalized and often transformed by taking log)
expression level of gene g in

experiment (or sample) e, then the vectors Vj are either the rows
or the columns of M, depending on whether one wishes to cluster
genes or samples.

To carry out the clustering, one wants to form successive
hierarchical groups (clusters),

combining 2 subsets of points at each step of the process.
To do this, one needs to specify TWO distance measures;

1. a distance measure d(V,W) between any two vectors V and W
of size m, e.g., the Euclidean distance
dqv,W) = sgrt( (V1I-W™2 + ... + (Vm - Wm)"™2 )

or the absolute value distance
d(v,W) = JV1-W1] + ... + |Vm - Wm]

2. given a particular choice of distance d in item 1. above,
one also needs to specify a distance measure

between any two sets A and B of vectors.

common set distances are:

single linkage --- the distance between set A and set B of points

is the minimum of the distances d(a,b) where a ranges over vectors

in the set A and b ranges over vectors in the set B

complete linkage --- the distance between set A and set B of points
is the maximum of the distances d(a,b) where a ranges over vectors

in the set A and b ranges over vectors in the set B

average linkage --- the distance between set A and set B of points

is the average of the distances d(a,b) where a ranges over vectors

in the set A and b ranges over vectors in the set B

simple example:
given "'vectors' with only one component (points on a line)



with (Euclidean) distances as indicated <picture not to scale>

vV1l--v2-—-v3-——-V4-———- V5—————- V6———————- V7—————————— v8 points on line
10 11 12 14 17 21 25 distances(Vi+1,Vi)

single linkage produces successive joinings

vl with v2 <distance 10>

v3 with {v1,v2} <distance 11>

v4 with {v1,v2,v3} <distance 12>

v8 with {vi,v2,v3,v4,v5,v6,v7} <distance 25>
illustrating the so-called "chaining"” effect often
associated with single linkage unless there are well
separated groups of points

complete linkage produces successive joinings
vl with v2 <distance 10>
but now the distance from {v1,v2} to v3 is 21, not 11,
so the next join
is {v3,v4},
then {v5,v6}
then {v7,v8},
then {vi,v2, v3,v4} <distance 33 between {v1,v2} and {v3,v4}>
then (by narrow margin) {v5,v6,v7,v8}
<distance 63 between {v5,v6} & {v7,v8}>
(vs distance of 64 between {v1,v2,v3,v4} and {v5,v6})
then (lastly) the join of the latter two size 4 subsets,
SO0 one gets apparent structure where arguably in this
case there really isn”"t much.
by nature of using maximum inter-set distance,
complete linkage tends to force formation of a larger number
of more compact clusters.

average linkage produces joinings

{vi,v2}

then {v3,v4},

then {v5,v6}

then {v7,v8},

then {vi,v2, v3,v4} as before,

but here the next join is

{vi,v2,v3,v4} with {v5,v6}

<average distance (with some arithmetic) is 41.625>
(average distance between {v5,v6} and {v7,v8} is 42)
and so the last join is

{vi,v2,v3,v4,v5,v6} with {v7,v8}

so here (and arguably in general)

average linkage gives clustering somewhat between
single linkage and complete linkage.

note the "unstable' nature of the clustering results
depending on choice of inter-set distance measure and
specific point locations.

the dendrograms are drawn by arranging the point numbers equally
spaced along the x-axis, in an ordering compatible with the

order in which the subsets are joined. At each step of the

process (initially there are n "clusters™ - the individual points)
each subset has associated with it an x-axis location and a height



(heights are initially 0). If subsets A and B are joined, then
1. a vertical line is drawn at the x location of A
from y=height of A to y=d(A,B),
I1. a vertical line is drawn at the x location of B
from y=height of B to y=d(A,B), and
I1l1. a horizontal line is drawn between x=x location of A
and x=x location of B at the height y=d(A,B)
1V. the x location of the new cluster A union B is the
average of the x location of A and the x location of B,
and the height of the new cluster is d(A,B).

WARNING: clustering algorithms produce clusters,

whether or not there is real structure to the points.

feed any computer program that does clustering vectors from a
random number generator and it will return a dendrogram!

So one always needs to verify whether apparent

clustering results make biological sense.

last -- one may consider 'correlation distance."
One might, for example, be iInterested in whether two genes
have responses that either both go up (or down) in tandem,
or that go in opposite directions in each experiment (as
might be the case if they were in "competing"
pathways (when 1 is up the other is downregulated)).
Consider the case when are working with vectors whose components
are log(expression level in "treatment"/expression
level in control),
so the "null case" is a value of O.
Thus if two genes are expressed in a coordinated fashion,
the dot product of their vectors should have "large'"™ magnitude;
V dot W = V.W is defined as VI1*W1 + _.. + Vm*Wm
if V.and W go in "opposite directions' then V.W would be
negative with large magnitude. If in some cases both are
up (or both down regulated) while in other experiments one
is up while the other is down, there will be
cancellation within the sums in the dot product.
Here let"s take the view that we are interested
in whether both go up or both go down (positive correlation)
or always go oppositely (one is up while other is down) which
is negative correlation, so rather than weighing the magnitude of individual
gene expression levels, we"ll normalize each vector by multiplying
each component by the same constant (v ---> cV) so the
length of each expression ratio vector is now 1
(scale so V1™2 + ...+ Vm"2 = 1 for each V)
before doing the dot products.
Then V.W will always be between -1 and 1 so a
standard way of defining a "‘correlation distance”™ is to set
d(v,W) = 1 - [absolute value of(V.W)]
(when correlation is high, distance is low)
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