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Why is normalization necessary?

 Multiple factors contribute to the variation in sample processing
 RNA extraction

 Fluidics modules

 Diverse protocols

 Different labeling efficiencies

 Cy3 and Cy5

 Scanner differences

 Chip manufacturing differences

 Image analysis saturation

 Other systematic variability

 These factors can result in artificial differences between 
replicate samples

 Proper normalization methods reduce these systematic effects 
while maintaining true biological variability – the real object of 
interest in investigation



Feature extraction - features

 Identify feature positions
 How many grids?

 How many features/grid in 
each direction?

 What is the spacing between 
grids?

 Grid issues
 Uneven grid position

 Curvature within a grid

 Uneven feature spacing

 Uneven feature size

http://www.oit.on.ca/Images/SSPhotos/SickKidsSchererMicroarray.jpg

Feature extraction software can correct for these 

issues, but requires manual input typically



Feature extraction – segmentation

 Fixed circle
 Extract region using a fixed circle

 Most restrictive

 Variable circle
 Vary the radius of the circle

 Does not address irregular shapes

 Histogram
 Fits circle over region and omits 

brightest and dimmest pixels in 
calculation

 Adaptive shape
 Uses neighboring pixel intensities to 

determine shape and calculate net 
intensity

http://www.bio.davidson.edu/projects/gcat/workshop_2006



Feature extraction – background

 Background signal can 
include intensities 
from error sources

 Decent: Subtract 
background from the 
signal to get a reliable 
calculation of the 
signal intensity

 Better: Neg. controls

local 

background

spot intensity

http://www.systemsbiology.nl/datgen/transcriptomics



Two-channel array image files

 Two channel arrays
 Cy5 and Cy3

 Values are reported as ratio of the two channels

 Image file (these parameters can vary for different spotting 
techniques)
 TIFF (16-bit file)

 ~20MB per channel

 ~2,000 x 5,500 pixels per image file

 Array has mean spot area of 43 pixels

 Array has median spot area of 32 pixels

 Standard deviation of spot area is 26 pixels



cDNA within-slide normalization
 The expression of a single array is usually plotted using the log ratio 

of the red dye (Cy5) vs. the green dye (Cy3)
 This provides the degree of concordance between the two dyes

 Deviations from a linear relationship depict systematic differences in 
the intensities

 However, this plot tends to give an unrealistic sense of agreement 
between the two dyes, so this plot has been adapted to give a better 
estimate of the agreement

 The MvA plot has taken this place to better represent the agreement 
between the two dyes
 M = log2(R/G) where R is red dye and G is green dye

 A = log2 (R*G)1/2

 This is essentially a 45 degree rotation of the xy plot



Cy5 vs. Cy3 plot and MvA plot



cDNA Global normalization1

 Assumption

 Provided a large enough sample size, the mean signal on an array 
does not vary greatly from array to array

 Red and green dyes are related by a constant factor

 R = k * G

 Methodology

log2(R/G) -> log2(R/G) – c = log2 R/(kG)

commonly, the location parameter, c = log2(k) is the mean

 The target mean of all ratios of all the genes on the array is set to a 
value for scaling

 Drawbacks

 If the assumption is violated, very large or very small intensities can 
increase or decrease the global mean

 Does not account for spatial or intensity-dependent dye biases



cDNA Global normalization (cont.)

 Alternative estimators to the mean
 The median can be used in cases of aberrant gene intensities 

 More robust to outliers

 A trimmed mean can be used in cases of high and low extreme 
intensities
 The top n% and bottom n% are excluded from the calculation of the 

array mean



cDNA intensity dependent 

normalization1

 Assumption

 Dye bias is dependent upon spot intensity

 Methodology

log2(R/G) -> log2(R/G) – c(A) = log2 (R/(k(A)G))

where c(A) is the *lowess fit to the MvA plot

 Lowess smoothing is a robust local linear fit, which uses a 
specified window size to fit a curve of the data

 Use the residual values to this smoothing for normalized log-ratio 
values

 Drawbacks

 Span smoothing parameter (f) may deviate for each array

 Extreme values can alter the smoothing, making a poor fit

*example illustrating concept of lowess smoothing on next slide



Lowess smoothing example



cDNA print-tip groups



cDNA within-print-tip-group 

normalization1

 Assumption

 Differences between arrays can be explained by differences in 
printing setups

 Arrayer print-tip format (2x2, 4x4, etc.)

 Openings or lengths of print tips

 Methodology

log2(R/G) -> log2(R/G) – ci(A) = log2(R/(k(A)G))

where c(A) is the lowess fit to the MvA plot for the ith grid only 
(for i=1…,I for the number of print tips) 

 Use the residual values to this smoothing for normalized log-ratio 
values

 Drawbacks

 Over normalization for a particular array



cDNA within-print-tip-group 

normalization (scale parameter) 1

 The location normalization may correct the location of the distribution, but the 
scale may differ
 Need to apply scale normalization for within-print-tip group

 Assumption
 All log-ratios from the ith print-tip group are normally distributed with mean=0 and 

variance=ai 
2 σ2

 Where σ2 is the variance and ai
2 is the scale factor for the ith print-tip group

 A relatively small number of genes will vary between the 2 mRNA samples

 The spread of the distribution for the log-ratios should be similar for all print-tip 
groups

 Methodology
ai follows the constraint ∑ log ai

2 = 0 

Then, ai is estimated by the MLE:

ai = MADi / sqrt(π MADi)

MADi = medianj {|Mij – medianj (Mij)|}

where Mij is the jth log-ratio in the ith print-tip group



Print-tip normalization (pre and post) 1



Dye-Swap normalization1

 Two hybridizations for two mRNA samples, where the dye assignment is 
flipped in the second hyb.

 Assumption

 The normalization functions are the same for the 2 slides

 Since the assignments are reversed, the normalized log-ratios should 
be the same and opposite direction on the 2 slides

 Assumes that the scale parameter is the same for the 2 slides

 Methodology

 Slide #1: M = log2 (R/G) - c

 Slide #2: M’ = log2 (R’/G’) – c’

 M – M’=[(log2(R/G)-c) – (log2(R’/G’)-c’)]/2

 = [log2(RG’/GR’)] / 2

 c ~ 0.5 * [log2(R/G) + log2(R’/G’)]

where c=c(A) is estimated by the lowess fit to the plot of 0.5*(M-M’)
vs. 0.5*(A+A’)

(A is average of M and M’)



Quantile normalization

 Make each array in a set of arrays have the same distribution

 Assumption

 Each array has a similar distribution of values

 The mean of each gene is good summary statistic for each array 
in an array set to use instead of the actual individual array values

 Note

 The methodology below and the plots in next slide are for oligo 
arrays, though the same methodology can be applied to cDNA 
arrays conducted on each channel separately

 Methodology5

 Given a set of arrays in a matrix X

 Sort each column of X to give Xsort

 Calculate the mean across rows of Xsort and assign this mean value to each 
element in the row to get a matrix X’sort

 Get Xnormalized by rearranging the order of the values in each column if X’sort to have 
the same ordering as the original matrix X



MvA plots to compare quantile 

normalized arrays5

Non-normalized Quantile normalized



Which genes to use?

 All genes

 Housekeeping genes

 Control genes



All gene approach

 All genes on the array
 This assumes that only a fraction of the genes on the array 

are differentially expressed

 The remaining genes are thought to have constant 
expression

 These remaining genes constitute the majority of the 
expression values and shouldn’t vary much from array to 
array, so they can be used for normalization

 Assumes
 The fraction of differentially expressed genes is small from 

array to array

 There is a symmetry between up-regulated and down-
regulated genes



Housekeeping gene approach

 Constantly expressed genes

 Use of a small subset of characterized genes that are 

thought to be expressed in all tissues and samples

 Beta-actin and GADPH are among some of these genes

 Assumes

 This assumes that the genes chosen as housekeeping 

genes are both highly expressed and somewhat invariant 

across multiple samples

 These genes can be over-expressed and sometimes 

saturated in intensity 



Control gene approach

 Control genes

 Either spiked controls or titration of specific genes to another 

organism assayed at various concentrations

 Can calculate a standard curve from the concentration series 

and use to normalize all other values on the array

 Assumes

 Genomic DNA is used because it is supposed to exhibit 

constant expression across various conditions

 Weak signal in higher organisms with high intron/exon ratio 

(e.g. mouse, human) making it technically challenging



cDNA Global Normalization Data1

Different lowess smoothing lines for the 16 within-print-tip-groups illustrate 

the dependence on spot intensity



cDNA Dye-Swap Data (pre-normalized) 1

Blue line is lowess smoothing for one slide and the black line is the other

Both lines are similar, suggesting similar dye bias



cDNA Dye-Swap post-normalized1



Within-slide normalization 

density comparisons1



Bioconductor package marray



Bioconductor package limma



Bioconductor package sma



Affymetrix array image files

 Three files for each array
 DAT file: image file with ~10e7 pixels (~50MB file)

 CEL file: cell intensity file

 CHP file: normalized expression data file

 Process: DAT -> CEL -> CHP

 Data
 Difference is computed between the perfect match (PM) and mismatch 

(MM) for each probe

 ~11 to 20 probe pairs for each gene – some degree of overlap in probes

 Feature extraction – segmentation
 Affymetrix arrays

 Each probe cell is 7x7 pixels

 Remove outer 24 pixels for each feature (5x5 pixels)

 The probe cell signal is calculated as the 75th percentile of the 5x5 pixel 
values (PM or MM)



GeneChip® MAS 4.0 

normalization3

 Average difference calculation

where A is a set of pairs that fall within 3 SDs of the 

average difference between PM and MM

and j is the jth probe for gene I

 If MM is larger than PM, negative values will 

result

 Background is larger than signal



GeneChip® MAS 5.0 

normalization3

 Average difference with biweight calculation

 Region-based scaling of intensity values by dividing the array into 16 
regions and scaling each to identical intensity value

If PM > MM, then MM* = MM

If PM < MM, then MM* = PM – correction value

Correction value: robust mean of probe set using Tukey Biweight 
calculation

Tukey Biweight: The mean/median is first calculated, then the distance between 
each point and the mean/median is calculated.  These distances determine 
how each value is weighted in the contribution to the average



GeneChip® MAS 5.0 

normalization3

information taken from the Affymetrix manual



Li & Wong normalization3

 A model is fit for each probe set

 Generates scaling factors for small portions of the expression space, 

incrementally

Θ: expression index in chip i

Φ: scaling factor characterizing probe pair j

ε: random normal error term

Estimates for the parameters are calculated by least squares 

iteratively fitting Θ and Φ, while treating the other set as known



Robust Multi-chip Analysis (RMA) 

normalization3

 Use a chip background estimate and subtract from the PM probes

 subtracting the MM from the PM adds more noise to the signal

 Intensity-dependent normalization

background intensity can be the mode value of the log2 (MM) 
distribution for a given chip (kernel density estimate)

if PM <= background intensity, use ½ the minimum of log2 (PM, 
background intensity) for PM > background intensity over all chips and 
probes 

normalized values are log transformed because probe effects are 
additive on a log scale

 Estimate RMA = ai for chip i using Tukey’s median polish procedure

 Iterative fitting, removing row and column medians, accumulating terms, 
until the process converges



GC Robust Multi-chip Analysis (GCRMA) 

normalization3

 RMA normalization with adjustment for the GC content 

in the probes

 Can use MM probes or not use them

 Similar to RMA, fold changes are typically 

underestimated (i.e. small effect sizes) for the benefit of 

decreased variability



Probe Logarithmic Intensity Error

(PLIER) Estimation

 There is a linear association between target response 
(t) and feature response (f)

PM-MM=f*t

 Target response: common across intensities in a probe set

 Feature response: common across experiments for a given 
feature

 PLIER operates by finding target responses (t(i)) for 
each experiment i and feature responses f(j) for each 
feature (pair) j that minimize the function:
 LL(t,f) = sum H(PM,MM, BKG, f(j),t(i)) over all i,j

 (this has been greatly simplified for explanation purposes)



Sensitivity of PM only  versus (PM-MM)4



 There are numerous algorithms that correct for different 
sources of variability

Affymetrix array normalization 

algorithms



Normalization comparison results

http://affycomp.biostat.jhsph.edu/AFFY/TABLES/0.html



A second smaller normalization 

comparison study

Tseng 2004 – Taipei Symposium on Statistical Genetics

 Replicate arrays M,N,O,P and Q,R,S,T were used to assess 

correlation based on 6 different normalization methods



Bioconductor package affy
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R Code
# cDNA array plots

library(marray);

# signal vs. noise plot for a single cDNA array 

data(MouseArray) # get mouse array data

plot.svb(mouse.data, "red",image.id=1,col='red',main='Singal vs. Noise for Cy5 channel on array #1')

# Examples use swirl dataset 

data(swirl)

# look at image file from swirl data

maImage(swirl)

# look at boxplot from swirl data by print-tip

maBoxplot(swirl[,3]) 

# one form of an MvA plot

library(sma)

# mouse array

data(MouseArray)

plot.mva(mouse.data, mouse.setup, norm="l", 2, extra.type="pci",plot.type="n") 

# Pre-normalization MvA-plot for the Swirl 93 array, with the lowess fits for 

# individual print-tip-groups. 

# - Default arguments

maPlot(swirl[,1],main='Print-tip Loess pre-normalization')

# Post-normalization using print-tip loess

mnorm<-maNorm(swirl[,1], norm="p", span=0.45)

maPlot(mnorm,main='Print-tip Loess post-normalization')



R Code
# scatter plot

cars.lm <- lm(dist~speed,data=cars)

plot(cars$speed,cars$dist,xlab=“speed”,ylab=“dist”,main=“regression(cars)”)

abline(as.numeric(cars.lm$coefficients[1]),as.numeric(cars.lm$coefficients[2]),col=„red‟,lwd=2)

# lowess smoothing plot

data(cars)

plot(cars, main = "lowess(cars)“)

lines(lowess(cars), col = 2,lwd=2)

lines(lowess(cars, f=.2), col = 3,lwd=2)

legend(5, 120, c(paste("f = ", c("2/3", ".2"))), lty = 1, col = 2:3)

# load affy library

library(affy)

# get data

data(affybatch.example)

# plot data both before and after loess normalization using PM data

x <- pm(affybatch.example)

mva.pairs(x)

x <- normalize.loess(x,subset=1:nrow(x))

mva.pairs(x)



R Code

# affy normalization parameters for expresso function

> bgcorrect.methods

[1] "mas"  "none" "rma"  "rma2"

> normalize.AffyBatch.methods

[1] "constant" "contrasts" "invariantset" "loess"

[5] "qspline" "quantiles" "quantiles.robust"

> pmcorrect.methods

[1] "mas" "pmonly" "subtractmm"

> express.summary.stat.methods

[1] "avgdiff" "liwong" "mas" "medianpolish" "playerout"

eset <- expresso(affybatch.example,bgcorrect.method="rma",

normalize.method="quantiles",

pmcorrect.method="pmonly",

summary.method="medianpolish")

# look at data frame of RMA values

exprs(eset)[1:4,]

# first scatter plot of R vs. G and un-normalized MvA plot with Mouse cDNA data

> plot(log(mouse.data$G),log(mouse.data$R),xlab='Cy3',ylab='Cy5',main='logR vs. logG')

> plot.mva(mouse.data, mouse.setup, norm=“n”, 2, extra.type="p",plot.type=“r”,main=“MvA plot of R/G”) 


