Microarray
Normalization

James Diggans
jdiggans@mitre.org

Slides courtesy of Dr. Brandon Higgs




Outline

Importance of normalization
Feature extraction (pin-spotted arrays)

Two-channel arrays
MVA plots

Global

Intensity dependent
Within-print-tip-group
Dye-swap experiment
Quantile

Which genes to use?

Affymetrix arrays

GeneChip® MAS 4.0

GeneChip® MAS 5.0

Li & Wong

Robust multi-chip normalization (RMA)

Probe logarithmic intensity error estimation (PLIER)
Normalization comparison studies

e R Examples




The Bad: Fingerprints

3
1-J
28
o
[
5
[
g
=
o
=)
=T




The Bad: Slide Dropped on Floor, DNA down

oy A0

%% Agilent Technologies




The Bad: Broken Slide

R Nepaeatte W Ea ey

iR N

e Sidepede 0

~%% Agilent Technologies




Why is normalization necessary? |z

e Multiple factors contribute to the variation in sample processing
RNA extraction
Fluidics modules
Diverse protocols
Different labeling efficiencies
and Cy5
Scanner differences
Chip manufacturing differences
Image analysis saturation
Other systematic variability

e These factors can result in artificial differences between
replicate samples

e Proper normalization methods reduce these systematic effects
while maintaining true biological variability — the real object of
interest in investigation



Feature extraction - features

e l|dentify feature positions
e How many grids?

e How many features/grid in
each direction?

e Whatis the spacing between
grids?

e Grid issues

e Uneven grid position
Curvature within a grid
Uneven feature spacing
Uneven feature size

Feature extraction software can correct for these

issues, but requires manual input typically

http://www.oit.on.ca/Images/SSPhotos/SickKidsSchererMicroarray.jpg



Feature extraction — segmentation

Fixed circle
e Extract region using a fixed circle
e Most restrictive

Variable circle
e Vary the radius of the circle
e Does not address irregular shapes

Histogram

e Fits circle over region and omits
brightest and dimmest pixels in
calculation

Adaptive shape

e Uses neighboring pixel intensities to
determine shape and calculate net
intensity

http://www.bio.davidson.edu/projects/gcat/workshop_2006



Feature extraction — background oo

http://www.systemsbiology.nl/datgen/transcriptpmics

e Background signal can
include intensities
from error sources

e Decent: Subtract
background from the
signal to get a reliable
calculation of the orsr—
signal intensity

e Better: Neg. controls

spot intensity

local
background

Background



Two-channel array image files :

e Two channel arrays
e Cy5and
e Values are reported as ratio of the two channels

e Image file (these parameters can vary for different spotting
techniques)

TIFF (16-bit file)

~20MB per channel

~2,000 x 5,500 pixels per image file

Array has mean spot area of 43 pixels
Array has median spot area of 32 pixels
Standard deviation of spot area is 26 pixels



cDNA within-slide normalization

e The expression of a single array is usually plotted using the log'ratio
of the red dye (Cy5) vs. the green dye (Cy3)

This provides the degree of concordance between the two dyes

Deviations from a linear relationship depict systematic differences in
the intensities

e However, this plot tends to give an unrealistic sense of agreement
between the two dyes, so this plot has been adapted to give a better
estimate of the agreement

e The MVA plot has taken this place to better represent the agreement
between the two dyes

M = log2(R/G) where R is red dye and G is green dye
A = log, (R*G)Y2
This is essentially a 45 degree rotation of the xy plot



Cy5 vs. Cy3 plot and MvVA plot

logR vs. 109G MvA plot of RIG

Cys




cDNA Global normalizationt? :2

e Assumption

e Provided a large enough sample size, the mean signal on an array
does not vary greatly from array to array

e Red and green dyes are related by a constant factor
R=k*G

e Methodology
log,(R/G) -> log,(R/G) — ¢ = log, R/(kG)
commonly, the location parameter, ¢ = log,(k) is the mean

e The target mean of all ratios of all the genes on the array is set to a
value for scaling

e Drawbacks

o If the assumption is violated, very large or very small intensities can
increase or decrease the global mean

e Does not account for spatial or intensity-dependent dye biases



cDNA Global normalization (cont.)| ¢

e Alternative estimators to the mean
e The median can be used in cases of aberrant gene intensities
More robust to outliers

e A trimmed mean can be used in cases of high and low extreme
intensities

The top n% and bottom n% are excluded from the calculation of the
array mean



cDNA intensity dependent 43
normalization?

e Assumption
Dye bias is dependent upon spot intensity

e Methodology
log,(R/G) -> log,(R/G) — c(A) = log, (R/(k(A)G))
where c(A) is the *lowess fit to the MvA plot

Lowess smoothing is a robust local linear fit, which uses a
specified window size to fit a curve of the data

Use the residual values to this smoothing for normalized log-ratio
values

e Drawbacks
Span smoothing parameter (f) may deviate for each array
Extreme values can alter the smoothing, making a poor fit

*example illustrating concept of lowess smoothing on next slide



Lowess smoothing example
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cDNA print-tip groups

4x4 design

24x25 spots per
each print-tip group

Total array has
9,600 spots




cDNA within-print-tip-group e2ot
normalization?

e Assumption
o Differences between arrays can be explained by differences in
printing setups
Arrayer print-tip format (2x2, 4x4, etc.)
Openings or lengths of print tips

e Methodology
log,(R/G) -> log,(R/G) — ¢;(A) = log,(R/(k(A)G))
where c(A) is the lowess fit to the MvA plot for the ith grid only
(for i=1...,I for the number of print tips)

e Use the residual values to this smoothing for normalized log-ratio
values

e Drawbacks
e Over normalization for a particular array



cDNA within-print-tip-group
normalization (scale parameter) *

e The location normalization may correct the location of the distribution, but the

scale may differ
e Need to apply scale normalization for within-print-tip group

e Assumption

e All log-ratios from the ith print-tip group are normally distributed with mean=0 and

variance=a;? 02
Where 0? is the variance and a? is the scale factor for the ith print-tip group
A relatively small number of genes will vary between the 2 mRNA samples

The spread of the distribution for the log-ratios should be similar for all print-tip
groups

e Methodology
g, follows the constraint ) log a2 =0
Then, a; is estimated by the MLE:

a, = MAD,/ sqrt(TT MAD))
MADi = median; {[M; — median; (M;)[}
where M;is the jth log-ratio in the ith print-tip group



Print-tip normalization (pre and post) !
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Dye-Swap normalization? 2

e Two hybridizations for two mRNA samples, where the dye assignment is
flipped in the second hyb.

e Assumption
e The normalization functions are the same for the 2 slides

e Since the assignments are reversed, the normalized log-ratios should
be the same and opposite direction on the 2 slides

e Assumes that the scale parameter is the same for the 2 slides

e Methodology

Slide #1: M = log, (R/G) - ¢

Slide #2: M’ =log, (R/G)) — ¢’

M — M’=[(log,(R/G)-c) — (log,(R7/G’)-c’)}/2

= [log,(RG7/GR)] I 2

c ~ 0.5 * [log,(R/G) + log,(R7G))]

where c=c(A) is estimated by the lowess fit to the plot of 0.5*(M-M’)
vs. 0.5%(A+A)

(A is average of M and M)



Quantile normalization

e Make each array in a set of arrays have the same distribution

e Assumption
Each array has a similar distribution of values

The mean of each gene is good summary statistic for each array
In an array set to use instead of the actual individual array values

e Note

The methodology below and the plots in next slide are for oligo
arrays, though the same methodology can be applied to cDNA
arrays conducted on each channel separately

e Methodology®
Given a set of arrays in a matrix X
Sort each column of X to give X,
Calculate the mean across rows of X, and assign this mean value to each

]

element in the row to get a matrix X’y

Get X, ormaiizeq PY rearranging the order of the values in each column if X’y to have
the same ordering as the original matrix X



MvVA plots to compare quantile
normalized arrays®

Non-normalized Quantile normalized




Which genes to use?

e All genes
e Housekeeping genes
e Control genes




All gene approach

e All genes on the array

This assumes that only a fraction of the genes on the array
are differentially expressed

The remaining genes are thought to have constant
expression

These remaining genes constitute the majority of the
expression values and shouldn’t vary much from array to
array, so they can be used for normalization

e Assumes

The fraction of differentially expressed genes is small from
array to array

There is a symmetry between up-regulated and down-
regulated genes



Housekeeping gene approach

e Constantly expressed genes

Use of a small subset of characterized genes that are
thought to be expressed in all tissues and samples

Beta-actin and GADPH are among some of these genes

e Assumes

This assumes that the genes chosen as housekeeping
genes are both highly expressed and somewhat invariant
across multiple samples

These genes can be over-expressed and sometimes
saturated in intensity



Control gene approach

e Control genes

Either spiked controls or titration of specific genes to another
organism assayed at various concentrations

Can calculate a standard curve from the concentration series
and use to normalize all other values on the array

e Assumes

Genomic DNA is used because it is supposed to exhibit
constant expression across various conditions

Weak signal in higher organisms with high intron/exon ratio
(e.g. mouse, human) making it technically challenging



cDNA Global Normalization Data?
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Different lowess smoothing lines for the 16 within-print-tip-groups illustrate
the dependence on spot intensity



cDNA Dye-Swap Data (pre-normalized)
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Blue line is lowess smoothing for one slide and the black line is the other

Both lines are similar, suggesting similar dye bias



CDNA Dye-Swap post-normalized:
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Within-slide normalization

density comparisons?
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Bioconductor package marray | s::
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Bioconductor package 1imma
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Affymetrix array image files ces

e Three files for each array

DAT file: image file with ~10e7 pixels (~50MB file)

e CEL file: cell intensity file
e CHP file: normalized expression data file
e Process: DAT -> CEL -> CHP

e Data

Difference is computed between the perfect match (PM) and mismatch
(MM) for each probe

~11 to 20 probe pairs for each gene — some degree of overlap in probes

e Feature extraction — segmentation

Affymetrix arrays
Each probe cell is 7x7 pixels
Remove outer 24 pixels for each feature (5x5 pixels)

The probe cell signal is calculated as the 75" percentile of the 5x5 pixel
values (PM or MM)



GeneChip® MAS 4.0 se
normalization?

e Average difference calculation

.
AvDiff = ] > (PM,—MM )
JeA

where A is a set of pairs that fall within 3 SDs of the
average difference between PM and MM

and j is the jth probe for gene |

e If MM is larger than PM, negative values will
result
Background is larger than signal



GeneChip® MAS 5.0 sece

normalization3 °

e Average difference with biweight calculation

e Region-based scaling of intensity values by dividing the array into 16
regions and scaling each to identical intensity value

signal = Tukey Biweight{log(PM . — MM j )}

If PM > MM, then MM* = MM
If PM < MM, then MM* = PM — correction value

Correction value: robust mean of probe set using Tukey Biweight
calculation

Tukey Biweight: The mean/median is first calculated, then the distance between
each point and the mean/median is calculated. These distances determine
how each value is weighted in the contribution to the average



GeneChip® MAS 5.0 T
normalization?
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Probe Pairs

The grey bars illustrate the Perfect Match (PM) intensities and black bars the Mismatch (MM) intensities
across a 16-probe pair probe set. The white bars, Idealized Mismatch (IM), are the intensities of the
Mismatch based on the Signal rules. In this example, most of the Perfect Match intensities are higher
than the Mismatch intensities and therefore Mismatch values can be used directly (e.g., probe pair 9).
When the Mismatch is larger than the Perfect Match {(e.g., probe pairs 2, 4, and 13) the IM value is
used instead of the Mismatch.

information taken from the Affymetrix manual



Li & Wong normalization?

e A modelis fit for each probe set

e Generates scaling factors for small portions of the expression space,
incrementally

PM,~MM, =8¢ +¢,, &, N0,6°)

©: expression index in chip i
@: scaling factor characterizing probe pair j
€. random normal error term

Estimates for the parameters are calculated by least squares
iteratively fitting © and @, while treating the other set as known



Robust Multi-chip Analysis (RMA)| se2¢
normalization? s

e Use a chip background estimate and subtract from the PM probes
e subtracting the MM from the PM adds more noise to the signal
e Intensity-dependent normalization

log,(PM,;—=BG)=a,+b, +¢,

background intensity can be the mode value of the log, (MM)
distribution for a given chip (kernel density estimate)

if PM <= background intensity, use % the minimum of log, (PM,
background intensity) for PM > background intensity over all chips and
probes

normalized values are log transformed because probe effects are
additive on a log scale

e Estimate RMA = g, for chip i using Tukey’s median polish procedure

Iterative fitting, removing row and column medians, accumulating terms,
until the process converges



GC Robust Multi-chip Analysis (GCRMA) | e2¢
normalization?3

e RMA normalization with adjustment for the GC content
in the probes

e Can use MM probes or not use them

e Similar to RMA, fold changes are typically
underestimated (i.e. small effect sizes) for the benefit of
decreased variability



Probe Logarithmic Intensity Error .
(PLIER) Estimation

e There is a linear association between target response
(t) and feature response (f)

PM-MM=f*t

Target response: common across intensities in a probe set

Feature response: common across experiments for a given
feature

e PLIER operates by finding target responses (t(i)) for
each experiment i and feature responses f(j) for each
feature (pair) j that minimize the function:

LL(t,f) = sum H(PM,MM, BKG, f(j),t(i)) over all i,
(this has been greatly simplified for explanation purposes)



Sensitivity of PM only versus (PM-MM)#
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Known concentrations of human franscripts were spiked at various concentrations into tissue samples
where the transcripts were originally absent. Labeled samples were then hybridized to Affymetrix U95
microarrays. Hybridization intensities for each of the transcripts were calculated using both the PM and
MM probes (solid lines) or the PM probes alone (dashed line) and then plotted against the RNA
concentration. (Source = Affymetrix 2001d)

Figure 3. Comparison of the Assay Sensitivity using PM Probes Only or PM-MM Probe Pairs.




Affymetrix array normalization
algorithms

e There are numerous algorithms that correct for different
sources of variability

Some of the more popular Probe-Set algorithms available

Probe-Set Backgropnd Normalization Summarization Sequence Of Model-based PSR A .
Algorithm Correction N) (S) Ererits Algorithm Call Provided Citation
(BG) w/ p-value
Scaling-based | Robust Average: Yes, Affymetrix
MASS PM — MM Seaing-bas 4% | BG->5->N No (Wilcoxan fy ‘
(Linear) Tukey Biweight N 2002
signed-rank test)
Yes:
YTy Scaling-based | Robust Average: | BG->S->N -> p ! Affymetrix,
it PM = MM (Linear) Tukey Biweight | Then Add 32 No (Wilcoxan 2005
signed-rank test)
Adaptive Quantile-based | Log scale linear Irizarry et al
RMA Correction BG>N->8 Yes No -’
/ (non-linear) additive model 2003
Using PM Only
GC MM .
GCRMA Sequence Quantile-based | Log scale linear BG>N->S Yes No Wuetal,
- (non-linear) additive model 2004
Driven
Quantile-based Multiplicative . - Hubbell et al.,
A — MM ->BG->S->1
PLIER PM — MM (non-linear) model (N)->BG->S->(N) Yes No 2004
YTy Quantile-based Multiplicative | (N)->BG->S->(N) Affymetrix,
FlEREA PM - MM (non-linear) model ->Then Add 16 Yes No 2005
Reference Set Multiplicative Li and Won
dChip None Smoothing-based Model N->8S Yes No 2001 9.
(nonlinear) Using PM Only
Reference Set Multiplicative Li and Won
dChip (PM-MM) None Smoothing-based Model N->S Yes No 2001 9:
(nenlinear) Using PM-MM




Normalization comparison results

N Meihod / Submitter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o (perfection) 000 ([1a0 || 100 || Log | 100 (| Lod || 100 Qo0 ([Ie.00 || 000 (| 100 || 1.00 ([ I.00 a0d || 16.00
1 MAY 5.6/ rafa 020 020 073 085) 071 02| 0.36|310200( 1282) 266 062 065| 0073072128 271
2 RMA [ rafa 009 090 094 0T 063 080) 0&2 1584 1198) 031 041 D36| 0354 100 17
3 dChip { rafa 009 099 091 077 053 085) 067 3691 1143( 045 052) 032 017 2864 125

4 (| Z4M2NBG [ magnusasirand | 007 [ 099 084) 072 057 ) 0.F7 | 084 244 LL70[ 024 057) 032 D6l 057 114

5 &n.p5 | cope 0A1) 082 056 006) 042 050) 0.62( 2030 958 038| 043 O14) 0241 1575 139
6 vsu_scal [wluber 008 099 086 féd | 077 021 083 G669 1223 023 0F5) 0.28( 068 043 389
7 vsm {whuber 006 ) D99 0% ) 067 051 081) 0&5 0400 1083 015 0350) 01%( 066 021 i1

8 | RMdFSN/ thomas.cappola 009 || 089 094 DR 0.61) 021 083 1787 1179| 025 040) 032 0359 0.0 161

9 RMA NEG /holstad 004) 100 081 0356) 048 021) 085 013 1045 012 047) 0.15| D& a1z 104
10 GSV Dutin [ hzuzan 005) 09 087\ 059 0350 083 081 487 LL0Gff 021 049 0.24| 056 243 1.00
11 PLIER { Farl Hubbell 013) 009 001 084) OFL(f 091) 0.02| 58677 1285) 403 0F2(f 065| 002 38296 357
12 GSVDmod | hzuzan 005) 100 097\ 055 051 085 0&4 079 1119 019 050) 024( 060 054 i1

13 || PLIER+I6!Farl Hubbell 002 | 099 082 | 064( 065|497 | 081 8421 1234|f 034| 065( D46| D46 507 204

14 GCRMA [ zwu 009) D89 029 072) @97 ([ 024) 082 FEI| 1297 ([ 035 092 D466 ([ 054 707 529
15 Chipon / plauren 031) D89 024 126) 088( 022) 0.67| 18390 (363 | 067 OEF( 044| 020 15986 11
16 ProbePro [ shilmer 016 070 058 084) L45([ 047 | 017 || 208707 ([ 12531570 || 1.33([ 193 007 || 204646 433
17 MMET ! shihing deng G602 ([ Lé¢ || 092 052 045) 020|486 AI2 | 104 || 12 (| 045) D16 [ hed a1 1.00
18 PM { thangli 003) 099 097\ 033) D4 ( 087\ 084 L33 10&T (| 015 | 045) 018 ([ 064 063 1.00
19 RMA / szein 009) D99 (fees | 062) 063 020) 082 158 1199) 031 06l 0D36| 054 100 171
20 GL [ mai98fiu 005) D89 082 0356) 048 081) 083 0.15) lo42ff ol4) 047) 0.16( 066 a1 118

21 (| MASS+22 {Farl Hubbell 007) 082 083 071) 060 028 072) 2056 L176) 051 058 033) 018 18,18 168

22 gMOS v.I [ mmilo 032) 097 021 064) 005 075 054125201 [ 1275) 215 || 604 ([ 1.64 || 0.10 || 131007 || 53¢
1] (perfection) a00 (140 || Laa || 106 | 100 (| Lad || 100 aan ([ Isdd || 0a0 (| 1.od || 1od ([ 1.a0 . || 1800
N Method / Submitter 1 2 3 4 E i3 z 8 2 10 | 11 |12 | 13 14 15

http://affycomp.biostat.jhsph.edu/AFFY/TABLES/0.html



A second smaller normalization
comparison study

e Replicate arrays M,N,O,P and Q,R,S,T were used to assess
correlation based on 6 different normalization methods

Average pair-wise correlations
between replicates

M.N.O,P Q.R.S.T
MASS 0.8930 0.9002
dChip PM/MM) | 0.9604 0.9621
dChip (PM-only)  |0.9940 0.9966
RMA 0.9978 0.9978
GC-RMA(PM/MM) |0.9988 0.9990
GC-RMA (PM-only) |0.9993 0.9994

Replicate correlation performance:
GCRMA (PM-only)>GC-RMA(PM/MM)>RMA>dChip(PM-
only)>>dChip(PM/MM)>>MASS

Tseng 2004 — Taipei Symposium on Statistical Genetics



Bioconductor package affy o2t
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R Code

# cDNA array plots

library (marray) ;

# signal vs. noise plot for a single cDNA array
data (MouseArray) # get mouse array data

plot.svb (mouse.data, "red",image.id=1,col='red',main='Singal vs. Noise for Cy5 channel on array #1')

# Examples use swirl dataset

data (swirl)

# look at image file from swirl data

malmage (swirl)

# look at boxplot from swirl data by print-tip
maBoxplot (swirl[,3])

# one form of an MvA plot

library (sma)

# mouse array
data (MouseArray)

plot.mva (mouse.data, mouse.setup, norm="1", 2, extra.type="pci",plot.type="n")

# Pre-normalization MvA-plot for the Swirl 93 array, with the lowess fits for
# individual print-tip-groups.

# - Default arguments

maPlot (swirl[,1],main="'Print-tip Loess pre-normalization')

# Post-normalization using print-tip loess
mnorm<-maNorm (swirl[,1], norm="p", span=0.45)
maPlot (mnorm,main="'Print-tip Loess post-normalization')



R Code H

# scatter plot
cars.lm <- lm(dist~speed,data=cars)

plot (cars$speed, cars$dist, xlab="speed”, ylab="dist”,main=“regression (cars)”)

abline (as.numeric (cars.lm$coefficients[1]),as.numeric (cars.lm$Scoefficients[2]),col="red’,lwd=2

# lowess smoothing plot

data (cars)

plot (cars, main = "lowess(cars)"“)

lines (lowess(cars), col = 2,1lwd=2)

lines (lowess (cars, f=.2), col = 3,1lwd=2)

legend (5, 120, c(paste("f =", c("2/3", ".2"))), lty =1, col = 2:3)

# load affy library
library(affy)

# get data
data (affybatch.example)

# plot data both before and after loess normalization using PM data
x <- pm(affybatch.example)

mva.pairs (x)

x <- normalize.loess (x,subset=1l:nrow(x))

mva.pairs (x)



R Code

# affy normalization parameters for expresso function

> bgcorrect.methods

[1] "mas" "none" "rma" "rma2"

> normalize.AffyBatch.methods
[1] "constant™ "contrasts" "invariantset" "loess"

[5] "gspline" "quantiles" "quantiles.robust"

> pmcorrect.methods

[1] "mas" "pmonly" "subtractmm"

> express.summary.stat.methods

[1] "avgdiff" "liwong" "mas" "medianpolish" "playerout"

eset <- expresso(affybatch.example,bgcorrect.method="rma",
normalize.method="quantiles",
pmcorrect.method="pmonly",

summary.method="medianpolish")

# look at data frame of RMA values
exprs (eset) [1:4,]

# first scatter plot of R vs. G and un-normalized MvA plot with Mouse cDNA data
> plot (log(mouse.data$G), log (mouse.dataSR),xlab="'Cy3',ylab="'Cy5',main="'1logR vs. logG')

> plot.mva (mouse.data, mouse.setup, norm=“n”, 2, extra.type="p",plot.type=“r”,main="MvA plot of R/G”)



