
BINF 636:  Lecture 10,  Oct 29, 2008: 
 
                              Introduction to Principal Component Analysis and                         
.                        Multidimensional Scaling (Distance Geometry)  
 Description:  
   
 Principal Component Analysis (PCA) can be viewed as a change in coordinate system, chosen so that to 
 the extent possible, most of the variation in the data is captured in the top several coordinates of the data when 
expressed in terms of  the new PCA coordinate system. In cases where enough of the variation is in a few top 
 components of the data, this is a powerful visualization technique. Use of the top several components 
 (enough to capture a majority of the variation in the data) may lead to more efficient data analysis and 
 suppression of the effects of noise. This class will cover what PCA does, how it does it, and when it is 
 advantageous, including visualization examples from tumor subtypes in gene microarray data.  
 
In classical multidimensional scaling (MDS), also called distance geometry, one starts with set of distances between 
the points to be displayed, and attempts to represent these points in a low dimensional space while having the 
distances between the points approximate, as well as possible, the original distances. The original distances could be 
the Euclidean distances between the points, or, for example, distances derived from correlations. A standard first 
step in a distance geometry application is to convert the distances into a matrix of the inner products of the 
(unknown) position locations. This matrix leads to a set of positions (coordinates of the points) satisfying the 
distance conditions (assuming the distance data doesn't violate certain geometrical conditions), but in a higher 
dimensional space. Point locations in 3 coordinates can be obtained by projecting down from the higher dimensional 
positions in a way that minimizes a certain measure of the error committed in forcing the projected points to have 
only 3 coordinates, which can be seen to be a PCA projection. The resulting starting positions can be used as the 
initial values in a nonlinear optimization procedure to search for positions that better satisfy the prescribed distances. 
The aspects of distance geometry outlined above will also be covered in this class. 
 
   
Topics to be covered include   
 
• Principal Component Analysis (PCA) as a means of reducing the dimension of a high dimensional dataset 

and visualizing a high dimensional dataset in 2 or 3 dimensions 
• What PCA does - PCA as choice of a new coordinate system capturing as much of the variation in the data 

as possible in the first several coordinates   
• Simple examples and examples from visualization of tumor subtypes in microarray data   
• When PCA is effective and when it is not   
• PCA in terms of eigenvalues and eigenvectors of the appropriate covariance matrix   
• PCA via the Singular Value Decomposition (SVD) of the data matrix  
• Viewing an initial step in a distance geometry algorithm as the linear projection of a high dimensional 

dataset into 3 dimensions that preserves as much of the distance variation as possible, which is a PCA 
projection. Viewing this step in terms of the singular value decomposition of the matrix of the points in the 
higher dimensional space. 

 
 
   
Alan E. Berger, Ph.D.,  JHBMC Lowe Family Genomics Core, Johns Hopkins University School of Medicine,    
aberger9@jhmi.edu     (410) 550-5089   
 



���������	
������������
�
������
���������������������������

���	��������

������
����������	����������
�
�	���������	
�������������������

  ���������������
����!��������

�����	��������������"�����"��#��$�����
�������������������
�
�	������

�������������������

�����
�������������������%���������������������&

����������������!��!����������
���������	!���	
�

������
�����������������������'�������	����������������������'������

��
��
�������"����������
��
�����������������
�	�������

��(
����
����������������������"��	
������������������������

  ����!����
�
�	���

��)����������	�������	����
��
���������(*+������������
���� 



 

    Some References for Principal Component Analysis 
                    and Singular Value Decomposition (SVD) 
 
[1]   R. A. Johnson and D. W. Wichern, Applied Multivariate  
       Statistical Analysis, Fourth Edition, Prentice Hall,  
       1998, Chapter 8 – Principal Components 
 
[2] . I. T. Jolliffe,  Principal Component Analysis 2nd Edition,   
       Springer, 2002.                                    
 
[3] .W. H. Press, B. P. Flannery, S. A. Teukolsky and  
       W. T. Vetterling, Numerical Recipes (FORTRAN VERSION) 
       Cambridge University Press, 1989, Section 2.9                                   
 
[4]  G. Strang, The Fundamental Theorem of Linear Algebra 
       American Mathematical Monthly 100 (1993), pp. 848-855. 
      (explains the singular value decomposition in terms of the  
      fundamental subspaces of a matrix (linear transformation) 
      and its transpose) 
 
[5] .G. H. Golub and C. F. Van Loan, Matrix Computations 2nd Edition,   
       The Johns Hopkins University Press, 1989, Section 2.5 <Ed. 3, 1996>                               
 
[6]  B. Carnahan, H. A. Luther and J. O. Wilkes, Applied Numerical 
      Methods, John Wiley & Sons, 1969 – see “power method” to get several 
      of the largest eigenvalues and corresponding eigenvectors of a real          
.     symmetric positive semidefinite matrix (e.g., a moderate size covariance 
.     matrix).  
      (in general should use a robust algorithm to obtain the SVD) 
 
[7]  G. W. Stewart, On the Early History of the Singular Value  
      Decomposition, SIAM Review 35 (1993), pp. 551-566.  
 
[8]  M. E. Wall, A. Rechtsteiner and L. M. Rocha, Singular Value  
      Decomposition and Principal Component Analysis, in A Practical 
      Approach to Microarray Data Analysis, D. P. Berrar, W. Dubitzky and 
      M. Granzow, eds. pp. 91-109, Kluwer, Norwell, MA (2003)   
      web page: http://public.lanl.gov/mewall/kluwer2002.html   

http://public.lanl.gov/mewall/kluwer2002.html


BMC Genomics 2005, 6:63     D. Peterson et al.   <Concordance Figure>                              http://www.biomedcentral.com/1471-2164/6/63
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may be due to simple errors in gene identification, rather
than to the technologies of the platforms. The Incyte
library is guaranteed by the manufacturer to be only 90%
correct, and an unknown percentage of the Operon and
Affymetrix oligonucleotides may have been designed on
the basis of incorrect sequences in the public databases.
Indeed, we found one oligonucleotide in the Operon set
that was apparently designed from an EST sequence that
has since been withdrawn from the UniGene database
(see RT-PCR studies below). In any case, the concordance
is quite high across all platforms with this method of anal-
ysis as well as with the others.

Quantitative real-time RT-PCR
In a pilot study with the three platforms, we compared
and contrasted gene expression values for only the cell
lines MCF10A and LNCaP. RT-PCR data for twelve genes
are shown in Figure 6. Most of the values are in reasonable
agreement except that there are differences in the magni-
tudes of the expression ratios. As found in other studies,
the RT-PCR values are generally higher, probably because
ratios are "flattened" with the microarray platforms.
Affymetrix ratios are sometimes higher, but that may sim-
ply reflect the method of quantitation used in their analy-
sis. The cDNA array ratios are generally lower than those

Principal Component Analysis (PCA) of the three microarray platforms and six cell lines using expression of the 3186 genes with signals above backgroundFigure 3
Principal Component Analysis (PCA) of the three microarray platforms and six cell lines using expression of the 3186 genes 
with signals above background.
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Sample Section of a Gene Expression Level Matrix

Rows are expression levels of 1 gene, columns are expression 
profile from 1 microarray chip (here a tissue sample)  
(modified from Golub et al. ALL/AML data)



Microarray Expression Data

Sample 1    …    Sample s    …    Sample N

gene 1

gene 2       entry (g,s) of the expression level matrix L     
contains the expression level L(g,s) of      

…                           of gene (probe set / spot) g in sample s

gene g          a sample can be, e.g., control cells, treated  
. cells, cells from a particular tissue or  
. disease state                     
…                           

gene M        for Yale Chip, M = 15,250, for Affymetrix 
. HG-U133a (b) Chip, M = 22,283 (22,645)



PCA of Three Replicate Chips at Three Times (1.5, 3, 5 hours)
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Y

Set of Points in 2 
Dimensions

O

Points are Vectors of X 
and Y Coordinates      
(x,y)



X

Y
Projection of Points 
Onto the X-Axis
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O

X
Y

Rotated Coordinates so New X-Axis 
Captures Maximal Amount of 
Variation that Can Be Captured in 
One Direction

'
'



Distance from a point to the origin 0                 
Distance between two points   

X

Y

O
x

y
(x,y)

(r,s)

Distance from the point with coordinates (x,y) to O is 
sqrt(x*x + y*y)

Distance2 from (X,Y,…,L) to O is X2 +Y2 + …+ L2

Distance2 between (x,y) and (r,s) is  (x-r)2 + (y-s)2

…



Total Variation TV = Sum of Distances2 of Points to Origin  =          
.  TVx + TVy + TVz + …

point #  1          2         3     …    n

X1 X2 X3
… Xn

Y1 Y2 Y3
… Yn

Z1 Z2 Z3
… Zn

X-coordinate values

Y-coordinate values

Z-coordinate values

TVx

TVy

TVz

TVx   =   sum of squares of the X coordinates of all the points, etc.
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from page 488 of T. Hastie et al.,
The Elements of Statistical
Learning, Springer 2001

PCA Projection Down to 2 Dimensions



O

X
Y

Rotated Coordinates so New X-Axis 
Captures Maximal Amount of 
Variation that Can Be Captured in 
One Direction

'
'Here Projecting Onto 

the Y-Axis Separates 
the Given Classes, so 
PCA Does NOT 
Always Yield the Best 
Results
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        Part of the Anderson Fisher Iris Data Set 
 
5.1  3.5  1.4  0.2  1        

  4.9  3.0  1.4  0.2  1            
  4.7  3.2  1.3  0.2  1       column 5    1 = Setosa       
  4.6  3.1  1.5  0.2  1                   2 = Versicolor 
  5.0  3.6  1.4  0.2  1                   3 = Verginica 
  5.4  3.9  1.7  0.4  1                
  4.6  3.4  1.4  0.3  1       full data set is   
5.0  3.4  1.5  0.2  1       50 samples of each iris flower species 
   ...............          (data from R. A. Johnson and D. W. Wichern [1]) 

--------------------------- 
  7.0  3.2  4.7  1.4  2       each row is the data from one flower 
  6.4  3.2  4.5  1.5  2 
  6.9  3.1  4.9  1.5  2       columns 1, 2, 3, 4 are measured properties 
  5.5  2.3  4.0  1.3  2       of each flower (sepal length, sepal width, 
  6.5  2.8  4.6  1.5  2       petal length, petal width)      
  5.7  2.8  4.5  1.3  2 
  6.3  3.3  4.7  1.6  2       Botany definitions: the calyx is the outermost 
4.9  2.4  3.3  1.0  2       group of floral parts, usually green; sepals  
   ...............          are the individual leaves or parts of the  

---------------------------   calyx 
6.3  3.3  6.0  2.5  3   
5.8  2.7  5.1  1.9  3 

  7.1  3.0  5.9  2.1  3 
  6.3  2.9  5.6  1.8  3 
  6.5  3.0  5.8  2.2  3 
  7.6  3.0  6.6  2.1  3 
  4.9  2.5  4.5  1.7  3 
7.3  2.9  6.3  1.8  3 
   ............... 

 









Richardson Lab & Kinemage Home Page:  Jane Richardson, David Richardson

 

 

 

Kinemages: 3D interactive graphics
"The Mage Page", kinemage list, KiNG manual, Mage help, ...

 

Software: Display; Contacts; & Utilities
Download links, manuals, software descriptions, ...

Databases: protein & nucleic acid compilations
penultimate rotamer library, Top500 proteins with optimized H atoms, RNA backbone 
rotamers, 100 high resolution proteins with optimized H atoms and fixes, ...

MolProbity: structure validation
Web service for all-atom contact and geometrical analysis of your model

 

Research: 3D structure of proteins & nucleic acids
All-atom contacts; structure improvement; backbone motions; sidechain rotamers; "RNA 
Backbone is Rotameric"

 

Teaching: Course materials
Duke courses: BCH222, BCH258, BCH291, and workshops on Model Quality and 
software tool use at various places, ... 

 

Gallery: images
2D images, annotated Anatomy and Taxonomy of Protein Structure (in progress)

 

About us: Lab Info
Contacts; travel; publications; SECSG, Biochem. Dept., Biophysics

    "This page generated by:"
NIH Grant GM-15000, funding Richardson Lab research for over 34 years; and
NIH Grant GM-61302, funding RLab for over 3 years. 

http://kinemage.biochem.duke.edu/ [5/20/2005 10:54:26 PM]

http://kinemage.biochem.duke.edu/kinemage/magepage.php
http://kinemage.biochem.duke.edu/website/subindex.php#kinemage
http://kinemage.biochem.duke.edu/kinemage/magepage.php
http://kinemage.biochem.duke.edu/kinemage/kinlist.php
http://kinemage.biochem.duke.edu/kinemage/king-manual.html
http://kinemage.biochem.duke.edu/kinemage/magehelp.php
http://kinemage.biochem.duke.edu/software/index.php
http://kinemage.biochem.duke.edu/software/index.php
http://kinemage.biochem.duke.edu/website/subindex.php#database
http://kinemage.biochem.duke.edu/website/subindex.php#database
http://kinemage.biochem.duke.edu/databases/rotamer.php
http://kinemage.biochem.duke.edu/databases/top500.php
http://kinemage.biochem.duke.edu/databases/rnadb.php
http://kinemage.biochem.duke.edu/databases/rnadb.php
http://kinemage.biochem.duke.edu/databases/top100.php
http://kinemage.biochem.duke.edu/molprobity/index.html
http://kinemage.biochem.duke.edu/molprobity/index.html
http://kinemage.biochem.duke.edu/website/subindex.php#research
http://kinemage.biochem.duke.edu/website/subindex.php#research
http://kinemage.biochem.duke.edu/research/aac.php
http://kinemage.biochem.duke.edu/research/rna/rnarotamer.php
http://kinemage.biochem.duke.edu/research/rna/rnarotamer.php
http://kinemage.biochem.duke.edu/website/subindex.php#teaching
http://kinemage.biochem.duke.edu/website/subindex.php#teaching
http://kinemage.biochem.duke.edu/teaching/bch222/index.html
http://kinemage.biochem.duke.edu/teaching/bch258/index.html
http://kinemage.biochem.duke.edu/teaching/bch291/index.html
http://kinemage.biochem.duke.edu/teaching/workshop/index.html
http://kinemage.biochem.duke.edu/website/subindex.php#gallery
http://kinemage.biochem.duke.edu/website/subindex.php#gallery
http://kinemage.biochem.duke.edu/gallery/2Dindex.php
http://kinemage.biochem.duke.edu/~jsr/
http://kinemage.biochem.duke.edu/website/subindex.php#labinfo
http://kinemage.biochem.duke.edu/website/subindex.php#labinfo
http://kinemage.biochem.duke.edu/lab/members.php
http://kinemage.biochem.duke.edu/lab/directions.php
http://kinemage.biochem.duke.edu/lab/papers.php
http://www.secsg.org/
http://www.biochem.duke.edu/
http://sbb.duke.edu/


PCA of Three Replicate Chips at Three Times (1.5, 3, 5 hours)



PCA of Permuted Data from Three Replicate Chips 
at Three Times (1.5, 3, 5 hours)







Molecular Classification of
Cancer: Class Discovery and

Class Prediction by Gene
Expression Monitoring

T. R. Golub,1,2*† D. K. Slonim,1† P. Tamayo,1 C. Huard,1

M. Gaasenbeek,1 J. P. Mesirov,1 H. Coller,1 M. L. Loh,2

J. R. Downing,3 M. A. Caligiuri,4 C. D. Bloomfield,4

E. S. Lander1,5*

Although cancer classification has improved over the past 30 years, there has
been no general approach for identifying new cancer classes (class discovery)
or for assigning tumors to known classes (class prediction). Here, a generic
approach to cancer classification based on gene expression monitoring by DNA
microarrays is described and applied to human acute leukemias as a test case.
A class discovery procedure automatically discovered the distinction between
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without
previous knowledge of these classes. An automatically derived class predictor
was able to determine the class of new leukemia cases. The results demonstrate
the feasibility of cancer classification based solely on gene expression moni-
toring and suggest a general strategy for discovering and predicting cancer
classes for other types of cancer, independent of previous biological knowledge.

The challenge of cancer treatment has been to
target specific therapies to pathogenetically
distinct tumor types, to maximize efficacy
and minimize toxicity. Improvements in can-
cer classification have thus been central to
advances in cancer treatment. Cancer classi-
fication has been based primarily on morpho-
logical appearance of the tumor, but this has
serious limitations. Tumors with similar his-
topathological appearance can follow signif-
icantly different clinical courses and show
different responses to therapy. In a few cases,
such clinical heterogeneity has been ex-
plained by dividing morphologically similar
tumors into subtypes with distinct pathogen-
eses. Key examples include the subdivision
of acute leukemias, non-Hodgkin’s lympho-
mas, and childhood “small round blue cell
tumors” [tumors with variable response to
chemotherapy (1) that are now molecularly
subclassified into neuroblastomas, rhabdo-
myosarcoma, Ewing’s sarcoma, and other
types (2)]. For many more tumors, important
subclasses are likely to exist but have yet to

be defined by molecular markers. For exam-
ple, prostate cancers of identical grade can
have widely variable clinical courses, from
indolence over decades to explosive growth
causing rapid patient death. Cancer classifi-
cation has been difficult in part because it has
historically relied on specific biological in-
sights, rather than systematic and unbiased
approaches for recognizing tumor subtypes.
Here we describe such an approach based on
global gene expression analysis.

We divided cancer classification into two
challenges: class discovery and class predic-
tion. Class discovery refers to defining pre-
viously unrecognized tumor subtypes. Class
prediction refers to the assignment of partic-
ular tumor samples to already-defined class-
es, which could reflect current states or future
outcomes.

We chose acute leukemias as a test case.
Classification of acute leukemias began with
the observation of variability in clinical out-
come (3) and subtle differences in nuclear
morphology (4 ). Enzyme-based histochemi-
cal analyses were introduced in the 1960s to
demonstrate that some leukemias were peri-
odic acid-Schiff positive, whereas others
were myeloperoxidase positive (5). This pro-
vided the first basis for classification of acute
leukemias into those arising from lymphoid
precursors (acute lymphoblastic leukemia,
ALL) or from myeloid precursors (acute my-
eloid leukemia, AML). This classification
was further solidified by the development in
the 1970s of antibodies recognizing either
lymphoid or myeloid cell surface molecules
(6 ). Most recently, particular subtypes of

acute leukemia have been found to be asso-
ciated with specific chromosomal transloca-
tions—for example, the t(12;21)(p13;q22)
translocation occurs in 25% of patients with
ALL, whereas the t(8;21)(q22;q22) occurs in
15% of patients with AML (7 ).

Although the distinction between AML
and ALL has been well established, no single
test is currently sufficient to establish the
diagnosis. Rather, current clinical practice
involves an experienced hematopathologist’s
interpretation of the tumor’s morphology,
histochemistry, immunophenotyping, and cy-
togenetic analysis, each performed in a sep-
arate, highly specialized laboratory. Although
usually accurate, leukemia classification re-
mains imperfect and errors do occur.

Distinguishing ALL from AML is critical
for successful treatment; chemotherapy regi-
mens for ALL generally contain corticoste-
roids, vincristine, methotrexate, and L-asparagi-
nase, whereas most AML regimens rely on a
backbone of daunorubicin and cytarabine (8).
Although remissions can be achieved using
ALL therapy for AML (and vice versa), cure
rates are markedly diminished, and unwarrant-
ed toxicities are encountered.

We set out to develop a more systematic
approach to cancer classification based on the
simultaneous expression monitoring of thou-
sands of genes using DNA microarrays (9). It
has been suggested (10) that such microar-
rays could provide a tool for cancer classifi-
cation. Microarray studies to date (11), how-
ever, have primarily been descriptive rather
than analytical and have focused on cell cul-
ture rather than primary patient material, in
which genetic noise might obscure an under-
lying reproducible expression pattern.

We began with class prediction: How
could one use an initial collection of samples
belonging to known classes (such as AML
and ALL) to create a “class predictor” to
classify new, unknown samples? We devel-
oped an analytical method and first tested it
on distinctions that are easily made at the
morphological level, such as distinguishing
normal kidney from renal cell carcinoma
(12). We then turned to the more challenging
problem of distinguishing acute leukemias,
whose appearance is highly similar.

Our initial leukemia data set consisted of
38 bone marrow samples (27 ALL, 11 AML)
obtained from acute leukemia patients at the
time of diagnosis (13). RNA prepared from
bone marrow mononuclear cells was hybrid-
ized to high-density oligonucleotide microar-
rays, produced by Affymetrix and containing
probes for 6817 human genes (14 ). For each
gene, we obtained a quantitative expression
level. Samples were subjected to a priori
quality control standards regarding the
amount of labeled RNA and the quality of the
scanned microarray image (15).

The first issue was to explore whether

1Whitehead Institute/Massachusetts Institute of
Technology Center for Genome Research, Cambridge,
MA 02139, USA. 2Dana-Farber Cancer Institute and
Harvard Medical School, Boston, MA 02115, USA. 3St.
Jude Children’s Research Hospital, Memphis, TN
38105, USA. 4Comprehensive Cancer Center and Can-
cer and Leukemia Group B, Ohio State University,
Columbus, OH 43210, USA. 5Department of Biology,
Massachusetts Institute of Technology, Cambridge,
MA 02142, USA.

*To whom correspondence should be addressed. E-
mail: golub@genome.wi.mit.edu; lander@genome.wi.
mit.edu.
†These authors contributed equally to this work.
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PCA of Golub training data, using all 3158 genes that passed filter



PCA of Golub training data, using 600 top variance genes 



BERGERAE




Blue = ALL-B cell   cyan = ALL-T cell    red = AML              
Larger spheres =  points chosen from “close neighbors criterion”
(3 for each class, used to define classifier)

Top 3 principal 
components 
projection of Golub 
et al. ALL/AML 
training data, using 
the top genes 
discriminating the 3 
“close neighbors” 
points in each of the 
3 classes pair-wise 
from each other (30 
genes for each of the 
3 pairs yielding 65 
distinct genes)





Proc. Natl. Acad. Sci. USA
Vol. 96, pp. 6745–6750, June 1999
Cell Biology

Broad patterns of gene expression revealed by clustering analysis
of tumor and normal colon tissues probed by
oligonucleotide arrays

U. ALON*†, N. BARKAI*†, D. A. NOTTERMAN*, K. GISH‡, S. YBARRA‡, D. MACK‡, AND A. J. LEVINE*§

Departments of *Molecular Biology and †Physics, Princeton University, Princeton, NJ 08540; and ‡EOS Biotechnology, 225A Gateway Boulevard,
South San Francisco, CA 94080

Contributed by A. J. Levine, April 13, 1999

ABSTRACT Oligonucleotide arrays can provide a broad
picture of the state of the cell, by monitoring the expression
level of thousands of genes at the same time. It is of interest
to develop techniques for extracting useful information from
the resulting data sets. Here we report the application of a
two-way clustering method for analyzing a data set consisting
of the expression patterns of different cell types. Gene expres-
sion in 40 tumor and 22 normal colon tissue samples was
analyzed with an Affymetrix oligonucleotide array comple-
mentary to more than 6,500 human genes. An efficient two-
way clustering algorithm was applied to both the genes and the
tissues, revealing broad coherent patterns that suggest a high
degree of organization underlying gene expression in these
tissues. Coregulated families of genes clustered together, as
demonstrated for the ribosomal proteins. Clustering also
separated cancerous from noncancerous tissue and cell lines
from in vivo tissues on the basis of subtle distributed patterns
of genes even when expression of individual genes varied only
slightly between the tissues. Two-way clustering thus may be
of use both in classifying genes into functional groups and in
classifying tissues based on gene expression.

Recently introduced experimental techniques based on oligo-
nucleotide or cDNA arrays now allow the expression level of
thousands of genes to be monitored in parallel (1–9). To use
the full potential of such experiments, it is important to
develop the ability to process and extract useful information
from large gene expression data sets. Elegant methods recently
have been applied to analyze gene expression data sets that are
comprised of a time course of expression levels. Examples of
such time-course experiments include following a develop-
mental process or changes as the cell undergoes a perturbation
such as a shift in growth conditions. The analysis methods were
based on clustering of genes according to similarity in their
temporal expression (5, 6, 9–11). Such clustering has been
demonstrated to identify functionally related families of genes,
both in yeast and human cell lines (5, 6, 9, 11). Other methods
have been proposed for analyzing time-course gene expression
data, attempting to model underlying genetic circuits (12, 13).

Here we report the application of methods for analyzing
data sets comprised of snapshots of the expression pattern of
different cell types, rather than detailed time-course data. The
data set used is composed of 40 colon tumor samples and 22
normal colon tissue samples, analyzed with an Affymetrix
oligonucleotide array (8) complementary to more than 6,500
human genes and expressed sequence tags (ESTs) (14). We
focus here on generally applicable analysis methods; a more
detailed discussion of the cancer-specific biology associated
with this study will be presented elsewhere (D.A.N. and A.J.L.,

unpublished work). The correlation in expression levels across
different tissue samples is demonstrated to help identify genes
that regulate each other or have similar cellular function. To
detect large groups of related genes and tissues we applied
two-way clustering, an effective technique for detecting pat-
terns in data sets (see e.g., refs. 15 and 16). The main result is
that an efficient clustering algorithm revealed broad, coherent
patterns of genes whose expression is correlated, suggesting a
high degree of organization underlying gene expression in
these tissues. It is demonstrated, for the case of ribosomal
proteins, that clustering can classify genes into coregulated
families. It is further demonstrated that tissue types (e.g.,
cancerous and noncancerous samples) can be separated on the
basis of subtle distributed patterns of genes, which individually
vary only slightly between the tissues. Two-way clustering thus
may be of use both in classifying genes into functional groups
and in classifying tissues based on their gene expression
similarity.

MATERIALS AND METHODS

Tissues and Hybridization to Affymetrix Oligonucleotide
Arrays. Colon adenocarcinoma specimens (snap-frozen in
liquid nitrogen within 20 min of removal) were collected from
patients (D.A.N. and A.J.L., unpublished work). From some of
these patients, paired normal colon tissue also was obtained.
Cell lines used (EB and EB-1) have been described (17). RNA
was extracted and hybridized to the array as described (1, 8).

Treatment of Raw Data from Affymetrix Oligonucleotide
Arrays. The Affymetrix Hum6000 array contains about 65,000
features, each containing '107 strands of a DNA 25-mer
oligonucleotide (8). Sequences from about 3,200 full-length
human cDNAs and 3,400 ESTs that have some similarity to
other eukaryotic genes are represented on a set of four chips.
In the following, we refer to either a full-length gene or an EST
that is represented on the chip as EST. Each EST is repre-
sented on the array by about 20 feature pairs. Each feature
contains a 25-bp sequence, which is either a perfect match
(PM) to the EST, or a single central-base mismatch (MM). The
hybridization signal f luctuates between different features that
represent different 25-mer oligonucleotide segments of the
same EST. This fluctuation presumably reflects the variation
in hybridization kinetics of different sequences, as well as the
presence of nonspecific hybridization by background RNAs.
Some of the features display a hybridization signal that is many
times stronger than their neighbors ('4% of the intensities are
.3 SD away from the mean for their EST). These outliers
appear with roughly equal incidence in PM or MM features. If
not filtered out, outliers contribute significantly to the reading
of the average intensity of the gene. Because most features

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked ‘‘advertisement’’ in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

PNAS is available online at www.pnas.org.

Abbreviation: EST, expressed sequence tag.
§To whom reprint requests should be sent at present address: Presi-
dent’s Office, Rockefeller University, 1230 York Avenue, New York,
NY 10021. e-mail: ajlevine@rockvax.rockefeller.edu.
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Leave-One-Out Crossvalidation for Alon et al. Data: 
Misclassified points (3 tumor     ,   3 normal      ) are larger size



Summary for PCA

• PCA projects into orthogonal coordinates   
that capture as much variation as possible in 
the top coordinates

• PCA is not necessarily the best way to 
discover clusters in the data

• PCA works best if most of the variation in 
the data occurs in the coordinates being kept

• Need to first translate so mean of each 
component of the data is 0 unless software 
does so 



Non-Negative Matrix 
Factorization (NMF)

(Lee & Seung, 1999, 2001)
for

Clustering Data

Expresses data (column vectors) in terms of 
a reduced number of basis vectors.  In 
contrast with SVD (PCA) here the entries 
in the basis vectors are ≥ 0, and the basis 
vector coefficients are ≥ 0 and “sparse.”



From Figure 1, page 121

Is the 
natural 
distance  
the 
distance 
in R3     

or the 
distance 
within 
the 
curved 
surface?



Singular Value Decomposition (SVD)
Am n = Um m Σm   n Vt

n nXX XX

Here draw schematic for case m>n corr. to data points = cols of A and 
more rows than columns (e.g., microarray data – viewing samples)
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Matrix Singular Value Decomposition (SVD)              
Outline  x

• The SVD of a Matrix

• PCA in terms of SVD

• PCA, SVD, eigenvalues & eigenvectors of the inner product matrix
. of the rows of A or of the covariance matrix of the rows of A (same     
. matrices except for a factor of (n-1))

• Statistical Viewpoint: PCA coordinates are uncorrelated



Vectors with n entries

V = (v1,v2,…,vn), W = (w1,w2,…,wn)  are called     
n-vectors, and are said to be points in RRn

the difference (V-W) between V and W                      
(the vector from W to V) is                                     
V-W =  (v1- w1, …, vn- wn)

the square of the Euclidean distance between          
V and W =         
(V-W) • (V-W) = (v1- w1)2 + … + (vn- wn)2

in general, V • W = v1w1 + … + vnwn



Eigenvalues and Eigenvectors of a Matrix &

if  A v = λ v

for n by n matrix A, n-vector v, 
number λ:                                        
then λ is an eigenvalue of A with 
corresponding eigenvector v
4     2          1                                  1           
2     4         -1                                 -1  = 2

1     2                                                         
3     4                                               

1     3                                                         
2     4                                               

t
t= =and   (1,2,3)

1
2
3

Transpose Notation



Orthogonality
Vectors v and w are orthogonal if 

V • W =  0

An n×n matrix A is orthogonal if any 
two distinct rows <columns> of A are 
orthogonal and each row <column> 
has length 1 (in which case A-1 = At)    
e.g.,

√3 / 2          -1 / 2                
. 1 / 2          √3 / 2                                   



Picking PCA Directions w to Maximize Variation Along w

Consider the points to be the columns of the m by n matrix A

Want to pick the m-vector w of length 1 to maximize the sum 
of the squares of the entries in the row vector wt A, i.e., want 
to maximize

(Q)                               wt (A At) w 

This means w is the eigenvector corresponding to the largest 
eigenvalue of the covariance matrix of the rows of A; 
successive principal component directions maximize (Q) 
subject to the current w being perpendicular to all the previous
ones.



Singular Value Decomposition (SVD)
Am n = Um m Σm   n Vt

n nXX XX

Here draw schematic for case m>n corr. to data points = cols of A and 
more rows than columns (e.g., microarray data – viewing samples)
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Singular Value Decomposition (SVD)

Decompose m × n matrix A as the product

A = U Σ V T

where

� Columns (& rows) of U (m × m) are orthonormal

� Rows (& cols) of V T (n × n) are orthonormal

� Σ is an m × n diagonal matrix
Σ = m × n diag(σ1 ≥ . . . ≥ σr > 0, σr+1 = . . . = σmin(m,n) = 0)
r = rank(A) is the # of indep. rows / cols in A

� Use the k “most significant” components
to do k - dimensional Principal Components
Analysis (PCA) – project the data
(the n cols of A) into the linear subspace
spanned by the first k cols of U: Ak ≡ U t

kA where
Uk is columns 1 through k of U.

� Note AAT = UΣΣTUT, ATA = V ΣTΣV T

� The range of A is spanned by cols 1,. . ., r of U
The null space of A is spanned by
cols r+1,. . ., n of V



Singular Value Decomposition (SVD)

Decompose m × n matrix A as the product

A = U Σ V T

� Columns of U (m × m) are orthonormal
Rows of V T (n × n) are orthonormal

� Σ is an m × n diagonal matrix
Σ = m × n diag(σ1 ≥ . . . ≥ σr > 0, σr+1 = . . . = σmin(m,n) = 0)
r = rank(A) is the # of indep. rows / cols in A

� Note AAT = UΣΣTUT, ATA = V ΣTΣV T

� AAT gives a constant, namely, n − 1, times the
covariance matrix for the rows of A
(assuming each row mean = 0).
The eigenvectors of AAT <ATA>
(the cols of U <V>) are the principal components
basis for the columns of A <AT>.
The eigenvalues of AAT are n − 1 times
the variances Vi of the data
along the principal component axes
(the cols of U). (Vi = 0 for i > r, Vi = TVi/(n − 1).)
The data in principal component coordinates
is Y = UTA, and the covariance matrix Y Y T/(n − 1)
is diag(Vi)m×m: the rows of Y are uncorrelated.
Statistical viewpoint: one is taking linear
combinations of random variables (rows of A).



The covariance Cij of Ai = row i of A and Aj = row j of A is:  (1/(n-1))    
(Ai - μ(Ai))      (Aj - μ(Aj)) = Σk=1 (Aik - μ(Ai))    (Ajk - μ(Aj)) / (n-1)

Matrix of Inner Products of the Rows of Amxn

------ Row 1 of A --------
------ Row 2 of A --------

…………..
------ Row m of A -------

--R
ow

 1of A
 --

--R
ow

 2of A
 --

……

--R
ow

 m
 of A

 --
A            At*

*
n . *

Here μ(Ai) and μ(Aj) are assumed to have already been arranged to be 0; 
so C = cov. matrix of rows of A is just  A At / (n-1).  Thus e. vectors of C 
equal the e.vectors of A At   &  e. values of C = (e.values of A At ) / (n-1).



Distance Geometry                                   
Outline  x

• Here motivated by: distance constraints molecular conformations

• Distance constraints  {m ≤ dij ≤ M}  random sample sets of  {dij}

• for each given set of {dij} metric (inner product matrix) G = AtA

• Eigenvectors and eigenvalues of G give construction of A

• This construction is a principal component representation of points

• Duality of this construction, PCA in terms of the SVD

• Simple Example 

• Need to follow this DG/PCA linear projection into 3-D by nonlinear     
. optimization to best satisfy the distance constraints when have             
. .experimental errors / incomplete info. / inexact choices of the {dij}



 

        Some References for Classical Distance Geometry 
                           and Restrained Molecular Dynamics 
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       for Use in the Determination of Protein Structure 
       from Distance Constraints Obtained by Nuclear Magnetic 
       Resonance, Prog. Biophys. Molec. Biol. 56 (1991), pp. 43-78. (practical alg.) 
 
[4]  G. M. Crippen and T. F. Havel,  Distance Geometry and Molecular   
       Conformation, Research Studies Press - Chemometrics Series Vol. 15, 1988.                           
 
[5] . I. T. Jolliffe,  Principal Component Analysis 2nd Edition,   
       Springer, 2002 – cf. Section 5.2.                                    
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       D. C. Spellmeyer, DGEOM 95: Distance Geometry, QCPE Program  
       Number 590, Quantum Chemistry Program Exchange, Indiana  
       University Department of Chemistry, 1995. 
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      G. T. Montelione and R. E. Bruccoleri, Simulated Annealing  
      with Restrained Molecular Dynamics Using a Flexible Restraint 
      Potential: Theory and Evaluation with Simulated NMR Constraints, 
      Protein Science 5 (1996), pp. 593-603. 
 
[9]  R. Tejero, D. Bassolino-Klimas, R. E. Bruccoleri, and 
      G. T. Montelione, Simulated Annealing with Restrained  
      Molecular Dynamics Using CONGEN: Energy Refinement of the 
      NMR Solution Structures of Epidermal and Type-alpha  
      Transforming Growth Factors, Protein Science 5 (1996), pp. 578-592. 



 

        A Couple References for Molecular Modeling 
 
[1]  A. R. Leach, Molecular Modelling: Principles and Applications, Second Edition,  
       Prentice Hall, 2001. 
 
[2]  T. Schlick,  Molecular Modeling and Simulation, Springer, 2002. 
 
 



Given a Distance Matrix for n points (that satisfy 
certain geometrical conditions) there exists n points 
that are vectors with (n-1) components that satisfy
the distance conditions

2 points fit in a line (1-D), 3 points form a plane 
triangle (2-D), 4 points form a tetrahedron (3-D)…

For molecular structure (or general visualization 
(MDS)) want to project back down into 3-D while 
minimizing loss of information / extent of 
discrepancy with the constraints – sounds like PCA
except we don’t yet have the points



Having obtained this inner product matrix G, find its 
eigenvalues and eigenvectors and use them to directly 
construct n-dimensional points satisfying the distances.

Distance Geometry Construction

Given distances between n points, use “fundamental 
equality” to construct metric matrix = inner product 
of point vectors (even though don’t have the points!!)

This construction naturally is in the PC coordinates 
for the points (so using the first 3 coord. gives the 
PCA projection).



If the distances are “consistent,” the algorithm 
below produces a set of points Pk (n-vectors)  that 
(1) satisfy the distances  dist(Pi, Pj) = dij 
(2) have centroid = 0  (average = 0)

(3) have coordinates that are the principal 
component coordinates, so just using the first 3 
coordinates gives the best linear projection .     
into 3-D, i.e., the projection that maximizes the 
sum over the projected points of (dist(0, Pk))2 or 
equivalently that maximizes the sum over i and j 
of the inter-point distances (dist(Pi, Pj))2





EMBEDDING

following G. M. Crippen & T. F. Havel,
Stable Calculation of Coordinates from Distance Information,

Acta Cryst. A34 (1978), pp. 282–284.

Stable algorithm to obtain initial atom positions {P 0
k}

approximately satisfying given distance constraints:

1. d2
i c ≡ ||P i − average A of {P k}||2 = fcn(d j k)

d2
i c =

1
N

N∑

j=1

d2
i j −

1
N2

N∑

j=2

j-1∑

k=1

d2
j k.

2. Calculate N × N metric matrix G = g i j =
(P i − A) · (P j − A) using the law of cosines:

g i j =
1
2
(d2

i c + d2
j c − d2

i j).



Trig. – Law of Cosines

C=0

dic

djc

dij

Pj - Pi

gij ≡ Pi • Pj = dic djc cos(θ)
θ

Pj
Pi

(Pj - Pi) • (Pj - Pi) = dij

= dic + djc - 2gij

2

2 2

so gij = (dic + djc  - dij ) / 2222



The fundamental equality (1) in the 
“Embedding Page” says that if there are 
points satisfying the distance constraints, 
their inner product (dot product) metric 
matrix gij can be explicitly expressed 
completely in terms of the inter-point 
distances.

Conversely given an inner product matrix gij
from a set of points (centroid at origin) one 
can directly write down the inter-point 
distances 



If one sums the fundamental embedding 
identity (1) over i=1,…,n, (when the centroid 
of the points is 0) one finds that:                      

sum over i of (dist(0, Pi))2   =                             
sum over i and j  of (dist(Pi, Pj))2 / (2n)   
.

the “variation” of the points about the origin 
= the sum of the squares of the inter-point 
distances / (2n)     (note this counts dij & dji)



ISOMORPHISMS BETWEEN the SETS of
DISTANCE and METRIC MATRICES

{
d2

i j : d2
i j = d2

j i, d2
i i = 0

} T
⇀↽
W

{
g i j : g i j = g j i,

∑

i

g i j = 0

}

T
{
d2

r s

}
i j

=
1
2

(
d2

i c + d2
j c − d2

i j

)

W {g r s} i j = g i i + g j j − 2g i j

d2
i c =

1
N

N∑

j=1

d2
i j −

1
N2

N∑

j=2

j-1∑

k=1

d2
j k.



G Positive Semi-Definite is a
Necessary and Sufficient Condition
for Existence of a Corresponding

Set of Points in Rn

Let the eigenvalues of G be λ1, λ2, λ3 . . . , and let
the corresponding eigenvectors (here row vectors)
be W1, W2, W3 . . . with the order λ1 ≥ λ2 ≥ λ3 . . .

Then, when G is Positive Semi-Definite,
define the points (column vectors) {P k} by

( P1 P2 . . . PN )N xN =





λ
1/2
1 W1

λ
1/2
2 W2

...
λ

1/2
N WN





N xN

In general the top few eigenvalues will be positive
even when the geometric conditions on the distances
for exact embedding are not satisfied.



u = 1/√n

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
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⎜

⎝

⎛

x x xx x x x x x x x x x 
x x xx x x x x x x x x x 
....................................
x x xx x x x x x x x x x 
x x xx x x x x x x x x x 
x x xx x x x x x x x x x row 1

row 2

row n-1

row n                                
must be 0

row 3

If data were “perfect,” rows beyond 3               
would be 0

(λ2)1/2

(λn-1)1/2

(λ1)1/2

(λ3)1/2

eigenvectors of G

P1 P2 P3 P4 P5 P6 P7 P8 P9 ………. Pn 

Defining the Points from the Eigenvectors and Eigenvalues

0 u u u u u u u u u u u u u



Having obtained this inner product matrix G, find its 
eigenvalues and eigenvectors and use them to directly 
construct n-dimensional points satisfying the distances.

Distance Geometry / PCA duality

If have distances from n points, use “vector formula” 
to construct nxn metric matrix G = inner product of 
point vectors (even though don’t have the points!!)

This construction naturally is in the PC coordinates 
for the points (so using the first 3 coord. gives the 
PCA projection).



Distance Geometry / PCA duality II

If have n points, centroid=0, as columns of matrix A, 
then their metric matrix G = At A; use SVD of A –
A = U Σ Vt to write G = V Σt Ut U Σ Vt so

* 

The line above is the distance geometry construction that only 
required knowing the distances between the points.  Since G = 
the inner product matrix from P, and G came from the distance 
matrix, the isomorphism between Dij’s and Gij’s guarantees 
the points P satisfy the inter-point distances.  If have A; Ut A 
directly gives the principal component coordinates of the 
points. (note the non-zero entries of Λ and Σ are the same).

G = V Λ Vt = (V Λ .) (Λ Vt )1/2 1/2 = Pt P

1/2



Distance Geometry – Simple Example
(-1,16)

25 26

P3

0

metric matrix G






















128         -8          -120

-8       145     -137

-120   -137     257

(-8,-8) 17 (9,-8)

P1 P2

eigenvalues = 386.39605,  143.60395   sum = 530 = sum 
of squares of distances of the 3 points to the origin



Distance Geometry – Simple Example

(-8,-8) (9,-8)

(-1,16)

25 26

P1 P2

points from e-values & e-vectors of G

19.657 (-0.36454  -0.45045 0.81499)

11.9835 (0.73060  -0.68100  -0.04960)

0               0                0

1-D projection = (-7.1657,  -8.8545,  16.0202)

P1 P2 P3(λ1)1/2

(λ2)1/2

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
first eigenvector

17

sum of squares of inter-point distances (double count) =        
2(289 + 676 + 625) = 3180 = 2*(n=3)*(Σ(dist of pt to 0)2 =530)

“Best” 1-D (min Σij(Dij-dij)2) is  (p2 = -14.333,   p1=-2.667,   p3 = 17)  
error is 3*(5.333)2  so need nonlinear optimization after projection

second eigenvector

U1

U2 0

P3



 
Singular Value Decomposition on the array A of the 3 points 
from the distance geometry example - each point is a column of A 
 
A =  
      -8.0000000       9.0000000      -1.0000000       
      -8.0000000      -8.0000000       16.000000       
 
Note the sum of the entries in each row of A has 
already been arranged to be 0 
 
 
the singular value decomposition of A: 
A = U  Σ  Vt           
 
(here Vt means the transpose of V) 
t after any matrix name means take the transpose of the matrix:  
the rows of the transposed matrix = the columns of the original matrix 
 
                                                     
U =                                                      
   -0.099341496     -0.99505338               
    0.99505340    -0.099341644    
 
The columns of U are the PCA axes for the columns of A. 
These are the eigenvectors of Cr = A At; 
Cr = (n-1)*covariance matrix for rows of A. 
 
                                                         
                                                                   
Σ =                                                                              
       19.656959      0.00000000      0.0        
      0.00000000       11.983487      0.0                                                              
                                                                   
The variation (sum of squares of coordinate values) for each 
nontrivial PCA coordinate = (diagonal of Σ)2 =  eigenvalues of the  
metric matrix G = At A.  Since centroid of points = 0, at least one  
eigenvalue of G is always 0 
 
Vt =  
     -0.36453728     -0.45045123      0.81498851      The rows of Vt are the   
      0.73060204     -0.68099945    -0.049602588      eigenvectors of the 
      0.57735026      0.57735026      0.57735026      metric matrix G = At A 
 
verify A = U  Σ  Vt  
U  Σ  Vt  = 
      -8.0000006       8.9999992     -0.99999859 
      -8.0000006      -7.9999996       16.000000 
 
write the points (columns of A)  in terms of the PCA coordinates  
(the columns of U) 
 
Ut A = Σ  Vt  =                                                            
      -7.1656945      -8.8545014       16.020196         
       8.7551598      -8.1607478     -0.59441195        
                                                                                  
These are the coordinates of the 3 points  
(columns of A)  in terms of the PCA 
coordinate system (the 2 columns of U). Note these 2 rows are 
uncorrelated (their inner product is 0). Distances are 
preserved by the full (all coordinate) PCA representation. 
   
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 



 
 
  
 
                          
note the sums of the columns of A are 0                  
(the centroid is at the origin) so 
(n-1) x (the covariance matrix of the rows of A) = A At = 
 
       146.00000      -24.000000 
      -24.000000       384.00000 
 
the Metric Matrix = the array of inner products of 
the points (the columns of A) = At A = 
 
       128.00000      -8.0000000      -120.00000 
      -8.0000000       145.00000      -137.00000 
      -120.00000      -137.00000       257.00000 
 
Ut A At U = Σ Σt  =                                          
                                  386.39605         -7.8708505e-005              
                                 -7.8708505e-005       143.60395              
  
so   A At U = U Σ Σt   (the eigenvectors of A At are the columns of U)                             
 
 
and 
 
 
Vt At A V = Σt Σ  = 
                                  386.39605       -9.6387622e-005        0.0 
                            -9.6387622e-005       143.60395              0.0 
                             1.6403545e-014      -4.1017537e-015         0.0 
 
so At A V = V Σt Σ    
 
(the eigenvectors of At A are the columns of V = the rows of Vt) 
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