BINF 636: Lecture 10, Oct 29, 2008:

Introduction to Principal Component Analysis and

Multidimensional Scaling (Distance Geometry)
Description:

Principal Component Analysis (PCA) can be viewed as a change in coordinate system, chosen so that to

the extent possible, most of the variation in the data is captured in the top several coordinates of the data when
expressed in terms of the new PCA coordinate system. In cases where enough of the variation is in a few top
components of the data, this is a powerful visualization technique. Use of the top several components

(enough to capture a majority of the variation in the data) may lead to more efficient data analysis and
suppression of the effects of noise. This class will cover what PCA does, how it does it, and when it is
advantageous, including visualization examples from tumor subtypes in gene microarray data.

In classical multidimensional scaling (MDS), also called distance geometry, one starts with set of distances between
the points to be displayed, and attempts to represent these points in a low dimensional space while having the
distances between the points approximate, as well as possible, the original distances. The original distances could be
the Euclidean distances between the points, or, for example, distances derived from correlations. A standard first
step in a distance geometry application is to convert the distances into a matrix of the inner products of the
(unknown) position locations. This matrix leads to a set of positions (coordinates of the points) satisfying the
distance conditions (assuming the distance data doesn't violate certain geometrical conditions), but in a higher
dimensional space. Point locations in 3 coordinates can be obtained by projecting down from the higher dimensional
positions in a way that minimizes a certain measure of the error committed in forcing the projected points to have
only 3 coordinates, which can be seen to be a PCA projection. The resulting starting positions can be used as the
initial values in a nonlinear optimization procedure to search for positions that better satisfy the prescribed distances.
The aspects of distance geometry outlined above will also be covered in this class.

Topics to be covered include

o Principal Component Analysis (PCA) as a means of reducing the dimension of a high dimensional dataset
and visualizing a high dimensional dataset in 2 or 3 dimensions
. What PCA does - PCA as choice of a new coordinate system capturing as much of the variation in the data

as possible in the first several coordinates

Simple examples and examples from visualization of tumor subtypes in microarray data

When PCA is effective and when it is not

PCA in terms of eigenvalues and eigenvectors of the appropriate covariance matrix

PCA via the Singular Value Decomposition (SVD) of the data matrix

Viewing an initial step in a distance geometry algorithm as the linear projection of a high dimensional
dataset into 3 dimensions that preserves as much of the distance variation as possible, which is a PCA
projection. Viewing this step in terms of the singular value decomposition of the matrix of the points in the
higher dimensional space.

Alan E. Berger, Ph.D., JHBMC Lowe Family Genomics Core, Johns Hopkins University School of Medicine,
aberger9@jhmi.edu  (410) 550-5089




An Introduction to Principal Component Analysis (PCA)
Outline

« Examples of visualization capturing as much of the variation
in the data as possible (PCA)

e [llustration of how PCA works — selection of first axis capturing
maximal variation

e Precise definition of “variation of the data”
* PCA might not be best for separating subgroups

« Examples of PCA on real data, left out dimensions do matter,
comparison with hierarchical agglomerative clustering

* Scree plots for estimating how much variation in the data
has been captured

* Matrix singular value decomposition (SVD) gives PCA coord.



Some References for Principal Component Analysis
and Singular Value Decomposition (SVD)

[1] R. A.Johnson and D. W. Wichern, Applied Multivariate
Statistical Analysis, Fourth Edition, Prentice Hall,
1998, Chapter 8 — Principal Components

[2] 1. T. Jolliffe, Principal Component Analysis 2nd Edition,
Springer, 2002.

[3] W. H. Press, B. P. Flannery, S. A. Teukolsky and
W. T. Vetterling, Numerical Recipes (FORTRAN VERSION)
Cambridge University Press, 1989, Section 2.9

[4] G. Strang, The Fundamental Theorem of Linear Algebra
American Mathematical Monthly 100 (1993), pp. 848-855.
(explains the singular value decomposition in terms of the
fundamental subspaces of a matrix (linear transformation)
and its transpose)

[5] G. H. Golub and C. F. Van Loan, Matrix Computations 2nd Edition,
The Johns Hopkins University Press, 1989, Section 2.5 <Ed. 3, 1996>

[6] B. Carnahan, H. A. Luther and J. O. Wilkes, Applied Numerical
Methods, John Wiley & Sons, 1969 — see “power method” to get several
of the largest eigenvalues and corresponding eigenvectors of a real
symmetric positive semidefinite matrix (e.g., a moderate size covariance
matrix).

(in general should use a_robust algorithm to obtain the SVD)

[7] G. W. Stewart, On the Early History of the Singular Value
Decomposition, SIAM Review 35 (1993), pp. 551-566.

[8] M. E. Wall, A. Rechtsteiner and L. M. Rocha, Singular Value
Decomposition and Principal Component Analysis, in A Practical
Approach to Microarray Data Analysis, D. P. Berrar, W. Dubitzky and
M. Granzow, eds. pp. 91-109, Kluwer, Norwell, MA (2003)
web page: http://public.lanl.gov/mewall/kluwer2002.htmi



http://public.lanl.gov/mewall/kluwer2002.html

BMC Genomics 2005, 6:63 D. Peterson et al.
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Principal Component Analysis (PCA) of the three microarray platforms and six cell lines using expression of the 3186 genes

with signals above background.

may be due to simple errors in gene identification, rather
than to the technologies of the platforms. The Incyte
library is guaranteed by the manufacturer to be only 90%
correct, and an unknown percentage of the Operon and
Affymetrix oligonucleotides may have been designed on
the basis of incorrect sequences in the public databases.
Indeed, we found one oligonucleotide in the Operon set
that was apparently designed from an EST sequence that
has since been withdrawn from the UniGene database
(see RT-PCR studies below). In any case, the concordance
is quite high across all platforms with this method of anal-
ysis as well as with the others.

Quantitative real-time RT-PCR

In a pilot study with the three platforms, we compared
and contrasted gene expression values for only the cell
lines MCF10A and LNCaP. RT-PCR data for twelve genes
are shown in Figure 6. Most of the values are in reasonable
agreement except that there are differences in the magni-
tudes of the expression ratios. As found in other studies,
the RT-PCR values are generally higher, probably because
ratios are "flattened" with the microarray platforms.
Affymetrix ratios are sometimes higher, but that may sim-
ply reflect the method of quantitation used in their analy-
sis. The cDNA array ratios are generally lower than those
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Sample Section of a Gene Expression Level Matrix

="

1 |Gene Description  # Tissue Sample # = 1 2 3 4 A B 7 a g
130|Miemann-Fick C disease protein (MPC1) mBEMNA 54 17 175 235 150 142 22 217 141
131|588 DEF = Angelman Syndrome Gene, EB-AF ubic 180 372 431 528 162 445 827 893 430
132|RET ligand 2 (RETLZ) mRMNA, 373 430 856 506 213 414 772 836 449
133| 5B DEF = Delayed rectifier patassium channel (kX 484 485 159 a9y 155 a1 774 852 341
134|GB DEF = Secretory carrier membrane protein (S0 949 21 4 33 110 Fis) 70 Fils) 95
135|Poly(ADP-ribose) glycohydralase (hPARG) mRMNA, B5 82 163 135 107 75 B3 40 83
136|GB DEF = Importin alpha 6 mRMNA B0 B2 30 B 16 35 13 ) B2
1537 | Caspase-like apoptosis requlatory pratein 2 (clarp) 451 B47 842 531 514 4587 403 E71 492
138 |ATF family member ATFE (ATFB) rmRMA, 197 119 293 118 200 44 1581 206 93
139 |Fas-binding protein (DAXX) mRMNA partial cds 246 178 2011 814 478 853 1073 2126 743
140| Arp2f3 protein complex subunit pd1-Arc (ARCA1 n 1130 866 1403 945 1129 983 1287 SEG 813
147 | Arp2f3 protein complex subunit p20-Arc (ARC20) 370 1466 1334 a5z 711 227 530 827 1693
142|GE DEF = RG53 mRMNA, 5" UTR 300 17 330 141 173 156 528 410 451
143 | MDOM2-like p53-binding pratein (MO mRRA, 330 43 428 449 122 245 144 178 165
144 |Bet1p homalog (hbet1) mRRA 141 21 a7 87 244 B4 455 374 75
145| Dolichal monophosphate mannose synthase (DFM 260 B2 400 a5 389 156 283 203 310
146 | Phospholipid scramblase mRMA 124 RS 102 234 24 16 109 A5 a0
147 |GB DEF = Syntaxin-16C mRMA, 339 453 297 403 440 357 37 AE5 295
143|GB DEF = TEB4 protein mREMA, 233 85 83 142 214 B4 77 266 14
149|GE DEF = Luman mREMNA 1052 B35 11745 1079
44 [p M data_set_ALL_AML_train / Ik}

Rows are expression levels of 1 gene, columns are expression
profile from 1 microarray chip (here a tissue sample)

(modified from Golub et al. ALL/AML data)




Microarray Expression Data

Sample 1 ... Samples ... Sample N
gene 1
gene 2 entry (g,s) of the expression level matrix L
contains the expression level L(g,s) of
of gene (probe set / spot) g in sample s
gene g a sample can be, e.g., control cells, treated
cells, cells from a particular tissue or
disease state
gene M for Yale Chip, M = 15,250, for Affymetrix

HG-U133a (b) Chip, M = 22,283 (22,645)



PCA of Three Replicate Chips at Three Times (1.5, 3, 5 hours)
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Projection of Points
Onto the X-Axis




Projection of Points
Onto the Y-Axis




{

Rotated\Coordinates so New X-Axis
Captures\Maximal Amount of
Variation that Can Be Captured in
One Direction




Distance from a point to the origin O
Distance between two points

v (X.y)
y (r,s)

9 X

Distance from the point with coordinates (X,y) to O is
sqri(x*x + y*y)

Distance? from (X,Y,...,L) to O is X% +Y2+--+ L2

Distance? between (X,y) and (r,s) is (X-r)2 + (y-5)2



Total Variation TV = Sum of Distances? of Points to Origin =

TV, + TV, + TV, + -
TV, = sum of squares of the X coordinates of all the points, etc.
point# 1 2 3 ... n
X-coordinate values mp 4 Xy Xy Xy o X N TV,
Y-coordinate values mp Y, Y, Yy Y, TV,
Z-coordinate values e Z, 2L, Zy3 - Z, TV,

\ _/



* ey oo " Variation of the
o : °e ° X Data

The total variation (TV) of the data (about the origin 0 — in general will
assume the average (center of mass) of the points is at 0) = the sum of the
squares of the distances of the points to 0. Note that

TV=TV +TV + ..
where TV_= sum of the squares of the x coordinates of all the points, etc.

PCA picks the new x-axis to maximize TV (relative to the new x axis), then

over all directions perpendicular to the new x axis PCA picks the new y axis
to maximize TV, (relative to the new y axis), etc.

Note while the individual TV . values change, TV 1s unchanged.

axis



PCA Projection Down to 2 Dimensions

from page 488 of T. Hastie et al., |
The Elements of Statistical d
Learning, Springer 2001



Here Projecting Onto
the Y-Axis Separates
the Given Classes, so
PCA Does NOT
Always Yield the Best
Results

Rotated\Coordinates so New X-Axis
Captures\Maximal Amount of
Variation that Can Be Captured in
One Direction




Here Projecting Onto
the Y-Axis Separates
the Given Classes, so
PCA Does NOT
Always Yield the Best
Results

Rotated\Coordinates so New X-Axis
Captures\Maximal Amount of
Variation that Can Be Captured in
One Direction




For PCA, MUST
have the centroid of
the points (average of
each coordinate) =0
(library algorithms
will do this — subtract
out the mean for each
coordinate)

Mean Centered Points

pth 1 2 3 4 TV . =50

red-axis

15 -0.5 05 1.5
1.5 05 -0.5 -1.5 TV, o = 10




Part of the Anderson Fisher Iris Data Set

5.1 3.5 1.4 0.2 1

4.9 3.0 1.4 0.2 1

4.7 3.2 1.3 0.2 1 column 5 1 = Setosa

4.6 3.1 1.5 0.2 1 2 = Versicolor

5.0 3.6 1.4 0.2 1 3 = Verginica

5.4 3.9 1.7 0.4 1

4.6 3.4 1.4 0.3 1 full data set is

5.0 3.4 1.5 0.2 1 50 samples of each iris flower species
............... (data from R. A. Johnson and D. W. Wichern [1])

7.0 3.2 4.7 1.4 2 each row is the data from one flower

6.4 3.2 45 1.5 2

6.9 3.1 4.9 1.5 2 columns 1, 2, 3, 4 are measured properties

5.5 2.3 4.0 1.3 2 of each flower (sepal length, sepal width,

6.5 2.8 4.6 1.5 2 petal length, petal width)

5.7 2.8 4.5 1.3 2

6.3 3.3 4.7 1.6 2 Botany definitions: the calyx is the outermost

4.9 2.4 3.3 1.0 2 group of Floral parts, usually green; sepals
............... are the individual leaves or parts of the

——————————————————————————— calyx

6.3 3.3 6.0 2.5 3

5.8 2.7 5.1 1.9 3

7.1 3.0 5.9 2.1 3

6.3 2.9 56 1.8 3

6.5 3.0 5.8 2.2 3

7.6 3.0 6.6 2.1 3

4.9 2.5 4.5 1.7 3

7.3 2.9 6.3 1.8 3




Example of Single Linkage Hierarchical Clustering
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Centroid Hierarchical Clustering of Anderson Iris Data
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plotted Wed May 29 12:21:09 2002  cenhieriris.pro——May 29, 2002 cenhiermay29



Principal Component Plot of Anderson Iris Data

Second Principal Component
(@]
\
\

First Principal Component

cov evalues = 4228 0.243 0.0/78 0.024
Fri Sep 21 12:36:00 2001  irispcl.pro September 21, 20071  irispclcov.ps

data from Table 11.5 of Johnson and Wichern 1998




Richardson Lab & Kinemage Home Page: Jane Richardson, David Richardson

3 Macromolecule Analysis/ atthe

Richardson

& Kinemage Home Page / Laboratory

Kinemages: 3D interactive graphics
"The Mage Page", kinemage list, KING manual, Mage help, ...

Software: Display; Contacts; & Utilities
Download links, manuals, software descriptions, ...

Databases: protein & nucleic acid compilations
penultimate rotamer library, Top500 proteins with optimized H atoms, RNA backbone
rotamers, 100 high resolution proteins with optimized H atoms and fixes, ...

MolProbity: structure validation

Web service for all-atom contact and geometrical analysis of your model

Research: 3D structure of proteins & nucleic acids
All-atom contacts; structure improvement; backbone motions; sidechain rotamers; "RNA
Backbone is Rotameric"

Teaching: Course materials
Duke courses: BCH222, BCH258, BCH291, and workshops on Model Quality and
software tool use at various places, ...

Gallery: images

2D images, annotated Anatomy and Taxonomy of Protein Structure (in progress)

About us: Lab Info
Contacts; travel; publications; SECSG, Biochem. Dept., Biophysics

"This page generated by:"
NIH Grant GM-15000, funding Richardson Lab research for over 34 years; and
NIH Grant GM-61302, funding RLab for over 3 years.

http://kinemage.biochem.duke.edu/ [5/20/2005 10:54:26 PM]
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PCA of Three Replicate Chips at Three Times (1.5, 3, 5 hours)
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PCA of Permuted Data from Three Replicate Chips

at Three Times (1.5, 3, 5 hours)
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Scree Plot for Gutting Data and Permutation

(@)}

(Singular Values)?

Figenvalues from the data

Figenvalues from permuted data
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Fri Jun 10 23:57:52 2005  screeplot.pro June 10, 2005
Variances in Principal Coordinate Axes = Eigenvalues of Covariance Matrix

C:A\bergen\biochemImuulmayO3data\PCAcourse\screeplot.ps



Intercluster Distance

Golub et al. ALL/AML Microarray Data Clusters
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REPORTS

Molecular Classification of
Cancer: Class Discovery and
Class Prediction by Gene

Expression Monitoring

T. R. Golub,’?*{ D. K. Slonim,"{ P. Tamayo,’ C. Huard,"
M. Gaasenbeek, J. P. Mesirov,” H. Coller,” M. L. Loh,?
J. R. Downing,® M. A. Caligiuri,* C. D. Bloomfield,*

E. S. Lander™-5*

Although cancer classification has improved over the past 30 years, there has
been no general approach for identifying new cancer classes (class discovery)
or for assigning tumors to known classes (class prediction). Here, a generic
approach to cancer classification based on gene expression monitoring by DNA
microarrays is described and applied to human acute leukemias as a test case.
A class discovery procedure automatically discovered the distinction between
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without
previous knowledge of these classes. An automatically derived class predictor
was able to determine the class of new leukemia cases. The results demonstrate
the feasibility of cancer classification based solely on gene expression moni-
toring and suggest a general strategy for discovering and predicting cancer
classes for other types of cancer, independent of previous biological knowledge.

The challenge of cancer treatment has been to
target specific therapies to pathogenetically
distinct tumor types, to maximize efficacy
and minimize toxicity. Improvements in can-
cer classification have thus been central to
advances in cancer treatment. Cancer classi-
fication has been based primarily on morpho-
logical appearance of the tumor, but this has
serious limitations. Tumors with similar his-
topathological appearance can follow signif-
icantly different clinical courses and show
different responses to therapy. In a few cases,
such clinical heterogeneity has been ex-
plained by dividing morphologically similar
tumors into subtypes with distinct pathogen-
eses. Key examples include the subdivision
of acute leukemias, non-Hodgkin’s lympho-
mas, and childhood “small round blue cell
tumors” [tumors with variable response to
chemotherapy (/) that are now molecularly
subclassified into neuroblastomas, rhabdo-
myosarcoma, Ewing’s sarcoma, and other
types (2)]. For many more tumors, important
subclasses are likely to exist but have yet to

"Whitehead Institute/Massachusetts Institute of
Technology Center for Genome Research, Cambridge,
MA 02139, USA. 2Dana-Farber Cancer Institute and
Harvard Medical School, Boston, MA 02115, USA. 3St.
Jude Children’s Research Hospital, Memphis, TN
38105, USA. “Comprehensive Cancer Center and Can-
cer and Leukemia Group B, Ohio State University,
Columbus, OH 43210, USA. *Department of Biology,
Massachusetts Institute of Technology, Cambridge,
MA 02142, USA.

*To whom correspondence should be addressed. E-
mail: golub@genome.wi.mit.edu; lander@genome.wi.
mit.edu.

fThese authors contributed equally to this work.

www.sciencemag.org SCIENCE VOL 286

be defined by molecular markers. For exam-
ple, prostate cancers of identical grade can
have widely variable clinical courses, from
indolence over decades to explosive growth
causing rapid patient death. Cancer classifi-
cation has been difficult in part because it has
historically relied on specific biological in-
sights, rather than systematic and unbiased
approaches for recognizing tumor subtypes.
Here we describe such an approach based on
global gene expression analysis.

We divided cancer classification into two
challenges: class discovery and class predic-
tion. Class discovery refers to defining pre-
viously unrecognized tumor subtypes. Class
prediction refers to the assignment of partic-
ular tumor samples to already-defined class-
es, which could reflect current states or future
outcomes.

We chose acute leukemias as a test case.
Classification of acute leukemias began with
the observation of variability in clinical out-
come (3) and subtle differences in nuclear
morphology (4). Enzyme-based histochemi-
cal analyses were introduced in the 1960s to
demonstrate that some leukemias were peri-
odic acid-Schiff positive, whereas others
were myeloperoxidase positive (). This pro-
vided the first basis for classification of acute
leukemias into those arising from lymphoid
precursors (acute lymphoblastic leukemia,
ALL) or from myeloid precursors (acute my-
eloid leukemia, AML). This classification
was further solidified by the development in
the 1970s of antibodies recognizing either
lymphoid or myeloid cell surface molecules
(6). Most recently, particular subtypes of

acute leukemia have been found to be asso-
ciated with specific chromosomal transloca-
tions—for example, the t(12;21)(p13;q22)
translocation occurs in 25% of patients with
ALL, whereas the t(8;21)(q22;q22) occurs in
15% of patients with AML (7).

Although the distinction between AML
and ALL has been well established, no single
test is currently sufficient to establish the
diagnosis. Rather, current clinical practice
involves an experienced hematopathologist’s
interpretation of the tumor’s morphology,
histochemistry, immunophenotyping, and cy-
togenetic analysis, each performed in a sep-
arate, highly specialized laboratory. Although
usually accurate, leukemia classification re-
mains imperfect and errors do occur.

Distinguishing ALL from AML is critical
for successful treatment; chemotherapy regi-
mens for ALL generally contain corticoste-
roids, vincristine, methotrexate, and L-asparagi-
nase, whereas most AML regimens rely on a
backbone of daunorubicin and cytarabine (8).
Although remissions can be achieved using
ALL therapy for AML (and vice versa), cure
rates are markedly diminished, and unwarrant-
ed toxicities are encountered.

We set out to develop a more systematic
approach to cancer classification based on the
simultaneous expression monitoring of thou-
sands of genes using DNA microarrays (9). It
has been suggested (/0) that such microar-
rays could provide a tool for cancer classifi-
cation. Microarray studies to date (/7), how-
ever, have primarily been descriptive rather
than analytical and have focused on cell cul-
ture rather than primary patient material, in
which genetic noise might obscure an under-
lying reproducible expression pattern.

We began with class prediction: How
could one use an initial collection of samples
belonging to known classes (such as AML
and ALL) to create a “class predictor” to
classify new, unknown samples? We devel-
oped an analytical method and first tested it
on distinctions that are easily made at the
morphological level, such as distinguishing
normal kidney from renal cell carcinoma
(12). We then turned to the more challenging
problem of distinguishing acute leukemias,
whose appearance is highly similar.

Our initial leukemia data set consisted of
38 bone marrow samples (27 ALL, 11 AML)
obtained from acute leukemia patients at the
time of diagnosis (/3). RNA prepared from
bone marrow mononuclear cells was hybrid-
ized to high-density oligonucleotide microar-
rays, produced by Affymetrix and containing
probes for 6817 human genes (/4). For each
gene, we obtained a quantitative expression
level. Samples were subjected to a priori
quality control standards regarding the
amount of labeled RNA and the quality of the
scanned microarray image (/5).

The first issue was to explore whether

15 OCTOBER 1999
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Top 3 principal
components
projection of Golub
et al. ALL/AML
training data, using
the top genes
discriminating the 3
“close neighbors™

points in each of the
3 classes pair-wise
from each other (30
genes for each of the
3 pairs yielding 65
distinct genes)

Blue = ALL-B cell cyan=ALL-T cell red =AML
Larger spheres = points chosen from ““close neighbors criterion”
(3 for each class, used to define classifier)
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Broad patterns of gene expression revealed by clustering analysis
of tumor and normal colon tissues probed by

oligonucleotide arrays

U. ALoN*T, N. BARKAT*T, D. A. NOTTERMAN*, K. GIsH¥, S. YBARRAT, D. MACK¥, AND A. J. LEVINE*$

Departments of *Molecular Biology and TPhysics, Princeton University, Princeton, NJ 08540; and ¥EOS Biotechnology, 225A Gateway Boulevard,

South San Francisco, CA 94080

Contributed by A. J. Levine, April 13, 1999

ABSTRACT Oligonucleotide arrays can provide a broad
picture of the state of the cell, by monitoring the expression
level of thousands of genes at the same time. It is of interest
to develop techniques for extracting useful information from
the resulting data sets. Here we report the application of a
two-way clustering method for analyzing a data set consisting
of the expression patterns of different cell types. Gene expres-
sion in 40 tumor and 22 normal colon tissue samples was
analyzed with an Affymetrix oligonucleotide array comple-
mentary to more than 6,500 human genes. An efficient two-
way clustering algorithm was applied to both the genes and the
tissues, revealing broad coherent patterns that suggest a high
degree of organization underlying gene expression in these
tissues. Coregulated families of genes clustered together, as
demonstrated for the ribosomal proteins. Clustering also
separated cancerous from noncancerous tissue and cell lines
from in vivo tissues on the basis of subtle distributed patterns
of genes even when expression of individual genes varied only
slightly between the tissues. Two-way clustering thus may be
of use both in classifying genes into functional groups and in
classifying tissues based on gene expression.

Recently introduced experimental techniques based on oligo-
nucleotide or cDNA arrays now allow the expression level of
thousands of genes to be monitored in parallel (1-9). To use
the full potential of such experiments, it is important to
develop the ability to process and extract useful information
from large gene expression data sets. Elegant methods recently
have been applied to analyze gene expression data sets that are
comprised of a time course of expression levels. Examples of
such time-course experiments include following a develop-
mental process or changes as the cell undergoes a perturbation
such as a shift in growth conditions. The analysis methods were
based on clustering of genes according to similarity in their
temporal expression (5, 6, 9-11). Such clustering has been
demonstrated to identify functionally related families of genes,
both in yeast and human cell lines (5, 6, 9, 11). Other methods
have been proposed for analyzing time-course gene expression
data, attempting to model underlying genetic circuits (12, 13).

Here we report the application of methods for analyzing
data sets comprised of snapshots of the expression pattern of
different cell types, rather than detailed time-course data. The
data set used is composed of 40 colon tumor samples and 22
normal colon tissue samples, analyzed with an Affymetrix
oligonucleotide array (8) complementary to more than 6,500
human genes and expressed sequence tags (ESTs) (14). We
focus here on generally applicable analysis methods; a more
detailed discussion of the cancer-specific biology associated
with this study will be presented elsewhere (D.A.N. and A.J.L.,

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked “advertisement” in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

PNAS is available online at www.pnas.org.
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unpublished work). The correlation in expression levels across
different tissue samples is demonstrated to help identify genes
that regulate each other or have similar cellular function. To
detect large groups of related genes and tissues we applied
two-way clustering, an effective technique for detecting pat-
terns in data sets (see e.g., refs. 15 and 16). The main result is
that an efficient clustering algorithm revealed broad, coherent
patterns of genes whose expression is correlated, suggesting a
high degree of organization underlying gene expression in
these tissues. It is demonstrated, for the case of ribosomal
proteins, that clustering can classify genes into coregulated
families. It is further demonstrated that tissue types (e.g.,
cancerous and noncancerous samples) can be separated on the
basis of subtle distributed patterns of genes, which individually
vary only slightly between the tissues. Two-way clustering thus
may be of use both in classifying genes into functional groups
and in classifying tissues based on their gene expression
similarity.

MATERIALS AND METHODS

Tissues and Hybridization to Affymetrix Oligonucleotide
Arrays. Colon adenocarcinoma specimens (snap-frozen in
liquid nitrogen within 20 min of removal) were collected from
patients (D.A.N. and A.J.L., unpublished work). From some of
these patients, paired normal colon tissue also was obtained.
Cell lines used (EB and EB-1) have been described (17). RNA
was extracted and hybridized to the array as described (1, 8).

Treatment of Raw Data from Affymetrix Oligonucleotide
Arrays. The Affymetrix Hum6000 array contains about 65,000
features, each containing ~107 strands of a DNA 25-mer
oligonucleotide (8). Sequences from about 3,200 full-length
human cDNAs and 3,400 ESTs that have some similarity to
other eukaryotic genes are represented on a set of four chips.
In the following, we refer to either a full-length gene or an EST
that is represented on the chip as EST. Each EST is repre-
sented on the array by about 20 feature pairs. Each feature
contains a 25-bp sequence, which is either a perfect match
(PM) to the EST, or a single central-base mismatch (MM). The
hybridization signal fluctuates between different features that
represent different 25-mer oligonucleotide segments of the
same EST. This fluctuation presumably reflects the variation
in hybridization kinetics of different sequences, as well as the
presence of nonspecific hybridization by background RNAs.
Some of the features display a hybridization signal that is many
times stronger than their neighbors (=4% of the intensities are
>3 SD away from the mean for their EST). These outliers
appear with roughly equal incidence in PM or MM features. If
not filtered out, outliers contribute significantly to the reading
of the average intensity of the gene. Because most features

Abbreviation: EST, expressed sequence tag.

8To whom reprint requests should be sent at present address: Presi-
dent’s Office, Rockefeller University, 1230 York Avenue, New York,
NY 10021. e-mail: ajlevine@rockvax.rockefeller.edu.
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YVIE'W'S Toolz Help MAGE

Leave-One-Out Crossvalidation for Alon et al. Data:
Misclassified points (3 tumor ® , 3 normal @ ) are larger size




Summary for PCA

* PCA projects mnto orthogonal coordinates
that capture as much variation as possible 1n
the top coordinates

* PCA 1s not necessarily the best way to
discover clusters in the data

* PCA works best 1f most of the variation in
the data occurs 1n the coordinates being kept

 Need to first translate so mean of each
component of the data 1s 0 unless software
does so



Non-Negative Matrix
Factorization (NMF)

(Lee & Seung, 1999, 2001)
for
Clustering Data

Expresses data (column vectors) in terms of
a reduced number of basis vectors. In
contrast with SVD (PCA) here the entries
in the basis vectors are = 0, and the basis
vector coefficients are = 0 and “sparse.”
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Singular Value Decomposition (SVD)
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Matrix Singular Value Decomposition (SVD)
Outline

 The SVD of a Matrix
e PCA In terms of SVVD

* PCA, SVD, eigenvalues & eigenvectors of the inner product matrix
of the rows of A or of the covariance matrix of the rows of A (same
matrices except for a factor of (n-1))

o Statistical Viewpoint: PCA coordinates are uncorrelated




Vectors with n entries

V=(v,,vy...,v,), W= (W;,W,,...,w,) are called
n-vectors, and are said to be points in R”

the difference (V-W) between V and W
(the vector from W to V) 1s
V-W= (vi-wy, ..., V- W)

the square of the Euclidean distance between
Vand W =
(V-W) o (V-W) = (vi- W) + o+ (v W)

in general, Ve W=vw, + ... +v.w,



Eigenvalues and Eigenvectors of a Matrix &
£ A=y Transpose Notation

for n by n matrix A, n-vector v,
number A

then A Is an eigenvalue of A with
corresponding eigenvector v

IC

1 2|1 1 3 ;
3 4 = 7 4 and (1,2,3) =

1
2 }
3



Orthogonality
Vectors v and w are orthogonal If

VeW=0

An nxn matrix A i1s orthogonal If any
two distinct rows <columns> of A are
orthogonal and each row <column>
has length 1 (in which case A1 = Al

e.g.,
\3 /2 1/2
{ 1/2 \3/2 }



Picking PCA Directions w to Maximize Variation Along w

Consider the points to be the columns of the m by n matrix A

Want to pick the m-vector w of length 1 to maximize the sum
of the squares of the entries in the row vector wt A, i.e., want
to maximize

Q) WA AW

This means w 1s the eigenvector corresponding to the largest
eigenvalue of the covariance matrix of the rows of A;
successive principal component directions maximize (Q)
subject to the current w being perpendicular to all the previous
ones.
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Singular Value Decomposition (SVD)

Decompose m x n matrix A as the product
A=Ux V"’

where
¢ Columns (& rows) of U (m xm) are orthonormal
¢ Rows (& cols) of VT (nxn) are orthonormal

¢ X is an m x n diagonal matrix
X = mXn diag(al >...20r >0, Ory1 = ... = Omin(m,n) :O)
r = rank(A) is the # of indep. rows / cols in 4

¢ Use the £ “most significant” components
to do k- dimensional Principal Components
Analysis (PCA) — project the data
(the n cols of A) into the linear subspace
spanned by the first k£ cols of U: A, =U{A where
U, is columns 1 through % of U.

¢ Note AAT = USZTUT, ATA=VETZVT

¢ The range of A is spanned by cols 1,...,r of U
The null space of 4 is spanned by
cols r+1,....,n of V



Singular Value Decomposition (SVD)

Decompose m x n matrix A as the product

A=UX VT

¢ Columns of U (m x m) are orthonormal
Rows of VT (n xn) are orthonormal

¢ X is an m x n diagonal matrix
X = mXn diag(al >...20: >0, 0v41 = ... = Omin(m,n) :O)
r = rank(A) is the # of indep. rows / cols in 4

¢ Note AAT = USYTUT, ATA=VXTyVT

¢ AAT gives a constant, namely, n — 1, times the
covariance matrix for the rows of 4
(assuming each row mean = 0).
The eigenvectors of AAT <ATA>
(the cols of U <V>) are the principal components
basis for the columns of A <A'>.
The eigenvalues of AA' are n -1 times
the variances V, of the data
along the principal component axes
(the cols of U). (V;=0 for i >r, V;=TV;/(n—1).)
The data in principal component coordinates
is Y =U"'A, and the covariance matrix YY1 /(n —1)
is diag(V;).xm: the rows of Y are uncorrelated.
Statistical viewpoint: one is taking linear
combinations of random variables (rows of 4).



Matrix of Inner Products of the Rows of A, -

A * Al
e Row 1 of A -------- N 5 - - h
------ ROW 2 Of A ~=--cc- 2 2 2
= N T 3
.............. 9h 9h o
------ Row m of A ------- > > >
\ AN R

The covariance C;; of A; =row 1 of Aand A; =row j of Ais: (1/(n-1))*
(Ai - pAY)) = (A - wA)) = Zp=1 (A - 1(AY) (A - 1(A)) 1 (n-1)

Here w(A;) and p(A;) are assumed to have already been arranged to be 0;
so C = cov. matrix of rows of A is just A At/ (n-1). Thus e. vectors of C
equal the e.vectors of A A! & e. values of C = (e.values of A At) / (n-1).



Distance Geometry
Outline

* Here motivated by: distance constraints = molecular conformations
* Distance constraints {m <d; <M} - random sample sets of {d;}
« for each given set of {d;;} = metric (inner product matrix) G = A'A
 Eigenvectors and eigenvalues of G give construction of A

 This construction iIs a principal component representation of points
 Duality of this construction, PCA in terms of the SVD

e Simple Example

 Need to follow this DG/PCA linear projection into 3-D by nonlinear
optimization to best satisfy the distance constraints when have
experimental errors / incomplete info. / inexact choices of the {d;;}



Some References for Classical Distance Geometry
and Restrained Molecular Dynamics

[1] T. F. Havel, I. D. Kuntz and G. M. Crippen, The Theory and Practice
of Distance Geometry, Bull. Math. Biol. 45 (1983), pp. 665-720. (geometry)

[2] G. M. Crippen and T. F. Havel, Stable Calculation of Coordinates from
Distance Information, Acta Cryst. A34 (1978), pp. 282-284. D - metric matrix

[3] T.F. Havel, An Evaluation of Computational Strategies
for Use in the Determination of Protein Structure
from Distance Constraints Obtained by Nuclear Magnetic
Resonance, Prog. Biophys. Molec. Biol. 56 (1991), pp. 43-78. (practical alg.)

[4] G. M. Crippen and T. F. Havel, Distance Geometry and Molecular
Conformation, Research Studies Press - Chemometrics Series Vol. 15, 1988.

[5] I.T.Jolliffe, Principal Component Analysis 2" Edition,
Springer, 2002 — cf. Section 5.2.

[6] http://www.statsoft.com/textbook/stmulsca.html
(web site explaining multidimensional scaling)

[7] J. M. Blaney, G. M. Crippen, A. Dearing, J. S. Dixon and
D. C. Spellmeyer, DGEOM 95: Distance Geometry, QCPE Program
Number 590, Quantum Chemistry Program Exchange, Indiana
University Department of Chemistry, 1995.

[8] D. Bassolino-Klimas, R. Tejero, S. R. Krystek, W. J. Metzler,
G. T. Montelione and R. E. Bruccoleri, Simulated Annealing
with Restrained Molecular Dynamics Using a Flexible Restraint
Potential: Theory and Evaluation with Simulated NMR Constraints,
Protein Science 5 (1996), pp. 593-603.

[9] R. Tejero, D. Bassolino-Klimas, R. E. Bruccoleri, and
G. T. Montelione, Simulated Annealing with Restrained
Molecular Dynamics Using CONGEN: Energy Refinement of the
NMR Solution Structures of Epidermal and Type-alpha
Transforming Growth Factors, Protein Science 5 (1996), pp. 578-592.



A Couple References for Molecular Modeling

[1] A. R. Leach, Molecular Modelling: Principles and Applications, Second Edition,
Prentice Hall, 2001.

[2] T. Schlick, Molecular Modeling and Simulation, Springer, 2002.



Given a Distance Matrix for n points (that satisfy
certain geometrical conditions) there exists n points
that are vectors with (n-1) components that satisty
the distance conditions

2 points fit 1n a line (1-D), 3 points form a plane
triangle (2-D), 4 points form a tetrahedron (3-D)...

For molecular structure (or general visualization
(MDS)) want to project back down into 3-D while
minimizing loss of information / extent of
discrepancy with the constraints — sounds like PCA
except we don’t yet have the points



Distance Geometry Construction

Given distances between n points, use “fundamental
equality” to construct metric matrix = inner product
of point vectors (even though don’t have the points!!)

Having obtained this inner product matrix G, find its
eigenvalues and eigenvectors and use them to directly

construct n-dimensional points satisfying the ¢

This construction naturally iIs in the PC cooro

Istances.

Inates

for the points (so using the first 3 coord. gives the

PCA projection).



If the distances are “consistent,” the algorithm
below produces a set of points P, (n-vectors) that
(1) satisty the distances dist(P;, P;) = d;;

(2) have centroid = 0 (average = 0)

(3) have coordinates that are the principal
component coordinates, so just using the first 3
coordinates gives the best linear projection

into 3-D, 1.e., the projection that maximizes the
sum over the projected points of (dist(0, P, ))? or
equivalently that maximizes the sum over 1 and j
of the inter-point distances (dist(P;, P;))
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EMBEDDING

following G. M. Crippen & T. F. Havel,
Stable Calculation of Coordinates from Distance Information,
Acta Cryst. A34 (1978), pp. 282-284.

Stable algorithm to obtain initial atom positions { P} }
approximately satisfying given distance constraints:

1. d3.=||P; — average A of {Py}||* = fen(d;y)

d? :izd%_ii d?
ic N ij N2 : jk-

2. Calculate N x N metric matrix G = g;; =
(Pi —A) - (P; — A) using the law of cosines:

1
gij = §(d2ic + d?c - d21j)'



Trig. — Law of Cosines

=0 gij = Pi * Pj - dic djc COS(G)

_ 12
(Pj -P) e (Pj -P) = dij

— A2 2
- dic T djc B 2gij

SO gij:(di2c+d]'2c 'dizj)/z



The fundamental equality (1) in the
“Embedding Page™ says that 1f there are
points satisfying the distance constraints,
their inner product (dot product) metric
matrix g;; can be explicitly expressed
completely 1n terms of the inter-point
distances.

Conversely given an inner product matrix g;,
from a set of points (centroid at origin) one
can directly write down the inter-point
distances



If one sums the fundamental embedding
identity (1) over 1=1,...,n, (when the centroid
of the points 1s 0) one finds that:

sum over i of (dist(0, P,))* =
sum over 1 and j of (dist(P;, Pj))2 / (2n)

the “variation” of the points about the origin
= the sum of the squares of the inter-point
distances / (2n)  (note this counts d;; & d;;)



ISOMORPHISMS BETWEEN the SETS of
DISTANCE and METRIC MATRICES



G Positive Semi-Definite is a
Necessary and Sufficient Condition

for Existence of a Corresponding
Set of Points in R"

Let the eigenvalues of G be A\, Ao, Az..., and let
the corresponding eigenvectors (here row vectors)

be Wl, WQ, W3 ... with the order )\1 Z )\2 Z )\3. ..

Then, when G is Positive Semi-Definite,
define the points (column vectors) { Py} by

1/2
(P, Py ... Pu)yun= .”

\All\I/Q.WN) NxN

In general the top few eigenvalues will be positive
even when the geometric conditions on the distances
for exact embedding are not satisfied.



Defining the Points from the Eigenvectors and Eigenvalues
P,P,P3P,PcPc P, PgPy.......... P

owl ()22 [ XXX XXX XXX XXX X

eigenvectorsof G ——

row 2 (A)2 [ XXX XXX XXX XXX X

row 3 A2 [ XX X XXX XXX XX XX

would be O

rown-1 (A )Y XXX XXX XXX XX XX

row n o \uyuduuuduuuuuuu)

must be O
u=1/"\n



Distance Geometry / PCA duality

If have distances from n points, use “vector formula”
to construct nxn metric matrix G = inner product of
point vectors (even though don’t have the points!!)

Having obtained this inner product matrix G, find its
eigenvalues and eigenvectors and use them to directly
construct n-dimensional points satisfying the distances.

his construction naturally Is in the PC coordinates
for the points (so using the first 3 coord. gives the
PCA projection).



Distance Geometry / PCA duality 11

If have n points, centroid=0, as columns of matrix A,
then their metric matrix G = A~ A; use SVD of A —
A=UZVitowriteG=VXZIU'UX V' so

G=V AW =(VA?) (A?Vt) =Ptp

The line above Is the distance geometry construction that only
required knowing the distances between the points. Since G =
the Iinner product matrix from P, and G came from the distance
matrix, the iIsomorphism between Dij’s and Glj’s guarantees
the points P satisfy the inter-point distances. If have A; Ut A
directly gives the principal component coordinates of the
points. (note the non-zero entries of A”* and X are the same).



Distance Geometry — Stmple Example

P, (-1,16) metric matrix G

4 \
25 128 -8 -120
8 145 137
(-8,-8) 17  (9,-8)
P, P, 120 -137 257
\ J

eigenvalues = 386.39605, 143.60395 sum = 530 = sum
of squares of distances of the 3 points to the origin



Distance Geometry — Simple Example

noints from e-values & e-vectors of G
( (7“1)1/2 P, P, P, A
19.657 (-0.36454 -0.45045 0.81499)

<«—first eigenvector ———»

(1)
11.9835 (0.73060 -0.68100 -0.04960)

<«———second eigenvector ——»

(8:8) 17 O8) | 0 0 0o
1-D projection = (-7.1657, -8.8545, 16.0202)

“Best” 1-D (min Z;(Dy-d)?) is (p, = -14.333, p,=-2.667, p;=17)
error is 3*(5.333)2 so need nonlinear optimization after projection

sum of squares of inter-point distances (double count) =
2(289 + 676 + 625) = 3180 = 2*(n=3)*(Z(dist of pt to 0)? =530)



Si ngul ar Val ue Deconposition on the array A of the 3 points

fromthe distance geonetry exanpl

A =
- 8. 0000000 9. 0000000
- 8. 0000000 - 8. 0000000

e - each point

-1. 0000000
16. 000000

Note the sumof the entries in each row of A has

al ready been arranged to be 0

the singul ar val ue deconposition
A=U I MU

of A

(here Wt neans the transpose of V)
t after any matrix name neans take the transpose of the matrix:

the rows of the transposed matrix = the colums of the original

U=
-0.099341496 -0. 99505338
0. 99505340 -0. 099341644

is a colum of A

The colums of U are the PCA axes for the colums of A
These are the eigenvectors of C = A At;
C = (n-1)*covariance matrix for rows of A

19. 656959 0. 00000000
0. 00000000 11. 983487

0.0
0.0

The variation (sum of squares of coordinate val ues) for each

nontrivial PCA coordinate = (diagonal
metric matrix G= At A Since centroid of points = 0, at |east one

eigenval ue of Gis always 0

Vt =
-0. 36453728 -0. 45045123
0. 73060204 - 0. 68099945
0. 57735026 0. 57735026
verify A=U I MW
u = vt =
- 8. 0000006 8. 9999992
- 8. 0000006 -7.9999996

wite the points (colums of A)
(the colums of U)

UuA=x vt =
-7.1656945 - 8. 8545014
8. 7551598 -8.1607478

These are the coordinates of the

0. 81498851
- 0. 049602588
0.57735026

- 0. 99999859
16. 000000

in terns of the

16. 020196
-0. 59441195

3 points

(colums of A) in terns of the PCA
coordinate system (the 2 colums of U). Note these 2 rows are
is 0). Distances are
preserved by the full (all coordinate) PCA representation.

uncorrel ated (their inner product

of X)*= eigenval ues of the

mat ri x

The rows of WVt are the
ei genvectors of the

metric matrix

PCA coordi nat es

G=A A




note the suns of the colums of A are O
(the centroid is at the origin) so
(n-1) x (the covariance matrix of the rows of A) = A At =

146. 00000 - 24. 000000
-24.000000 384. 00000

the Metric Matrix = the array of inner products of
the points (the colums of A) = At A =

128. 00000 - 8. 0000000 -120. 00000
- 8. 0000000 145. 00000 -137. 00000
-120. 00000 -137. 00000 257. 00000
u AA U=3I3t =
386. 39605 -7.8708505e- 005
-7.8708505e- 005 143. 60395

so AA U=UZ?xzt (the eigenvectors of A At are the colums of U)

and
Vi At AV =3t =
386. 39605 -9.6387622e- 005
-9.6387622e- 005 143. 60395
1. 6403545e- 014 -4,1017537e-015

so At AV=VIZ3 X

(the eigenvectors of At A are the colums of V = the rows of W)

coo
coo
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