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Lecture 7

Hidden Markov Models

Additional Reference

• Biological Sequence Analysis by R. Durbin, 
S. Eddy, A. Krogh, and G. Mitchison
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Uses of Hidden Markov Models

• Modeling stochastic processes
• Sequence alignment
• Phylogenetic tree construction
• Microarray data analysis (clustering)
• Protein secondary structure prediction
• RNA secondary structure prediction
• Ion channel modeling

Markov Model

• A process is Markov if it has no memory, 
that is, if the next state it assumes, depends 
only on its present state and not on any 
previous states.

• The states can be observed and the transition 
probabilities between states is known

• Example – rolling a die has 6 possible states 
each with a probability of 1/6
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Markov Model – Example 2
Ion Channel

• Conversion between states determined by 
transition probabilities.

• Multiple states to reflect properties of 
channel.

From Jafri et al. 1998

Markov Model – Example 3
CpG Islands

• In the human genome, the dinucleotide CG occurs 
(called CpG) is often methylated.

• The methylated C often mutates into a T resulting in a 
lower frequency of CpG dinucleotides than would be 
expected.

• In regions such as the start region of many genes, the 
methylation process seems to be suppressed resulting 
in a higer frequency of CG dinucleotides.

• These are called CpG Island.
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CpG Islands

• Hence, the CpG Island might be a good indicator of 
the start of a gene.

• This leads to two questions:
– How can we tell if a region is a CpG Island or not?
– How do we identify CpG Islands in a long 

sequence of DNA?

CpG Islands
• We can create a Markov model to generate the CpG

Island regions starting with a Markov model that 
generates a DNA sequence (Markov chain).

• On the arrows are transition probabilities:
ast=P(xi=t|xi-1=s)

A T

C G
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DNA sequence model
• The probability of the sequence is 

P(x) = P(xL,xL-1,…,x1)
= P(xL| xL-1,…,x1)P(xL-1|xL-2,…,x1)…P(x1)
= P(xL| xL-1)P(xL-1|xL-2)…P(x1) [Why?]
= P(x1) Πl

i=1 axi-1 xi

A T

C G

DNA Sequence Model
• We can model the beginning and end of the 

sequences by adding a beginning state and end state.
with P(x1=s) = aBs and P(E|xL=atE)

A T

C G

B E
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Terminology
• The state sequence is called the path π.
• The ith state in the path is called πi.
• The chain is characterized by parameters called 

transition probabilities
akl = P(πi=l| πi=k)

• The transition probability aok from the begin state to k 
can be thought of as the probability of starting in state 
k.

• In addition to having different states, the chain consists 
of symbols b.  There is an emission probability ek(b) = 
P(xi=b| πi=k).

Example
Assume three coins are used each with a different bias for heads.  
The first coin is fair with P(H)=0.5, the second coin has 
P(H)=0.75 and the third coin has P(H)=0.1.  Also assume that 
the first coin is chosen at random.  If the first coin is chosen than 
either the second or third is chosen next with equal probability. 
If the second or third coin is chosen, any of the three are chosen 
next with equal probability.
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Example - CpG Islands
• We can create a hidden Markov model to generate the CpG

Island regions.
• The “+” states are for nucleotides found in the CpG Islands.
• The “-” states are nucleotides not found in the CpG Islands.
• There is a complete set of transitions within each set of states.

A+ T+ G+C+

A- T- G-C-

Example - CpG Islands

• Using the hidden Markov Model we can 
compute the transition probabilities by

0.2920.2920.2390.177T

0.2080.2980.2460.248G

0.3020.0780.2980.322C

0.2100.2850.2050.300A

TGCA-

0.1820.3840.3550.079T

0.1250.3750.3390.161G

0.1880.2740.3680.171C

0.1200.4260.2740.180A
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Example - CpG Islands
• For discrimination, the log liklihood ratio is 

calculated by

0.6790.3930.573-1.169T

-0.7300.3310.461-0.624G

-0.6851.8120.302-0.913C

-0.8030.5800.419-0.740A
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The occasionally dishonest 
casino

• Uses a fair die most of the time but switches 
to a loaded die

• The loaded die has probability of 0.5 of a 6 
and 0.1 for the other outcomes

• The fair to loaded transition probability is 
0.05.

• The loaded to fair transition probability is 
0.1
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The Occasionally Dishonest 
Casino

1: 1/6
2: 1/6
3: 1/6
4: 1/6
5: 1/6
6: 1/6

1: 1/10
2: 1/10
3: 1/10
4: 1/10
5: 1/10
6: 1/2

0.05

0.1

Fair Loaded

The Occasionally Dishonest 
Casino

• This is a hidden Markov model because, while we can see 
the rolls of the die, we do not know which rolls are with a 
fair die and which rolls are with a loaded die.  

• All we can see are the die rolls that are emitted by the 
model.

• Hence we do not know the sequence of states.

• The joint probability of an observed sequence x and a  state 
sequence π is

P(x, π) = a0π1 Πl
i=1 eπi (xi) aπi+1 π1
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Most Probable State Path

Given a sequence of emissions, we want to find the most 
probable sequence of states that would yield the emitted 
sequence.

π*=argmaxπ P(x,π)

From 
Durbin et al

Viterbi Algorithm

Suppose that the probability vk(i) (the Viterbi
variable) of the most probably path ending in state k 
with observation i is known for all states k.

Then these probabilities can be calculated for 
observation xi+1 as

vl(i+1) = el(xi+1) maxk(vk(i) akl)

All paths start in the begin state so v0(0) = 1.
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Viterbi Algorithm

Initialization: (i=0): v0(0)=1, vk(0)=0 for k > 0

Recursion: (i=1…L): vl(i)=el(xi)maxkvk(i-1)akl);
ptri=argmaxkvk(i-1)akl).

Termination: P(x,π*)=maxk(vk(L)ak0);
π*

L=argmaxk(vk(L)ak0).

Traceback (i=L…1): π*
i-1=ptri(π*

i).

Viterbi Algorithm

• Multiplying many probabilities together 
results in very small numbers that will give 
underflow.

• This and other algorithms should be done in 
log space (log(vl(i)) so that the products 
become sums and the numbers stay 
reasonable.
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The Forward Algorithm
• The number of paths π increases exponentially with 

the length of the sequence.
• The forward algorithm efficiently calculates the 

probability of a sequence by assuming the most 
probably path π* is the only path with significant 
probability. 

• The probability of the observed sequence up to and 
including xi with πi=k is

fk(i)=P(x1 … xi, πi=k)
(the forward variable)

• The recursion equation is
fl(i+1) = el(xi+1)Σk fk(i)akl

The Forward Algorithm

Initialization (i=0): f0(0)=1, fk(0)=0 for k>0

Recursion (i=1…L): fl(i) = el(xi)Σk fk(i-1)akl

Termination: P(x) = Σk fk(L)ak0
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Backward Algorithm and Posterior 
State Probabilities

• While the Viterbi algorithm finds the most probable 
path through the model, we might want to know 
what the most probable state is for an observation xi.

• The probability that an observation xi came from a 
state k given the observed sequence is the posterior 
probability.  (i.e. P(πi=k|x) )

• P(πi=k|x) = P(πi=k, x) /P(x)
• P(πi=k, x) = fk(i) bk(i) 

where bk(i)=P(xi+1…xL| πi=k)
(the backward variable)

The Backward Algorithm

Initialization (i=L): bk(L)=ak0 for all k

Recursion (i=L-1…1): bl(i) = Σl aklel(xi+1) bk(i+1)

Termination: P(x) = Σl a0l el(x1) bl(1)
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Posterior Probabilities

From Durbin et al

Posterior Decoding

• The posterior probability is useful for two 
different forms of decoding (in additiion the 
Viterbi decoding discussed previously).

• These are used when there are more than one path 
that has similar probability as the most probable 
one.

• One approach is to use an alternative path to look 
at a state assignment at a particular point i.
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Posterior Decoding
• The second approach can be used when something 

other than the state sequence might be of interest.
• For example, supposed that the probability of switching 

from fair to loaded is 0.01 (no switch 0.99).
• The Viterbi algorithm does not visit the loaded die state, 

but posterior decoding can determine when the loaded 
die state might be visited.

From 
Durbin et al

Parameter Estimation for HMMs

• In the example given, the initial, transition and 
emission probabilities are known.

• In specifying a model to describe data, these are 
usually unknown.

• Furthermore, the structure of the HMM is also 
unknown.
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Training and Testing the HMM

• The parameters of the model are fit on a 
training set, ie., the parameters are chosen 
so that the training set is the most likely 
outcome for the model.

• A test set is used to make sure the model is 
well-trained.

• If so, the model can be used on new data.

Parameter Estimation when the state 
sequence is known

• If we know all the paths, we can count the number 
times a particular transition or emission occurs out 
of the total number of times that it was possible to 
get a maximum likelihood estimate for the 
transition and emission probabilities.

akl = Akl/ Σl’ Akl’
ek(b) = Ek(b)/ Σb’Ek(b’)

• This can be proven to be the MLE.
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Estimation when the paths are 
unknown

• In this case there is no closed form estimate for the 
transition and emission probabilities.

• Instead, an iterative method must be used to 
estimated the values for the transition and 
emission probabilities using current values.

• The new values replace the old values and the 
iteration continues until convergence occurs.

• This procedure is called the Baum-Welch 
Algorithm.

Baum-Welch Algorithm

• Calculates the transition and emission matric as 
the expected number of times each transition or 
emission is used given the training sequence.

• To do this, the forward and backward values are 
used.

• The probability that akl is used at position i in 
sequence x is

P(πi=k,πi+1=l|x,θ) = fk(i)aklel(xi+1)bl(i+1)/P(x)



18

Baum-Welch Algorithm
The expected number of times akl is used is 
determined by summing over all positions and all 
training sequences

Akl = Σj 1/P(xj) Σi fj
k(i) akl el(xj

i+1)bj
l(i+1)

Where fj is the forward variable calculated for 
sequence j and bj is the backward variable calculated 
for sequence j

The new model parameters are calculated by 
akl = Akl/ Σl’ Akl’

Baum-Welch Algorithm
The expected number of times that the letter b 
appears in state k is

Ek(b) = Σj 1/P(xj) Σi fj
k(i) bj

l(i)

Where the inner sum is only over positions I for 
which the symbol emitted is b.

The new model parameters are calculated by 

ek(b) = Ek(b)/ Σb’Ek(b’)
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Baum-Welch Algorithm
Initialization: Pick arbitrary model parameters
Recurrence:
Set all the A and E variables to their pseudocount values r (or to 

zero)
For each sequence j = 1…n:

Calculate fk(i) for sequence j using the forward algorithm
Calculate bk(i) for sequence j using the backward algorithm
Add the contribution of sequence j to A and E

Calculate the new model parameters
Calculate the new log likelihood of the model
Termination: Stop if the change in the log likelihood is less than 

some predefined threshold or the maximum number of 
iterations is exceeded

Parameter Estimation with HMM

1: 1/6
2: 1/6
3: 1/6
4: 1/6
5: 1/6
6: 1/6

1: 1/10
2: 1/10
3: 1/10
4: 1/10
5: 1/10
6: 1/2

0.05

0.1

Fair Loaded

1: 0.17
2: 0.17
3: 0.17
4: 0.17
5: 0.17
6: 0.15

1: 0.10
2: 0.11
3: 0.10
4: 0.11
5: 0.10
6: 0.48

0.05

0.1

Fair Loaded

With hidden Markov models, we can calculate 
the most likely emission and transition 
probabilities from the sequence of outcomes.
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HMM Topology

• Thus far we have studied how to determine the 
unknown parameters for a model of know 
topology.

• Use knowledge about the process being described 
to decide the topology.

• Picking a very general topology and letting the 
model fit itself by reducing unused connections to 
low probability is not a good approach since the 
model gets caught in local maxima.

Silent States

• Silent states or null states are states that do not 
emit symbols.  In the previous example the begin 
and end states were silent.

• These can be added anywhere in the model.
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HMM of E. Coli Gene

match

insert

delete

• HMM for finding the most probable set of genes in E. coli gene  
sequences of unknown gene composition.

• A similar model exists for each of the 61 codons

From Mount

HMMs for Multiple Sequence 
Alignment

• 3n states where n is the average sequence length.
• N matching states along the backbone with and additional 

insertion or deletion state so that variable length sequences can 
be accommodated.

• The training set of sequences to be aligned is treated as a 
collection of observation sequences.

• Once the HMM is trained, each sequence from the training set 
can be scored using the Viterbi algorithm which gives rise to 
the path of matching, inserted, and deleted states.
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HMMs for Multiple Sequence 
Alignment

• Sequence length 4
• 4 matching states, 5 insertion states, and 4 delete states.
• m0, m5, and the delete states are silent.

From Clote and Backofen

HMMs for Multiple Sequence 
Alignment

Consider the sequences GGCT, ACCGAT, and CT.  

After convergence of Baum-Welch algorithm, the Viterbi path 

GGCT m0, m1, m2, m3, m4, m5
ACCGAT m0, i0, m1, d2, m3, i3, i3, m4, m5
CT m0, m1, d2, d3, m4, m5

This yields
a  C  -- C  g  a  T
.   G  G  C  .   .  T
.   C  -- -- .   .   T

m0, i0, m1, d2,  m3, i3, i3, m4, m5
m0,      m1, m2, m3,           m4, m5
m0,      m1, d2,  d3,            m4, m5
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Protein Motifs

• Mamitsuka used a HMM to identify sugar transport 
proteins with the PROSITE consensus sequence

[LIVMTSA]-[DE]-x-[LIVMFYWA]-G-R-[RK]-x(4,6)-G

• He compared training times and error distributiosn for 
4 types of HMMS where each model had a different 
algorithm for parameter re-estimation.

• He used a target value for the calculated likelihood for 
postive and negative examples.

• Used two methods other than Baum-Welch to see if 
they worked better to improve sensitivity of the HMM.

Protein Motifs

Emission probabilities for various amino acids and
Transition probabilities between the states are shown


