
Homework 2 
 
Page 111 #1 – Prove that for the functions f : R →  R ,  ,  the ε−δ  definition of continuity 
implies the open set definition. 
 
Let f : X→  Y,,  X = R and Y = R.  We must show that the ε−δ  definition of continuity 

implies that U = 1−f (V) ∈X is open in X if V is open in Y.  The ε−δ  definition of 
continuity state that if f is continuous, ∀ p ∈ X and ∀ ε > 0, ∃ a δ > 0 ∋  if x ∈ (p – δ, p 

+ δ), then f (x) ∈ ( f (x) – ε, f (x) + ε) .  Let V be open in Y and let p ∈ 1−f (V).  We 

need to show that p is an interior point of 1−f (V).  Let y = f (p).  Because V is open, 
∃ BY(y, ε) ⊆  V for some ε > 0.  Since f is continuous at p, ∃ a δ > 0 ∋  f (BX(p, δ)) ⊆  
BY(y, ε).  Hence,  
 
BX(p, ⊆ 1−f [ f (BX(p, δ))] ⊆ 1−f  (BY(y, ε)) ⊆ 1−f (V) 
 
and p is an interior point of 1−f (V). 
 
 
Page 111 # 2 – Suppose that f : X→  Y is continuous.  If x is a limit point of the subset 
A of X, is it necessarily true that f (x) is a limit point of f (A)? 
 
In general yes, by Theorem 21.3 which states Let f : X→  Y.  If the function is 
continuous, then for every convergent sequence xn →  x in X, the sequence f (xn) →  
f (x).  However, there is one exception and that is when f(x) is a constant.  In this case, 

the set Y only consists of one point and hence cannot have a limit point. 
 
 
Page 111 #5 – Show that the subspace (a,b) of R is homeomorphic with (0,1) and the 
subspace [a,b] of R is homeomorphic with [0,1]. 
 
We need to find a homeomorphism f : (a,b)→  (0,1) and g : [a,b] →  [0,1].  Let a < x < 
b and 0 < y = f (x) < 1 and the map f : (a,b)→  (0,1) be  
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This map is one-to-one, continuous, and has inverse 1−f (y) = a + (b-a)y = x and hence a 
homeomorphism.  ∴ (a,b) is homeomorphic to (0,1).  Use the same map for g as a 
homeomorphism from [a,b] to [0,1]. 
 
 



Page 126 # 9 – Show that the Euclidean metric d on Rn is a metric, as follows:  If x,y 
∈Rn and c ∈R, define 
 

x + y  = (x1 + y1,…,xn + yn), 
cx  = (cx1,…,cxn), 

x •  y  = (x1y1 + … + xnyn). 
 

(a) Show that x •  (y  + z) = (x •  y) + (x •  z). 
(b) Show that |x •  y| ≤  ||x|| ||y||. 
(c) Show that ||x + y|| ≤  ||x|| + ||y||. 
(d) Verify that d is a metric. 

 
(a) x •  (y  + z) = (x1,…,xn)• [(y1,…,yn) + (z1,…,zn)] 

 = (x1,…,xn)• (y1 + z1,…,yn + zn) 
 = (x1(y1 + z1) +…+ xn(yn + zn)) 
 = (x1y1 + x1z1 +…+ xnyn + xnzn) 
 = (x1y1 +…+ xnyn) + (x1z1 +…+ xnzn) 
 = [(x1,…,xn)• (y1,…,yn)] +  [(x1,…,xn)• [(z1,…,zn)] 
 = (x •  y) + (x •  z) 

 
(b) The statement is clearly valid if x = 0.  If x ≠ 0, let 
 

z = y – x
||x||
y x •

 

 
Then  z •  x = 0 and 

0≤  ||z||2 = z • z = 
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Hence, 
 (x •  y)2 ≤   ||y||2 ||x||2 and 

|x •  y| ≤  ||x|| ||y||. 
 

 



(c) ||x + y||2 = [(x + y ) •  (x + y )] = [x• x + x • y + y • x + y• y] 

     = [|x• x + 2 x • y + y• y|] ≤  ||x|| + 2||x|| ||y|| + ||y|| = [||x|| + ||y||]2 using part b. 

Hence,  ||x + y|| ≤  ||x|| + ||y|| since both sides are positive 
 
(d) To show that the Euclidean norm is a metric, we have to show that if d(x,y) = ||x – y|| 

(i) d(x,y) ≥  0 with d(x,y) = 0 only when x = y 
(ii) d(x,y) = d(y,x) 
(iii) d(x,y) + d(y,z) ≥  d(x,z) 
 
(i) by definition d(x,y) ≥  0 (it is the positive square root and if x ≠ y then at least 

on pair xi and yi are distinct and their difference squared is positive) 
      d(x,x) = ||x – x|| = ||0|| = ||0|| = (02

 + … + 02)½ = 0 
(ii) d(x,y) = ||x – y|| = ||(x1 – y1,…,xn – yn)|| =  [(x1 – y1)2,…,(xn – yn)2] ½ 

     = [(y1 – x1)2,…,(yn – xn)2] ½ = ||(y1 – x1,…,yn – xn)|| = ||y – x|| = d(y,x) 
(iii) d(x,y) + d(y,z) = ||x – y|| + ||y – z|| ≥  ||(x – y) + (y – z)|| by part c 

= ||x – y + y – z|| = ||x – z|| 
Hence, ||x – y|| + ||y – z|| ≥  ||x – z|| and d(x,y) + d(y,z) ≥  d(x,z) 

 
 

 
Page 135 # 11d – Given a sequence of functions nf : X→  R, let 
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Prove the Weierstrass M-test for uniform convergence:  If | if (x)| ≤  iM for all x ∈X and 

all i, and if the series ∑ iM converges, then the sequence (sn) converges uniformly to a 
function s. 
 
Assume that  | if (x)| ≤  iM for all x ∈X and all i and that the series ∑ iM converges, 

Let rn = ∑∞

+= 1ni iM using the hypothesis.  Part (c) guarantees that the series 
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)( converges, that is,  n ∞→ , then sn(x) →  s(x).  

 
 Consider the case when k > n.  Then  
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sk(x) – sn(x) = 1+nf (x) + … + kf (x) 

|sk(x) – sn(x)| ≤ | 1+nf (x)| + … + | kf (x)| 

|sk(x) – sn(x)| ≤ 1+nM  + … + kM  



|sk(x) – sn(x)| ≤ 1+nM  + …  

|sk(x) – sn(x)| ≤  ∑∞
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|s(x) – sn(x)| ≤  ∑∞

+= 1ni iM  = rn 

 
Hence, 

|s(x) – sn(x)| ≤  rn 
 

 


