Homework 2

Page 111 \#1 - Prove that for the functions $f: \mathrm{R} \rightarrow \mathrm{R}$, the $\varepsilon-\delta$ definition of continuity implies the open set definition.

Let $f: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{X}=\mathrm{R}$ and $\mathrm{Y}=\mathrm{R}$. We must show that the $\varepsilon-\delta$ definition of continuity implies that $\mathrm{U}=f^{-1}(\mathrm{~V}) \in \mathrm{X}$ is open in X if V is open in Y . The $\varepsilon-\delta$ definition of continuity state that if f is continuous, $\forall \mathrm{p} \in \mathrm{X}$ and $\forall \varepsilon>0, \exists \mathrm{a} \delta>0$ э if $\mathrm{x} \in(\mathrm{p}-\delta, \mathrm{p}$ $+\delta)$, then $f(\mathrm{x}) \in(f(\mathrm{x})-\varepsilon, f(\mathrm{x})+\varepsilon)$. Let V be open in Y and let $\mathrm{p} \in f^{-1}(\mathrm{~V})$. We need to show that p is an interior point of $f^{-1}(\mathrm{~V})$. Let $\mathrm{y}=f(\mathrm{p})$. Because V is open, $\exists \mathrm{B}_{\mathrm{Y}}(\mathrm{y}, \varepsilon) \subseteq \mathrm{V}$ for some $\varepsilon>0$. Since f is continuous at $\mathrm{p}, \exists \mathrm{a} \delta>0 \ni f\left(\mathrm{~B}_{\mathrm{X}}(\mathrm{p}, \delta)\right) \subseteq$ $\mathrm{B}_{\mathrm{Y}}(\mathrm{y}, \varepsilon)$. Hence,
$\mathrm{B}_{\mathrm{X}}\left(\mathrm{p}, \quad \subseteq f^{-1}\left[f\left(\mathrm{~B}_{\mathrm{X}}(\mathrm{p}, \delta)\right)\right] \subseteq f^{-1}\left(\mathrm{~B}_{\mathrm{Y}}(\mathrm{y}, \varepsilon)\right) \subseteq f^{-1}(\mathrm{~V})\right.$
and p is an interior point of $f^{-1}(\mathrm{~V})$.

Page 111 \# 2 - Suppose that $f: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous. If x is a limit point of the subset A of X , is it necessarily true that $f(\mathrm{x})$ is a limit point of $f(\mathrm{~A})$?

In general yes, by Theorem 21.3 which states Let $f: \mathrm{X} \rightarrow \mathrm{Y}$. If the function is continuous, then for every convergent sequence $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$ in X , the sequence $f\left(\mathrm{x}_{\mathrm{n}}\right) \rightarrow$ $f(\mathrm{x})$. However, there is one exception and that is when $\mathrm{f}(\mathrm{x})$ is a constant. In this case, the set Y only consists of one point and hence cannot have a limit point.

Page 111 \#5 - Show that the subspace (a, b) of R is homeomorphic with $(0,1)$ and the subspace $[a, b]$ of R is homeomorphic with $[0,1]$.

We need to find a homeomorphism $f:(\mathrm{a}, \mathrm{b}) \rightarrow(0,1)$ and $g:[\mathrm{a}, \mathrm{b}] \rightarrow[0,1]$. Let $\mathrm{a}<\mathrm{x}<$ b and $0<\mathrm{y}=f(\mathrm{x})<1$ and the map $f:(\mathrm{a}, \mathrm{b}) \rightarrow(0,1)$ be

$$
y=f(x)=\frac{x-a}{b-a}
$$

This map is one-to-one, continuous, and has inverse $f^{-1}(\mathrm{y})=\mathrm{a}+(\mathrm{b}-\mathrm{a}) \mathrm{y}=\mathrm{x}$ and hence a homeomorphism. $\therefore(\mathrm{a}, \mathrm{b})$ is homeomorphic to $(0,1)$. Use the same map for g as a homeomorphism from $[\mathrm{a}, \mathrm{b}]$ to $[0,1]$.

Page 126 \# 9 - Show that the Euclidean metric d on R^{n} is a metric, as follows: If \mathbf{x}, \mathbf{y} $\in R^{n}$ and $c \in R$, define

$$
\begin{gathered}
\mathbf{x}+\mathbf{y}=\left(\mathrm{x}_{1}+\mathrm{y}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}+\mathrm{y}_{\mathrm{n}}\right), \\
\mathbf{c x}=\left(\mathrm{cx}_{1}, \ldots, \mathrm{cx}_{\mathrm{n}}\right), \\
\mathbf{x} \bullet \mathbf{y}=\left(\mathrm{x}_{1} \mathrm{y}_{1}+\ldots+\mathrm{x}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}\right) .
\end{gathered}
$$

(a) Show that $\mathbf{x} \bullet(\mathbf{y}+\mathbf{z})=(\mathbf{x} \bullet \mathbf{y})+(\mathbf{x} \bullet \mathbf{z})$.
(b) Show that $|\mathbf{x} \bullet \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.
(c) Show that $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.
(d) Verify that dis a metric.
(a) $\mathbf{x} \bullet(\mathbf{y}+\mathbf{z})=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \bullet\left[\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)+\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{n}}\right)\right]$

$$
=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \bullet\left(\mathrm{y}_{1}+\mathrm{z}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}+\mathrm{z}_{\mathrm{n}}\right)
$$

$$
=\left(\mathrm{x}_{1}\left(\mathrm{y}_{1}+\mathrm{z}_{1}\right)+\ldots+\mathrm{x}_{\mathrm{n}}\left(\mathrm{y}_{\mathrm{n}}+\mathrm{z}_{\mathrm{n}}\right)\right)
$$

$$
=\left(x_{1} y_{1}+x_{1} z_{1}+\ldots+x_{n} y_{n}+x_{n} z_{n}\right)
$$

$$
=\left(x_{1} y_{1}+\ldots+x_{n} y_{n}\right)+\left(x_{1} z_{1}+\ldots+x_{n} z_{n}\right)
$$

$$
=\left[\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \bullet\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right]+\left[\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \bullet\left[\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{n}}\right)\right]\right.
$$

$$
=(\mathbf{x} \bullet \mathbf{y})+(\mathbf{x} \bullet \mathbf{z})
$$

(b) The statement is clearly valid if $\mathbf{x}=\mathbf{0}$. If $\mathbf{x} \neq \mathbf{0}$, let

$$
z=y-\frac{x \bullet y}{\|x\|} x
$$

Then $\mathbf{z} \bullet \mathbf{x}=0$ and

$$
\begin{aligned}
0 \leq\|z\|^{2}= & z \bullet z
\end{aligned}=\left(y-\frac{x \bullet y}{\|x\|} x\right) \bullet\left(y-\frac{x \bullet y}{\|x\|} x\right) ~=y \bullet y-y \bullet \frac{x \bullet y}{\|x\|^{2}} x-\frac{x \bullet y}{\|x\|^{2}} x \bullet y+\frac{x \bullet y}{\|x\|^{2}} x \bullet \frac{x \bullet y}{\|x\|^{2}} x .
$$

Hence,

$$
\begin{aligned}
& (\mathbf{x} \bullet \mathbf{y})^{2} \leq\|\mathbf{y}\|^{2}\|\mathbf{x}\|^{2} \text { and } \\
& |\mathbf{x} \bullet \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\| .
\end{aligned}
$$

(c) $\|\mathbf{x}+\mathbf{y}\|^{2}=[(\mathbf{x}+\mathbf{y}) \bullet(\mathbf{x}+\mathbf{y})]=[\mathbf{x} \bullet \mathbf{x}+\mathbf{x} \bullet \mathbf{y}+\mathbf{y} \bullet \mathbf{x}+\mathbf{y} \bullet \mathbf{y}]$

$$
=[|\mathbf{x} \bullet \mathbf{x}+2 \mathbf{x} \bullet \mathbf{y}+\mathbf{y} \bullet \mathbf{y}|] \leq\|\mathbf{x}\|+2\|\mathbf{x}\|\|\mathbf{y}\|+\|\mathbf{y}\|=[\|\mathbf{x}\|+\|\mathbf{y}\|]^{2} \text { using part } b .
$$

Hence, $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ since both sides are positive
(d) To show that the Euclidean norm is a metric, we have to show that if $\mathrm{d}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$
(i) $\mathrm{d}(\mathbf{x}, \mathbf{y}) \geq 0$ with $\mathrm{d}(\mathbf{x}, \mathbf{y})=0$ only when $\mathbf{x}=\mathbf{y}$
(ii) $\mathrm{d}(\mathbf{x}, \mathbf{y})=\mathrm{d}(\mathbf{y}, \mathbf{x})$
(iii) $\mathrm{d}(\mathbf{x}, \mathbf{y})+\mathrm{d}(\mathbf{y}, \mathbf{z}) \geq \mathrm{d}(\mathbf{x}, \mathbf{z})$
(i) by definition $\mathrm{d}(\mathbf{x}, \mathbf{y}) \geq 0$ (it is the positive square root and if $\mathbf{x} \neq \mathbf{y}$ then at least on pair x_{i} and y_{i} are distinct and their difference squared is positive)

$$
\mathrm{d}(\mathbf{x}, \mathbf{x})=\|\mathbf{x}-\mathbf{x}\|=\|\mathbf{0}\|=\|\mathbf{0}\|=\left(0^{2}+\ldots+0^{2}\right)^{1 / 2}=0
$$

(ii) $\quad d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|=\left\|\left(x_{1}-y_{1}, \ldots, x_{n}-y_{n}\right)\right\|=\left[\left(x_{1}-y_{1}\right)^{2}, \ldots,\left(x_{n}-y_{n}\right)^{2}\right]^{1 / 2}$

$$
=\left[\left(\mathrm{y}_{1}-\mathrm{x}_{1}\right)^{2}, \ldots,\left(\mathrm{y}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}}\right)^{2}\right]^{1 / 2}=\left\|\left(\mathrm{y}_{1}-\mathrm{x}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}}\right)\right\|=\|\mathbf{y}-\mathbf{x}\|=\mathrm{d}(\mathbf{y}, \mathbf{x})
$$

(iii) $\mathrm{d}(\mathbf{x}, \mathbf{y})+\mathrm{d}(\mathbf{y}, \mathbf{z})=\|\mathbf{x}-\mathbf{y}\|+\|\mathbf{y}-\mathbf{z}\| \geq\|(\mathbf{x}-\mathbf{y})+(\mathbf{y}-\mathbf{z})\|$ by part c $=\|\mathbf{x}-\mathbf{y}+\mathbf{y}-\mathbf{z}\|=\|\mathbf{x}-\mathbf{z}\|$
Hence, $\|\mathbf{x}-\mathbf{y}\|+\|\mathbf{y}-\mathbf{z}\| \geq\|\mathbf{x}-\mathbf{z}\|$ and $\mathrm{d}(\mathbf{x}, \mathbf{y})+\mathrm{d}(\mathbf{y}, \mathbf{z}) \geq \mathrm{d}(\mathbf{x}, \mathbf{z})$

Page 135 \# 11d - Given a sequence of functions $f_{n}: \mathrm{X} \rightarrow \mathrm{R}$, let

$$
s_{n}=\sum_{i=1}^{n} f_{i}(x)
$$

Prove the Weierstrass M-test for uniform convergence: If $\left|f_{i}(\mathrm{x})\right| \leq M_{i}$ for all $\mathrm{x} \in \mathrm{X}$ and all i, and if the series $\sum M_{i}$ converges, then the sequence $\left(\mathrm{s}_{\mathrm{n}}\right)$ converges uniformly to a function s .

Assume that $\left|f_{i}(\mathrm{x})\right| \leq M_{i}$ for all $\mathrm{x} \in \mathrm{X}$ and all i and that the series $\sum M_{i}$ converges, Let $\mathrm{r}_{\mathrm{n}}=\sum_{i=n+1}^{\infty} M_{i}$ using the hypothesis. Part (c) guarantees that the series $s_{n}=\sum_{i=1}^{n} f_{i}(x)$ converges, that is, $\mathrm{n} \rightarrow \infty$, then $\mathrm{s}_{\mathrm{n}}(\mathrm{x}) \rightarrow \mathrm{s}(\mathrm{x})$.

Consider the case when $\mathrm{k}>\mathrm{n}$. Then

$$
\begin{gathered}
\mathrm{s}_{\mathrm{k}}(\mathrm{x})-\mathrm{s}_{\mathrm{n}}(\mathrm{x})=\sum_{i=1}^{k} f_{i}(x)-\sum_{i=1}^{n} f_{i}(x) \\
\mathrm{s}_{\mathrm{k}}(\mathrm{x})-\mathrm{s}_{\mathrm{n}}(\mathrm{x})=f_{n+1}(\mathrm{x})+\ldots+f_{k}(\mathrm{x}) \\
\left|\mathrm{s}_{\mathrm{k}}(\mathrm{x})-\mathrm{s}_{\mathrm{n}}(\mathrm{x})\right| \leq\left|f_{n+1}(\mathrm{x})\right|+\ldots+\left|f_{k}(\mathrm{x})\right| \\
\left|\mathrm{s}_{\mathrm{k}}(\mathrm{x})-\mathrm{s}_{\mathrm{n}}(\mathrm{x})\right| \leq M_{n+1}+\ldots+M_{k}
\end{gathered}
$$

$$
\begin{gathered}
\left|\mathrm{s}_{\mathrm{k}}(\mathrm{x})-\mathrm{s}_{\mathrm{n}}(\mathrm{x})\right| \leq M_{n+1}+\ldots \\
\left|\mathrm{s}_{\mathrm{k}}(\mathrm{x})-\mathrm{s}_{\mathrm{n}}(\mathrm{x})\right| \leq \sum_{i=n+1}^{\infty} M_{i}=\mathrm{r}_{\mathrm{n}} \\
\lim _{k \rightarrow \infty}\left|\mathrm{~s}_{\mathrm{k}}(\mathrm{x})-\mathrm{s}_{\mathrm{n}}(\mathrm{x})\right| \leq \lim _{k \rightarrow \infty} \sum_{i=n+1}^{\infty} M_{i}=\lim _{k \rightarrow \infty} \mathrm{r}_{\mathrm{n}} \\
\left|\mathrm{~s}(\mathrm{x})-\mathrm{s}_{\mathrm{n}}(\mathrm{x})\right| \leq \sum_{i=n+1}^{\infty} M_{i}=\mathrm{r}_{\mathrm{n}}
\end{gathered}
$$

Hence,

$$
\left|s(x)-s_{n}(x)\right| \leq r_{n}
$$

