Homework 2

Page 111 #1 – Prove that for the functions $f : \mathbb{R} \to \mathbb{R}$, the $\varepsilon - \delta$ definition of continuity implies the open set definition.

Let $f : X \to Y$, $X = \mathbb{R}$ and $Y = \mathbb{R}$. We must show that the $\varepsilon - \delta$ definition of continuity implies that $U = f^{-1}(V) \in X$ is open in X if V is open in Y. The $\varepsilon - \delta$ definition of continuity state that if f is continuous, $\forall p \in X$ and $\forall \varepsilon > 0$, $\exists a \delta > 0 \ni if x \in (p - \delta, p + \delta)$, then $f(x) \in (f(x) - \varepsilon, f(x) + \varepsilon)$. Let V be open in Y and let $p \in f^{-1}(V)$. We need to show that p is an interior point of $f^{-1}(V)$. Let y = f(p). Because V is open, $\exists B_Y(y, \varepsilon) \subseteq V$ for some $\varepsilon > 0$. Since f is continuous at p, $\exists a \delta > 0 \ni f(B_X(p, \delta)) \subseteq B_Y(y, \varepsilon)$. Hence,

$$B_{X}(p, \subseteq f^{-1}[f(B_{X}(p, \delta))] \subseteq f^{-1}(B_{Y}(y, \varepsilon)) \subseteq f^{-1}(V)$$

and p is an interior point of $f^{-1}(V)$.

Page 111 # 2 – Suppose that $f : X \rightarrow Y$ is continuous. If x is a limit point of the subset A of X, is it necessarily true that f(x) is a limit point of f(A)?

In general yes, by Theorem 21.3 which states Let $f : X \to Y$. If the function is continuous, then for every convergent sequence $x_n \to x$ in X, the sequence $f(x_n) \to f(x)$. However, there is one exception and that is when f(x) is a constant. In this case, the set Y only consists of one point and hence cannot have a limit point.

Page 111 #5 – Show that the subspace (a,b) of \mathbb{R} is homeomorphic with (0,1) and the subspace [a,b] of \mathbb{R} is homeomorphic with [0,1].

We need to find a homeomorphism $f : (a,b) \rightarrow (0,1)$ and $g : [a,b] \rightarrow [0,1]$. Let a < x < b and 0 < y = f(x) < 1 and the map $f : (a,b) \rightarrow (0,1)$ be

$$y = f(x) = \frac{x - a}{b - a}$$

This map is one-to-one, continuous, and has inverse $f^{-1}(y) = a + (b-a)y = x$ and hence a homeomorphism. \therefore (a,b) is homeomorphic to (0,1). Use the same map for g as a homeomorphism from [a,b] to [0,1].

Page 126 # 9 – Show that the Euclidean metric d on \mathbb{R}^n is a metric, as follows: If **x**,**y** $\in \mathbb{R}^n$ and $c \in \mathbb{R}$, define

- (a) Show that $\mathbf{x} \bullet (\mathbf{y} + \mathbf{z}) = (\mathbf{x} \bullet \mathbf{y}) + (\mathbf{x} \bullet \mathbf{z}).$
- (b) Show that $|\mathbf{x} \bullet \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$.
- (c) Show that $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.
- (d) Verify that d is a metric.

(a)
$$\mathbf{x} \bullet (\mathbf{y} + \mathbf{z}) = (x_1, ..., x_n) \bullet [(y_1, ..., y_n) + (z_1, ..., z_n)]$$

 $= (x_1, ..., x_n) \bullet (y_1 + z_1, ..., y_n + z_n)$
 $= (x_1(y_1 + z_1) + ... + x_n(y_n + z_n))$
 $= (x_1y_1 + x_1z_1 + ... + x_ny_n + x_nz_n)$
 $= (x_1y_1 + ... + x_ny_n) + (x_1z_1 + ... + x_nz_n)$
 $= [(x_1, ..., x_n) \bullet (y_1, ..., y_n)] + [(x_1, ..., x_n) \bullet [(z_1, ..., z_n)]$
 $= (\mathbf{x} \bullet \mathbf{y}) + (\mathbf{x} \bullet \mathbf{z})$

(b) The statement is clearly valid if $\mathbf{x} = \mathbf{0}$. If $\mathbf{x} \neq \mathbf{0}$, let

$$\mathbf{z} = \mathbf{y} - \frac{\mathbf{x} \bullet \mathbf{y}}{\parallel \mathbf{x} \parallel} \mathbf{x}$$

Then
$$\mathbf{z} \cdot \mathbf{x} = 0$$
 and
 $0 \le \||\mathbf{z}\|^2 = \mathbf{z} \cdot \mathbf{z} = \left(\mathbf{y} - \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|} \mathbf{x} \right) \cdot \left(\mathbf{y} - \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|} \mathbf{x} \right)$
 $= \mathbf{y} \cdot \mathbf{y} - \mathbf{y} \cdot \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|^2} \mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|^2} \mathbf{x} \cdot \mathbf{y} + \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|^2} \mathbf{x} \cdot \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|^2} \mathbf{x}$
 $= \||\mathbf{y}\|^2 - 2\frac{(\mathbf{x} \cdot \mathbf{y})^2}{\|\mathbf{x}\|^2} + \frac{(\mathbf{x} \cdot \mathbf{y})^2}{\|\mathbf{x}\|^4} \mathbf{x} \cdot \mathbf{x}$
 $= \||\mathbf{y}\|^2 - 2\frac{(\mathbf{x} \cdot \mathbf{y})^2}{\|\mathbf{x}\|^2} + \frac{(\mathbf{x} \cdot \mathbf{y})^2}{\|\mathbf{x}\|^4} \|\mathbf{x}\|^2$
 $= \||\mathbf{y}\|^2 - 2\frac{(\mathbf{x} \cdot \mathbf{y})^2}{\|\mathbf{x}\|^2} + \frac{(\mathbf{x} \cdot \mathbf{y})^2}{\|\mathbf{x}\|^2}$
 $0 \le \||\mathbf{y}\|^2 - \frac{(\mathbf{x} \cdot \mathbf{y})^2}{\|\mathbf{x}\|^2}$

Hence,

$$(\mathbf{x} \bullet \mathbf{y})^2 \le ||\mathbf{y}||^2 ||\mathbf{x}||^2$$
 and
 $|\mathbf{x} \bullet \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||.$

(c) $\|\mathbf{x} + \mathbf{y}\|^2 = [(\mathbf{x} + \mathbf{y}) \bullet (\mathbf{x} + \mathbf{y})] = [\mathbf{x} \bullet \mathbf{x} + \mathbf{x} \bullet \mathbf{y} + \mathbf{y} \bullet \mathbf{x} + \mathbf{y} \bullet \mathbf{y}]$ = $[|\mathbf{x} \bullet \mathbf{x} + 2 \mathbf{x} \bullet \mathbf{y} + \mathbf{y} \bullet \mathbf{y}|] \le \|\mathbf{x}\| + 2\|\mathbf{x}\| \|\mathbf{y}\| + \|\mathbf{y}\| = [\|\mathbf{x}\| + \|\mathbf{y}\|]^2$ using part b.

Hence, $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$ since both sides are positive

(d) To show that the Euclidean norm is a metric, we have to show that if $d(\mathbf{x},\mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$

- (i) $d(\mathbf{x},\mathbf{y}) \ge 0$ with $d(\mathbf{x},\mathbf{y}) = 0$ only when $\mathbf{x} = \mathbf{y}$
- (ii) $d(\mathbf{x},\mathbf{y}) = d(\mathbf{y},\mathbf{x})$
- (iii) $d(\mathbf{x},\mathbf{y}) + d(\mathbf{y},\mathbf{z}) \ge d(\mathbf{x},\mathbf{z})$
- (i) by definition $d(\mathbf{x}, \mathbf{y}) \ge 0$ (it is the positive square root and if $\mathbf{x} \ne \mathbf{y}$ then at least on pair x_i and y_i are distinct and their difference squared is positive) $d(\mathbf{x}, \mathbf{x}) = ||\mathbf{x} - \mathbf{x}|| = ||\mathbf{0}|| = (0^2 + ... + 0^2)^{\frac{1}{2}} = 0$
- (ii) $d(\mathbf{x},\mathbf{y}) = \|\mathbf{x} \mathbf{y}\| = \|(x_1 y_1, \dots, x_n y_n)\| = [(x_1 y_1)^2, \dots, (x_n y_n)^2]^{\frac{1}{2}}$ $= [(y_1 x_1)^2, \dots, (y_n x_n)^2]^{\frac{1}{2}} = \|(y_1 x_1, \dots, y_n x_n)\| = \|\mathbf{y} \mathbf{x}\| = d(\mathbf{y}, \mathbf{x})$
- (iii) $d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}) = ||\mathbf{x} \mathbf{y}|| + ||\mathbf{y} \mathbf{z}|| \ge ||(\mathbf{x} \mathbf{y}) + (\mathbf{y} \mathbf{z})||$ by part c = $||\mathbf{x} - \mathbf{y} + \mathbf{y} - \mathbf{z}|| = ||\mathbf{x} - \mathbf{z}||$ Hence, $||\mathbf{x} - \mathbf{y}|| + ||\mathbf{y} - \mathbf{z}|| \ge ||\mathbf{x} - \mathbf{z}||$ and $d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}) \ge d(\mathbf{x}, \mathbf{z})$

Page 135 # 11d – Given a sequence of functions $f_n: X \to \mathbb{R}$, let

$$s_n = \sum_{i=1}^n f_i(x)$$

Prove the Weierstrass M-test for uniform convergence: If $|f_i(\mathbf{x})| \le M_i$ for all $\mathbf{x} \in \mathbf{X}$ and all *i*, and if the series $\sum M_i$ converges, then the sequence (\mathbf{s}_n) converges uniformly to a function s.

Assume that $|f_i(\mathbf{x})| \leq M_i$ for all $\mathbf{x} \in \mathbf{X}$ and all *i* and that the series $\sum M_i$ converges, Let $\mathbf{r}_n = \sum_{i=n+1}^{\infty} M_i$ using the hypothesis. Part (c) guarantees that the series $s_n = \sum_{i=1}^{n} f_i(\mathbf{x})$ converges, that is, $n \to \infty$, then $\mathbf{s}_n(\mathbf{x}) \to \mathbf{s}(\mathbf{x})$.

Consider the case when k > n. Then

$$s_{k}(x) - s_{n}(x) = \sum_{i=1}^{k} f_{i}(x) - \sum_{i=1}^{n} f_{i}(x)$$

$$s_{k}(x) - s_{n}(x) = f_{n+1}(x) + \dots + f_{k}(x)$$

$$s_{k}(x) - s_{n}(x)| \le |f_{n+1}(x)| + \dots + |f_{k}(x)|$$

$$|s_{k}(x) - s_{n}(x)| \le M_{n+1} + \dots + M_{k}$$

$$\begin{aligned} |\mathbf{s}_{\mathbf{k}}(\mathbf{x}) - \mathbf{s}_{\mathbf{n}}(\mathbf{x})| &\leq \mathbf{M}_{n+1} + \dots \\ |\mathbf{s}_{\mathbf{k}}(\mathbf{x}) - \mathbf{s}_{\mathbf{n}}(\mathbf{x})| &\leq \sum_{i=n+1}^{\infty} \mathbf{M}_{i} = \mathbf{r}_{\mathbf{n}} \\ \lim_{k \to \infty} |\mathbf{s}_{\mathbf{k}}(\mathbf{x}) - \mathbf{s}_{\mathbf{n}}(\mathbf{x})| &\leq \lim_{k \to \infty} \sum_{i=n+1}^{\infty} \mathbf{M}_{i} = \lim_{k \to \infty} \mathbf{r}_{\mathbf{n}} \\ |\mathbf{s}(\mathbf{x}) - \mathbf{s}_{\mathbf{n}}(\mathbf{x})| &\leq \sum_{i=n+1}^{\infty} \mathbf{M}_{i} = \mathbf{r}_{\mathbf{n}} \end{aligned}$$

Hence,

$$|\mathbf{s}(\mathbf{x}) - \mathbf{s}_{\mathbf{n}}(\mathbf{x})| \leq \mathbf{r}_{\mathbf{n}}$$