
Homework 3 
 
Page 152 # 2 – Let {An} be a sequence of connected subspaces of X, such that An I  An+1 
≠ {} for all n. Show that U An is connected. 
 
This proof will be done by contradiction.  Let {An} be a sequence of connected subspaces 
of X.  Assume that A= U An is not connected, ie. A has a separation consisting two sets C 
and D.  Consider and arbitrary Ai ∈ {An}.  By Lemma 23.2, Ai lies entirely within either 
C or D. The there are two cases to consider: 1) All the Ai are entirely in either C or they 
are all entirely in D. or 2) Some are entirely in C and some are entirely in D.  In case 1, if 
they are all in C, then C and D are not a separation of A which is a contradiction.  In case 
2, if they are split then the Ai’s in C are disjoint from the Ai’s in D.  This contradicts the 
hypothesis An I  An+1 ≠ {} for all n.   
 
∴The U An  is connected. 
 
 
Page 158 # 3 – Let f: X→  X be continuous.  Show that if X = [0,1], there is a point x 
such that f(x) = x.  The point x is called a fixed point of f.  What happens if X equals 
[0,1) or (0,1)? 
 
X is a connected space and an ordered set in the order topology.  Consider two points a,b 
∈ X.  Choose the midpoint x1 that is between f(a) and f(b).  Then by the intermediate 
value theorem, ∃ a point c1 ∈ [a,b] such that f(c1) = x1.  If c1 = x1, we have found a fixed 
point.  If not, choose the midpoint x2 between c1 and x1.  Then ∃ a point c2 ∈ [c1, x1] or 
[x1, c1]such that f(c2) = x2.  If c2 = x2.  Continue in this fashion.  There will then be two 
convergent sequences of points c1, c2, … and x1, x2, … with the property |cn – xn| →  0 as 
n →  ∞  because f continuous on X.  In other words |xn – f(xn)| = |f(cn) – f(xn)| →  0.  
Hence, in the limit f(x) = x. 
 
Not true for X equals [0,1) or (0,1) because f is not uniformly continuous on these 
intervals for all f.  For example, f(x) = (x+1)/2 has a fixed point x = 1.  However, this has 
no fixed point on the interval [0,1) or (0,1) 
 
 
 
Page 170 # 3 – Show that a finite union of compact subspaces of X is compact. 
 

Consider a collection {C1,…,Cn} of compact subspaces of X.  Let  C = U
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∴C is compact. 



 
Lemma 26.4 – If Y is a compact subspace of the Hausdorff space X and x0 is not in Y, 
then there exists disjoint open sets U and V of X containing x0 and Y, respectively. 
 
Let Y be a compact subspace of the Hausdorf space X and let x0 ∈ X – Y.  Let y ∈ Y.  
The points x0 and y are distinct. By the Hausdorf conditions, for each point y,   ∃  disjoint 
open sets Uy and Vy around containing x0 and y, respectively.  The collection {Vy | y∈Y} 
is a covering of Y by sets open in X.  A finite collection of them {V1, …, Vn} covers Y 
because Y is compact.   The open set V = V1 U …U  Vn contains Y and is disjoint from 
the open set U = U1 I …I  Un which contains x0 because it is the intersection of the 
corresponding open sets around x0. 
 

∴ there exists disjoint open sets U and V of X containing x0 and Y, respectively. 
 
 
Page 170 # 5 – Let A and B be disjoint compact subspaces of the Hausdorff space X.  
Show that there exists disjoint open sets U and V containing A and B, respectively. 
 
Let A and B be disjoint compact subspaces of the Hausdorff space X.  Let x be an  
arbitrary points of A.  The points of x is not in Y because A and B are disjoint.  Then by 
Lemma 26.4 ∃ disjoint open sets Ux and Vx such that x ∈ Ux and Vx contains B. The 
collection {Ux} is a covering of A by sets open in X.  A finite collection of them {U1, …, 
Un} covers A because A is compact.   The open set U = U1 U …U  Un contains A and is 
disjoint from V = V1 I …I  Vn which contains B because it is the finite intersection of 
the corresponding open sets containing B. 
 
∴ there exists disjoint open sets U and V containing A and B, respectively. 
 


