Bioinformatics – Lecture Notes

Announcements

Next week is Spring Break (March 11-15). NO CLASS.

Class 15 – March 5, 2002 -

1. Evolutionary Problems – Clustering Methods – How do we determine the best fit phylogenetic data?

Cannot determine the minimum number of mutations for all possible tree topologies having n leaves since the number of binary trees is exponential. Instead we will use some concepts from graph theory

Definitions

taxa – entities whose distance from other entities can be measured A *directed graph* G(V, E) consists of a set V of *nodes* or *vertices* and a set E⊆ V×V of *directed edges*. Then (i,j) ∈ E means that there is a directed edge from i to j.

- A graph is *undirected* if the edge relation is *symmetric*, that is, (i,j) $\in E$ iff (j,i) $\in E$.
- A directed graph is *connected* if there is a directed path between any two nodes.
- A directed graph is *acyclic* if it does not contain a cycle. (ie. (i,j), (j,k), and (k,i) all belong to E.
- A tree is a undirected, connected, acyclic graph.
- A rooted tree has a starting node called a root.
- The *parent node* is immediately before a node on the path from the root.
- The *child node* is a node that is follows a node.
- An *ancestor* is any node that came before a node on the path from a root.
- A *leaf* or *external node* is a node that had no children.

Non-leaf nodes are called *internal nodes*.

- The *depth* of a tree is one less than the maximal number of nodes on a path from the root to a leaf.
- An *ordered tree* is a tree where the children of internal nodes are numbered.
- A *binary tree* is a tree where each node has at most two children. Otherwise it is *multifurcating*.
- Question: Draw all binary trees on 1, 2, and 3 taxa.
- A *phylogenetic tree* on n taxa is a tree with leaves labeled by 1,...,n.

- Let T_1 , and T_2 be phylogenetic trees on n taxa. Then $T_1=(V_1,E_1)$ and $T_2=(V_2,E_2)$, $E_1 \subseteq V_1 \times V_1$ and $E_2 \subseteq V_2 \times V_2$, and the leaves of both T_1 and T_2 are labeled 1,2,...,n. A function $f: V_1 \rightarrow V_2$ is an isomorphism from T_1 to T_2 if the following conditions are satisfied.
 - 1) f is one-to-one and onto
 - 2) $x \in V_1$ is a leaf of T_1 labeled by I iff $f(x) \in V_2$ is a leaf of T_2 labeled by i.
 - 3) $(x, y) \in E_1$ iff $(f(x), f(y)) \in E_2$
- a) ultrameric trees
- b) additive metric
- c) estimating branch lengths