Bioinformatics— Lecture Notes
Announcements

Remember: Project Proposals are due April 11.
Class 22 — April 4, 2002

A. Hidden Markov Models

1. Ddinitions

Example - Congder the example we talked about in class last time with the
coins. However, thistimeingead of a3 coinswith a heads or tail outcome,
assumethat you have a4 sded diewith the letters A, C, T, G on the faces.
You rall the die n-times for a sequence of length n.

Example— This example can be extended to protein sequences if we consider
a 20-9ded die with a different amino acids on each face. Alternatively, we
can consider the 64 codons.

To see how Hidden Markov Moddls can be used, consider the following
example

The occasionally dishonest casino example - Inacasino, the use afar die
most of the time, but occasionally they switch to aloaded die. The loaded die
has probability 0.5 of asix and 0.1 for the numbers 1 to 5. Assumethat the
casino switches from afair to aloaded die with probability 0.05 before each
roll and the probability of switching back is0.1. Then the switch between the
diceisaMarkov process. In each state the outcome of aroll has different
probabilities. Thisisan example of a hidden Markov Model.

In this example, if we just see the ouicome (emissions) of the dieralls, the
gate sequenceis hidden. The emission probabilities (ex(b)) are the
probabilities of each outcome in a particular outcome b when in state k. The
trangition probabilities (&) is the probaility that the state will change from
date k to state |. These can be written as follows:

3, =Prp, =1 |p,_, =K]
e, (b) = Prix =b |p, =k]

We can write down the joint probability of an observed sequence x and a date
sequencep:



Pixpl =3, O 8, (X)a,, ()

2. TheViterbi Algorithm: Computing the most probable state path

Looking at the emitted sequence, we need to have away to determine the
most likely sequence of states that yields the data we are considering, ie.

p’ =agmax Pr[x,p]
p

The most probable path p* can be found recursively. Let the probability of the
most probably path ending in state k with observation i, wi(i), be know for dl
the states. These probabiilities can be caculated for observation 41 by

vi (i +D =& (x,,) max (v, (i)a,)
with theinitia condition vp(beginning state) = 1. After running through
iteration for al observationsin the sequence, the actud state sequence can be
found by using the traceback. (seetheagorithmin Durbin et d or Clote and
Backhofen)

On amore practicd note, often when we are taking the product of many
probabilities the numbers get redly smdl. This can cause underflow errors on
acomputer. To remedy this, use the log(vi(i)) instead.

Figure 3.5 (in Durbin et d) shows data generated in a smulétion, the actud
die used and the prediction by the Viterbi agorithm. Notice that whileit is
not exactly correct, it is close.

3. Probahility of asequence in a Hidden Markov Model
Earlier in the semester, we showed how to caculate the probability of a
sequence derived from aMarkov Chain
i
Px]=Px]Oa
i=2
where a,

v = PI% 1% ,]. Wewant to be able to do the same for the Hidden

Markov Mode. Thisisdightly more complicated because many different
date paths can give rise to the same sequence X. Thisrequires that we sum up
the probabilities to obtain the full probability of sequence x.

Pr[x] =& Pxp]

Because the number of paths increases exponentidly with the length of the
sequence, enumerating al paths in too computationaly expensive. Insteed,



we can use equation (*) above for the most probable path p” asa
goproximation for Pr[x]. Alternatively we can use adynamic programming
method smilar to the Viterbi agorithm cdled the forward algorithm. The
term analogous to Viterbi variable v(i) in the forward dgoritm is

f (i) =PrIx..x.p = K]
is the probability of the observed sequence up until and including X, with the
requirment that p; = k. The recurson equation is

f(i+])=g(x,.)a f(i)a,

(seethe dgorithm in Durbin et d or Clote and Backhofen)

Similar to the Viterbi dgorthm, one might work in log space to avoid
underflow errors.

. The backward agorithm and posterior state probabilities

Sometimes we might want to know the most probable state for an observation
;. This can be re-phrased as the probability that observation x; camefrom
state k given the observed sequence (Pr[pi = k | X]). Thisiscdled the
posterior probability.

To do thiswe use the backward algorithm whichisabit indirect. Firg, the
probability of producing the entire observed sequence with the ith symbol
being produced by statek, ie.

Prix,p = K] =Prix..x,p, =KIP[X,..% [ %%, 0 =K]

= P[..% b, =KIPX.1..% [P, = K] )

because everything after k only depends onthe date at k. Thefird termisthe
f, (i) from the forward agorithm. The second term is

b (i) = Prix...% [P, = K]

which is obtained by backward recurson starting at the end of the sequence.
(see backward dgorithm Durbin et d or Clote and Backofen)

Once we have computed f, (i) from the forward agorithm, b, (i) from the
backward dgorithm and Pr[x] from either, we re-write equation (**) as

Prix,p, = K] = f,.(i) b (i)
then we can caculate



Px,p, =]

Pl =k|x) == 5

_ £0)b0)
Prix]

by the definition of conditiona probability. (seeFig 3.6)
5. Pogterior decoding

When many different paths have close to the same probability as the most
probable one, it is not reasonable to only choose the most probable one. One
approach isto define a second state sequence

p = argmax Pr[p, =k |x]
p

This state sequence might be more gppropriate when we are interested in the
date assgnment at a particular point i, rather than the complete path. In
Figure 3.7 (Durbin et d), the dishonest casino example is used with the
probability of switching from afair to loaded dieis 0.01. In this casethe
Viterbi dorgithm never viststheloaded die state. However, if welook at the
posterior probabilities, it is clear where the loaded die is used.

B. Parameter Etimation for Hidden Markov Modds

When we are determining a Hidden Markov Moddl, the first step isto define the
modd in thefirst place. In our example, we know the form of the modd.
Sometimes we do not know this. There are two partsto designing amodd: 1)
defining the mode structure or topology and 2) assigning the parameter vaues for
the emisson and trangtion probabilities.

To do thiswe need to have a set of example sequences cdled the training set
which wewill cal x',... X". These are assumed to independent so that the joint
probability of al sequencesis smply the product or the probakilities of the
individua sequences. Sincethisisaproduct, it makes senseto work in log space.

1. Edtimating when the state sequence is known

When the paths are al know, we can count the number of timesthat each
particular trangtion or emission is used in the training set. We can cdl these
Ay and E¢(b), respectivdly. We can compute the maximum likelihood
esimators for aq and ec(b) by

A ay e EBO .,
a %Am &.(b) %Ek(bg (***)



In order for this to work, we have to have enough dataiin the training set so
that our problem is not underdetermined.

2. Baim Wech and Viterbi training: Egtimation when the paths are unknown

Definition — The Baum-Welch Score is the likdihood Lo(M) that amodel M
generates O is defined by

Lo(M) =P[O|M]

=§ PlO,p|M]
p

=& Pr[O|p,M] Prp [ M]

Definition— The Viterbi Score isthe same as the Baum Welch Score except with
the maximum in place of sum over dl paths of Sates

a Bam-Wech Method

This method is avery common method. It estimates Ay and E((b) by
congdering the probable paths for the training sequences using the current
vaues of a and ex(b). Then Eq. (***) isused to derive new vaues of the
asand €s. Clote and Backofen show the proof that the overal log
likelihood increases with each iteration and that the process convergesto a
locd maximum. One must redize that Snceit isaloca maximum, the

locad maximum you end up inis srongly dependent on theinitid vaues of
the parameters.

b) Expectation Maximization
c) Bddi-Chauvin Gradient Descents

C. Applications
a) Multiple sequence dignment

b) Protein matifs
c) Eukaryotic DNA promoter regions



