
Bioinformatics – Lecture Notes   
 
Announcements 
 

Remember: Project Proposals are due April 11. 
 
Class 22 – April 4, 2002  
 
 A. Hidden Markov Models 
  

1. Definitions 
 

Example  -  Consider the example we talked about in class last time with the 
coins.  However,  this time instead of a 3 coins with a heads or tail outcome, 
assume that you have a 4 sided die with the letters A, C, T, G on the faces.  
You roll the die n-times for a sequence of length n. 
 
Example – This example can be extended to protein sequences if we consider 
a 20-sided die with a different amino acids on each face.  Alternatively, we 
can consider the 64 codons.  
 
To see how Hidden Markov Models can be used, consider the following 
example: 
 
The occasionally dishonest casino example - In a casino, the use a fair die 
most of the time, but occasionally they switch to a loaded die.  The loaded die 
has probability 0.5 of a six and 0.1 for the numbers 1 to 5.  Assume that the 
casino switches from a fair to a loaded die with probability 0.05 before each 
roll and the probability of switching back is 0.1.  Then the switch between the 
dice is a Markov process.  In each state the outcome of a roll has different 
probabilities.  This is an example of a hidden Markov Model. 
 
In this example, if we just see the outcome (emissions) of the die rolls, the 
state sequence is hidden.  The emission probabilities (ek(b)) are the 
probabilities of each outcome in a particular outcome b when in state k. The 
transition probabilities (akl) is the probability that the state will change from 
state k to state l.  These can be written as follows: 
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We can write down the joint probability of an observed sequence x and a state 
sequence π: 
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2. The Viterbi Algorithm: Computing the most probable state path 
 

Looking at the emitted sequence, we need to have a way to determine the 
most likely sequence of states that yields the data we are considering, ie. 
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The most probable path π*
 can be found recursively.  Let the probability of the 

most probably path ending in state k with observation i, vk(i), be know for all 
the states.  These probabilities can be calculated for observation xi+1 by 
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with the initial condition v0(beginning state) = 1.  After running through 
iteration for all observations in the sequence, the actual state sequence can be 
found by using the traceback.  (see the algorithm in Durbin et al or Clote and 
Backhofen) 
 
On a more practical note, often when we are taking the product of many 
probabilities the numbers get really small.  This can cause underflow errors on 
a computer.  To remedy this, use the log(vl(i)) instead. 
 
Figure 3.5 (in Durbin et al) shows data generated in a simulation, the actual 
die used and the prediction by the Viterbi algorithm.  Notice that while it is 
not exactly correct, it is close. 
 

3. Probability of a sequence in a Hidden Markov Model 
 

Earlier in the semester, we showed how to calculate the probability of a 
sequence derived from a Markov Chain  
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.  We want to be able to do the same for the Hidden 

Markov Model.  This is slightly more complicated because many different 
state paths can give rise to the same sequence x.  This requires that we sum up 
the probabilities to obtain the full probability of sequence x. 
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Because the number of paths increases exponentially with the length of the 
sequence, enumerating all paths in too computationally expensive.  Instead, 



we can use equation (*) above for the most probable path π* as a 
approximation for Pr[x].  Alternatively we can use a dynamic programming 
method similar to the Viterbi algorithm called the forward algorithm.  The 
term analogous to Viterbi variable vk(i) in the forward algoritm is 
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is the probability of the observed sequence up until  and including xi, with the 
requirment that π i = k.  The recursion equation is 
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(see the algorithm in Durbin et al or Clote and Backhofen) 
 
Similar to the Viterbi algorthm, one might work in log space to avoid 
underflow errors. 
 

4. The backward algorithm and posterior state probabilities 
 

Sometimes we might want to know the most probable state for an observation 
xi.  This can be re-phrased as the probability that observation xi came from 
state k given the observed sequence (Pr[π i = k | x]).  This is called the 
posterior probability.   
 
To do this we use the backward algorithm which is a bit indirect.  First, the 
probability of producing the entire observed sequence with the ith symbol 
being produced by state k, ie. 
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because everything after k only depends on the state at k.  The first term is the 

)(if k from the forward algorithm.  The second term is  
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which is obtained by backward recursion starting at the end of the sequence.    
(see backward algorithm Durbin et al or Clote and Backofen) 
 
Once we have computed )(if k  from the forward algorithm, )(ibk from the 
backward algorithm and Pr[x] from either, we re-write equation (**) as 
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by the definition of conditional probability.  (see Fig 3.6) 
 

5. Posterior decoding 
 

When many different paths have close to the same probability as the most 
probable one, it is not reasonable to only choose the most probable one.  One 
approach is to define  a second state sequence 
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This state sequence might be more appropriate when we are interested in the 
state assignment at a particular point i, rather than the complete path.  In 
Figure 3.7 (Durbin et al), the dishonest casino example is used with the 
probability of switching from a fair to loaded die is 0.01.  In this case the 
Viterbi alorgithm never visits the loaded die state.  However, if we look at the 
posterior probabilities, it is clear where the loaded die is used. 
 

B. Parameter Estimation for Hidden Markov Models 
 
When we are determining a Hidden Markov Model, the first step is to define the 
model in the first place.  In our example, we know the form of the model.  
Sometimes we do not know this.  There are two parts to designing a model: 1) 
defining the model structure or topology and 2) assigning the parameter values for 
the emission and transition probabilities.   
 
To do this we need to have a set of example sequences called the training set 
which we will call x1,…,xn.  These are assumed to independent so that the joint 
probability of all sequences is simply the product or the probabilities of the 
individual sequences.  Since this is a product, it makes sense to work in log space. 
 
1. Estimating when the state sequence is known 
 

When the paths are all know, we can count the number of times that each 
particular transition or emission is used in the training set.  We can call these 
Akl and Ek(b), respectively.  We can compute the maximum likelihood 
estimators for akl and ek(b) by 
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In order for this to work, we have to have enough data in the training set so 
that our problem is not underdetermined. 

 
 

2. Baum Welch and Viterbi training:  Estimation when the paths are unknown 
 

Definition – The Baum-Welch Score is the likelihood LO(M) that a model M 
generates O is defined by 
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Definition – The Viterbi Score is the same as the Baum Welch Score except with 
the maximum in place of sum over all paths of states  
 

a) Baum-Welch Method 
 
This method is a very common method.  It estimates Akl and Ek(b) by 
considering the probable paths for the training sequences using the current 
values of akl and ek(b).  Then Eq. (***) is used to derive new values of the 
a’s and e’s.  Clote and Backofen show the proof that the overall log 
likelihood increases with each iteration and that the process converges to a 
local maximum.  One must realize that since it is a local maximum, the 
local maximum you end up in is strongly dependent on the initial values of 
the parameters. 
 
b) Expectation Maximization 
c) Baldi-Chauvin Gradient Descents 

 
C.  Applications 

 
a) Multiple sequence alignment 
b) Protein motifs 
c) Eukaryotic DNA promoter regions 
 

 
 
 
  


