
Bioinformatics – Lecture Notes

Announcements

Remember: Project Proposals are due April 11.

Class 22 – April 4, 2002

 A. Hidden Markov Models

1. Definitions

Example - Consider the example we talked about in class last time with the
coins. However, this time instead of a 3 coins with a heads or tail outcome,
assume that you have a 4 sided die with the letters A, C, T, G on the faces.
You roll the die n-times for a sequence of length n.

Example – This example can be extended to protein sequences if we consider
a 20-sided die with a different amino acids on each face. Alternatively, we
can consider the 64 codons.

To see how Hidden Markov Models can be used, consider the following
example:

The occasionally dishonest casino example - In a casino, the use a fair die
most of the time, but occasionally they switch to a loaded die. The loaded die
has probability 0.5 of a six and 0.1 for the numbers 1 to 5. Assume that the
casino switches from a fair to a loaded die with probability 0.05 before each
roll and the probability of switching back is 0.1. Then the switch between the
dice is a Markov process. In each state the outcome of a roll has different
probabilities. This is an example of a hidden Markov Model.

In this example, if we just see the outcome (emissions) of the die rolls, the
state sequence is hidden. The emission probabilities (ek(b)) are the
probabilities of each outcome in a particular outcome b when in state k. The
transition probabilities (akl) is the probability that the state will change from
state k to state l. These can be written as follows:

]|Pr[)(

]|Pr[1

kbxbe

kla

iik

iikl

===
=== −

π
ππ

We can write down the joint probability of an observed sequence x and a state
sequence π:

11
1

0)(],Pr[
+∏

=

=
iii

axeax
L

i
i πππππ (∗)

2. The Viterbi Algorithm: Computing the most probable state path

Looking at the emitted sequence, we need to have a way to determine the
most likely sequence of states that yields the data we are considering, ie.

],Pr[maxarg* ππ
π

x=

The most probable path π*
 can be found recursively. Let the probability of the

most probably path ending in state k with observation i, vk(i), be know for all
the states. These probabilities can be calculated for observation xi+1 by

))((max)()1(1 klkkill aivxeiv +=+

with the initial condition v0(beginning state) = 1. After running through
iteration for all observations in the sequence, the actual state sequence can be
found by using the traceback. (see the algorithm in Durbin et al or Clote and
Backhofen)

On a more practical note, often when we are taking the product of many
probabilities the numbers get really small. This can cause underflow errors on
a computer. To remedy this, use the log(vl(i)) instead.

Figure 3.5 (in Durbin et al) shows data generated in a simulation, the actual
die used and the prediction by the Viterbi algorithm. Notice that while it is
not exactly correct, it is close.

3. Probability of a sequence in a Hidden Markov Model

Earlier in the semester, we showed how to calculate the probability of a
sequence derived from a Markov Chain

∏
=

−
=

L

i
xx ii

axx
2

1 1
]Pr[]Pr[

where]|Pr[11 −=
− iixx xxa

ii
. We want to be able to do the same for the Hidden

Markov Model. This is slightly more complicated because many different
state paths can give rise to the same sequence x. This requires that we sum up
the probabilities to obtain the full probability of sequence x.

∑=
π

π],Pr[]Pr[xx

Because the number of paths increases exponentially with the length of the
sequence, enumerating all paths in too computationally expensive. Instead,

we can use equation (*) above for the most probable path π* as a
approximation for Pr[x]. Alternatively we can use a dynamic programming
method similar to the Viterbi algorithm called the forward algorithm. The
term analogous to Viterbi variable vk(i) in the forward algoritm is

],...Pr[)(1 kxxif iik == π
is the probability of the observed sequence up until and including xi, with the
requirment that π i = k. The recursion equation is

∑+=+
k

klkill aifxeif)()()1(1

(see the algorithm in Durbin et al or Clote and Backhofen)

Similar to the Viterbi algorthm, one might work in log space to avoid
underflow errors.

4. The backward algorithm and posterior state probabilities

Sometimes we might want to know the most probable state for an observation
xi. This can be re-phrased as the probability that observation xi came from
state k given the observed sequence (Pr[π i = k | x]). This is called the
posterior probability.

To do this we use the backward algorithm which is a bit indirect. First, the
probability of producing the entire observed sequence with the ith symbol
being produced by state k, ie.

]|...Pr[],...Pr[

],...|...Pr[],...Pr[],Pr[

11

111

kxxkxx

kxxxxkxxkx

iLiii

iiLiiii

===
====

+

+

ππ
πππ

 (**)

because everything after k only depends on the state at k. The first term is the

)(if k from the forward algorithm. The second term is

]|...Pr[)(1 kxxib ilik == + π

which is obtained by backward recursion starting at the end of the sequence.
(see backward algorithm Durbin et al or Clote and Backofen)

Once we have computed)(if k from the forward algorithm,)(ibk from the
backward algorithm and Pr[x] from either, we re-write equation (**) as

)()(],Pr[ibifkx kki ==π
then we can calculate

]Pr[
)()(

]Pr[
],Pr[

]|Pr[

x
ibif

x
kx

xk

kk

i
i

=

=== ππ

by the definition of conditional probability. (see Fig 3.6)

5. Posterior decoding

When many different paths have close to the same probability as the most
probable one, it is not reasonable to only choose the most probable one. One
approach is to define a second state sequence

]|Pr[maxargˆ xki == ππ
π

This state sequence might be more appropriate when we are interested in the
state assignment at a particular point i, rather than the complete path. In
Figure 3.7 (Durbin et al), the dishonest casino example is used with the
probability of switching from a fair to loaded die is 0.01. In this case the
Viterbi alorgithm never visits the loaded die state. However, if we look at the
posterior probabilities, it is clear where the loaded die is used.

B. Parameter Estimation for Hidden Markov Models

When we are determining a Hidden Markov Model, the first step is to define the
model in the first place. In our example, we know the form of the model.
Sometimes we do not know this. There are two parts to designing a model: 1)
defining the model structure or topology and 2) assigning the parameter values for
the emission and transition probabilities.

To do this we need to have a set of example sequences called the training set
which we will call x1,…,xn. These are assumed to independent so that the joint
probability of all sequences is simply the product or the probabilities of the
individual sequences. Since this is a product, it makes sense to work in log space.

1. Estimating when the state sequence is known

When the paths are all know, we can count the number of times that each
particular transition or emission is used in the training set. We can call these
Akl and Ek(b), respectively. We can compute the maximum likelihood
estimators for akl and ek(b) by

∑
′

′

=

l
lk

kl
kl A

A
a and

∑
′

′
=

b
k

k
k bE

bE
be

)(
)(

)((***)

In order for this to work, we have to have enough data in the training set so
that our problem is not underdetermined.

2. Baum Welch and Viterbi training: Estimation when the paths are unknown

Definition – The Baum-Welch Score is the likelihood LO(M) that a model M
generates O is defined by

]|Pr[],|Pr[

]|,Pr[

]|Pr[)(

MMO

MO

MOMLO

ππ

π

π

π

∑
∑

=

=

=

Definition – The Viterbi Score is the same as the Baum Welch Score except with
the maximum in place of sum over all paths of states

a) Baum-Welch Method

This method is a very common method. It estimates Akl and Ek(b) by
considering the probable paths for the training sequences using the current
values of akl and ek(b). Then Eq. (***) is used to derive new values of the
a’s and e’s. Clote and Backofen show the proof that the overall log
likelihood increases with each iteration and that the process converges to a
local maximum. One must realize that since it is a local maximum, the
local maximum you end up in is strongly dependent on the initial values of
the parameters.

b) Expectation Maximization
c) Baldi-Chauvin Gradient Descents

C. Applications

a) Multiple sequence alignment
b) Protein motifs
c) Eukaryotic DNA promoter regions

