Bioinformetics — Lecture Notes
Announcements

Remember: Project Proposas are due this Thursday April 11. | have only heard
from one group so far.

Only 8 classes|eft including this lecture and project presentations.
Class 23 — April 9, 2002
B. Parameter Estimation for Hidden Markov Models
1) Baum-Wech Method
Thisdgorithm cdculates Ay and Ex(b) as the expected number of times
each trangtion or emisson isused in the training sequences. Thisisdone
using the same forward and backward vaues as the posterior probability

decoding method. The probability that ay isused at postion i inthe
sequence x isasfallows:
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where q isthe entire current set of values of the parametersin the mode.
This can be used to find the expected number of timethat ay isused by
summing over dl positions and over dl training sequences.
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The expected number of times b appearsin state k is given by
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where this sum is over only the positionsi where b is emitted.

We can compute the maximum likelihood estimators for the modedl
parameters & and ex(b) by
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We iterate back and forth between the values of the A’sand E'sand the
asand € s until they converge on avaue. To do this, a convergence
criterion is chosen. The criterion typicaly used iswhen the change in the
log likdlihood is sufficiently small. Other criteria are possible.

An dgorithm for thisis given on page 64 of Durbinet d. Aswe
mentioned earlier, Viterbi training, which is amodification of Baum-
Welch, can aso be used to estimate parameters. The Viterbi Scoreisthe
same as the Baum Welch Score except with the maximum in place of sum
over dl paths of states.

Example — The occasiondly dishonest casino, part 5 (see page 65
Durbinet d.)

Expectation Maximization (EM)

Congder that we have a set of observations that formsa set Y of
incompletedata. Then thereisaset X of complete data thet conssts of the
observed and hidden data. Let yT Y be an sequence of observations O of

length T.

Assumethat thereis x1 X that are mapped to y in amany-to-one
mapping. X consigsof p, O, where p1 Q' isasequence of state of length
T. Let M denote amode and suppose that g(y|M) isaconditiond
probability density for the space Y, that f(x|M) isaconditiona probability
dengty of x and that

g(yIM) = Of (x|M)

x X(y)
where X(y) istheset of x1 X that are mapped toy.
Quedtion: Isy complete or incomplete data? What about x?

In the discrete case, we have andogous conditional probabilities with

g(yIM)= g f(x|M)

A X(y)
Define

Q(MIM)=E[wa(XIM)Ly,M]
= & Prix|y,M]log f (x| M)

X X (y)
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The EM dgorithm congists of two steps

i) Compute Q(M |M).
i) Determine arg[naxQ(M [ M)

Bddi-Chauvin Gradient Descents

The gradient descent equations on the negative log likeihood can be
derived by first reparameterizing the hidden Markov modd usng
normalized exponentids:
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This reparametrization has two advantages. i) modification of thew’'s
automaticaly preserves normdization congtraints on emisson and
trangtion digributions and ii) trangtion and emission probabilities can
never reach the value of 0. For the emission parameters

b [o!
-~ =h _(1- and -
|,c( QC) ﬂWk

(N

=- tq,clq,k

I,C

and amilarly for the trangtions parameters. By the chainrule
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Applying Lagrange multipliers we can optimize for the parametersto give
the maximum likelihood, which yieds the negative log likelihood gradient
descent equations
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where h isthelearning rete, n ¢ and ny; are the expected counts derived
from the forward- backward procedure for each single sequenceie.

n.. =& n(i,c.p,0)Q(P)

with n(i,c, p,0) being the number of timesletter c isemitted from i given
p and Q and
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with n(i,p,O) being the number of timesi isvisted given p and Q and

4) Mamitsuka s MA Algorithm

The likelihood of athe $" sequence with respect to a hidden Markov
modd is given by

=P[O* |M]

and is called the target value likelihood of the s" sequence. Define

d, —IogaEp 2

ps ﬂ

dm ajmax
Prin ra

where p._ and p . aethe maximum and minimum of the p_,

respectively.

The god of thismethod isto minimizethe error distance given by
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during parameter fitting because ds should be close to O after training.

C. Applications

a) Multiple sequence dignment

Hidden Markov modds have been used for multiple sequence
dignment. To dothis, build alinear hidden Markov mode with 3n
dates where n is the average sequence length in the training set. The
training set of sequencesto be aligned istreated as a collection of
observation sequences. There are n states for each letter in the
sequence aong with two additiona states for insertions and deletions.
Once the mode is trained, each sequence from the training set can be
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scored using the Viterbi dgorithm which aigns the sequence against
the stochastic modéd!.

Figure 5.3 (Clote and Backofen) shows such amoded. There are
two backbone end gates that have no emissions. Insertion sates and
the other backbone gates have emissons. The ddetion states have no
emissons.

Example— If we want to dign GGCT, ACCGAT, and CT we get
the followingViterbi peth after usng the Baum-Wech dgorithm to
determine the parameters.

GGCT mO, m1, m2, m3, n4, m5
ACCGAT m0, i0, m1, d2, m3,i3, i3, m4, m5
CT mo, m1, d2, d3, m4, m5
Thisyields the following dignment
AC-CgaT
. GGC..T
. C——-..T
Protein motifs

Mamitsuka studied the problem of digning sugar transport proteins
that had a certain consensus sequence. There were 49 sugar transport
proteins with this motif and 19 non-sugar trangport proteins with this
motif obtained from Swiss-Prot database. The hidden Markov model
isshown in Fig. 5.4 (Clote and Backofen). He applied severd
methods including his own.

Eukaryotic DNA promoter regions

Hidden Markov models have been used to recognize promotor sites
in eucaryotic DNA. (See Clote and Backofen)



