
Bioinformatics – Lecture Notes   
 
Announcements 
 

Remember: Project Proposals are due this Thursday April 11.   I have only heard 
from one group so far. 

 
Only 8 classes left including this lecture and project presentations. 

 
Class 23 – April 9, 2002  

 
B. Parameter Estimation for Hidden Markov Models 
 

1)  Baum-Welch Method 
 

This algorithm calculates Akl and Ek(b) as the expected number of times 
each transition or emission is used in the training sequences.  This is done 
using the same forward and backward values as the posterior probability 
decoding method. The probability that akl is used at position i in the 
sequence x is as follows: 
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where θ  is the entire current set of values of the parameters in the model.  
This can be used to find the expected number of time that akl is used by 
summing over all positions and over all training sequences: 
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The expected number of times b appears in state k is given by 
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where this sum is over only the positions i where b is emitted. 

 
We can compute the maximum likelihood estimators for the model 
parameters akl and ek(b) by 
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We iterate back and forth between the values of the A’s and E’s and the 

a’s and e’s until they converge on a value.  To do this, a convergence 
criterion is chosen.  The criterion typically used is when the change in the 
log likelihood is sufficiently small.  Other criteria are possible. 

 
An algorithm for this is given on page 64 of Durbin et al.  As we 

mentioned earlier, Viterbi training, which is a modification of Baum-
Welch, can also be used to estimate parameters. The Viterbi Score is the 
same as the Baum Welch Score except with the maximum in place of sum 
over all paths of states. 

 
Example – The occasionally dishonest casino, part 5 (see page 65 

Durbin et al.) 
 

2) Expectation Maximization (EM) 
 

Consider that we have a set of observations that forms a set Y of 
incomplete data.  Then there is a set X of complete data that consists of the 
observed and hidden data.  Let Yy ∈ be an sequence of observations O of 
length T. 

Assume that there is Xx ∈ that are mapped to y in a many-to-one 
mapping.  x  consists of p, O, where TQp ∈ is a sequence of state of length 
T.  Let M denote a model and suppose that g(y|M) is a conditional 
probability density for the space Y, that f(x|M) is a conditional probability 
density of x and that 
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where X(y) is the set of Xx ∈ that are mapped to y.   

 
Question:  Is y complete or incomplete data?  What about x? 
 
In the discrete case, we have analogous conditional probabilities with 
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Define 
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The EM algorithm consists of two steps 
 

i) Compute )|~( MMQ . 
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3) Baldi-Chauvin Gradient Descents 

 
The gradient descent equations on the negative log likelihood can be 

derived by first reparameterizing the hidden Markov model using 
normalized exponentials: 
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This reparametrization has two advantages:  i) modification of the ω’s 
automatically preserves normalization constraints on emission and 
transition distributions and ii) transition and emission probabilities can 
never reach the value of 0.  For the emission parameters 
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and similarly for the transitions parameters.  By the chain rule 
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Applying Lagrange multipliers we can optimize for the parameters to give 
the maximum likelihood, which yields the negative log likelihood gradient 
descent equations 
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where η is the learning rate, ni,c and nj,i  are the expected counts derived 
from the forward-backward procedure for each single sequence ie. 
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with ),,,( Ocin π being the number of times letter c is emitted from i  given 
π  and Q and  
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with ),,( Oin π being the number of times i  is visited given π  and Q and 

 
4) Mamitsuka’s MA Algorithm 

 
The likelihood of a the sth sequence with respect to a hidden Markov 

model is given by 
 

]|Pr[ MOp s
s =  

 
and is called the target value likelihood of the sth sequence.  Define 
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where *

maxp and *
minp  are the maximum and minimum of the *

sp , 
respectively. 
 

The goal of this method is to minimize the error distance given by 
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during parameter fitting because ds should be close to 0 after training. 

 
 

 
C.  Applications 

 
a) Multiple sequence alignment 

 
 

Hidden Markov models have been used for multiple sequence 
alignment.  To do this, build a linear hidden Markov model with 3n 
states where n is the average sequence length in the training set.  The 
training set of sequences to be aligned is treated as a collection of 
observation sequences.  There are n states for each letter in the 
sequence along with two additional states for insertions and deletions.  
Once the model is trained, each sequence from the training set can be 



scored using the Viterbi algorithm which aligns the sequence against 
the stochastic model.   

 
Figure 5.3 (Clote and Backofen) shows such a model.  There are 

two backbone end states that have no emissions.  Insertion states and 
the other backbone states have emissions.  The deletion states have no 
emissions. 

 
Example – If we want to align GGCT, ACCGAT, and CT we get 

the followingViterbi path after using the Baum-Welch algorithm to 
determine the parameters: 

 
GGCT  m0, m1, m2, m3, m4, m5 
ACCGAT m0, i0, m1, d2, m3, i3, i3, m4, m5 
CT  mo, m1, d2, d3, m4, m5 
 

This yields the following alignment 
 
  A C – C g a T 

  .   G G C .  . T 
  .   C –  –  .  . T 
 

b) Protein motifs 
 

Mamitsuka studied the problem of aligning sugar transport proteins 
that had a certain consensus sequence.  There were 49 sugar transport 
proteins with this motif and 19 non-sugar transport proteins with this 
motif obtained from Swiss-Prot database.  The hidden Markov model 
is shown in Fig. 5.4 (Clote and Backofen).  He applied several 
methods including his own. 

 
c) Eukaryotic DNA promoter regions 
 

Hidden Markov models have been used to recognize promotor sites 
in eucaryotic DNA.  (See Clote and Backofen) 

 
 

 
 
 
  


