
Bioinformatics – Lecture Notes   
 
Announcements 
 

I need to collect project proposals, copies of the articles, and group meeting times. 
 
 Reference: Microarray Data Analysis and Visualization by Arun Jagota 
 
Class 25 – April 16, 2002  

 
I. Measuring Dissimilarity of Expression Data 

 
We might want to compare two or more gene or sample expression patterns.  This 
might be used to differentiate between diseased and normal cells or finding out 
the genetic similarity of tissues.  To do this we need a distance metric or a 
dissimilarity measure. 
 
Definition – A function is RRd n →: is a distance metric if 
 

1) d(x,y) = d(y,x) for all x, y ∈Rn  
2) d(x,y) ≥ 0 for all x, y ∈ Rn with d(x,y) = 0 iff x = y 
3) d(x,z) ≤  d(x,y) + d(y,z) for all x, y, z ∈Rn 

 
Definition – A function f(x,y) is a dissimilarity measure if f(x,y) > f(w,z) iff x is 
less similar to y than is w to z.   
 
A.  Distance Metrics 
 

1. Euclidean Distance 
 

This is the most common distance measure.  
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This should not be used if either  
1) Not all components of the vectors being compared have equal weight. 
2) There is missing data. 

 
Preprocessing the data can often alleviate these problems. 
 
We can also use the normalized Euclidean distance 
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2. Minkowski Distance 
 

This is similar to the Euclidian distance except that 2 is replaced by p. 
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To see why is might be useful, consider the case when p=1.  Then every 
coordinate i contributes to the Minkowski distance.  However, if p is large, 
only the component i with the largest difference contributes to the 
distance. 
 
There is also a normalized Minkowski distance. 
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3. Mahalonobis Distance (weighted Euclidean distance) 

 
This modification of the Euclidean distance allows different coordinates to 
be weighted differently. 
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where C-1 is a diagonal matrix that has unequal entries on the diagonal to 
assign the weights.  If C-1 is the identity matrix, we have Euclidean 
distance. 

 
 

4. Taxi-cab Distance 
 

This is a special case of the Minkowski distance with p=1 
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One way of thinking about this is that the distances are like traveling 
around city blocks. 
 
There is also Normalized Taxi-cab distance 
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5. Canberra Metric 

 
Sometimes it is useful to have a metric that is defined on [0,1]  
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6. Bray-Curtis Coefficient 

 
This is also defined on the interval  [0,1] 
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B. Non-metric Dissimilarity Measures 
 

1. Maximum Coordinate Difference 
 
The following computes the maximum absolute distance along a 
coordinate 
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2. Minimum Coordinate Difference 

 
The following computes the maximum absolute distance along a 
coordinate 
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3. Dot Product 

 
This is a dissimilarity version of the dot product. 
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4. Pearson’s Linear Dissimilarity 

 



This is a dissimilarity version of Pearson’s linear correlation ρ between 
two vectors.  In this dissimilarity, ]1,0[),( ∈yxd .  Here  0 indicates a 
perfect similarity (positive correlation) and 1 indicates a maximum 
dissimilarity (negative correlation). 
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Note that the linear correlation ρ is basically a normalized dot product by 
subtracting off the mean ( x and y ) and dividing by the standard deviation 

xσ and yσ .   
 
The linear correlation (as well as the Euclidean distance), is a very 
frequently used method for comparing the expression pattern between two 
genes.  It has some advantages over the Euclidean distance in that it can be 
rescaled easily ie. ρ(x,y)= ρ(cx,cy) for any positive constant c.  This is not 
true for the Euclidean distance. 
 
A slight modification yields Pearson’s Absolute Value Dissimilarity 
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In this score, 0 indicates that x and y are either maximum similarity or 
dissimilarity and 1 indicates x and y are uncorrelated. 
 

5. Spearman Rank Dissimilarity 
 

This is a dissimilarity version of Spearman rank correlation.  The rank-
vectors of x and y are given by r(x) and r(y), respectively.  They basically 
list the place of each entry if the vector was listed in ascending order.  If x 
= (1,5,3,8), r(x) = (1,3,2,4) 
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This emphasized the order and ignores other details.  If x and y are two 
gene expression patterns, this can be used to tell if the expression levels of 
these two genes both increase or decrease monotonically. 
 
This give rise to the Spearman Absolute Value Dissimilarity 
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Here, d(x,y) = 0 if x and y have identical or maximally dissimilar rank 
vectors and d(x,y) = 1 when the rank vectors are random permutations of 
the order. 
 

6. Coefficient of Shape Difference 
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where e(x,y) is the normalized Euclidean metric and 
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7. Cosine Dissimilarity 

 
This is the dissimilarity version of the cosine dissimilarity measure.  It 
assumes values on [0,1] and is equal to 0 when x ±=  y and 1 when x and 
y are orthogonal. 
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8. Weighted Dot Product 
 

The weighted dot product is  
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where W is the diagonal matrix that contains diagonal elements wi the 
weight each of the components. 

 
 
C. Measures for Binary Patterns 
 
 

Sometimes we may want to discretize the data by preprocessing so that the 
data is converted into patterns of up and down regulation.  Assume that the 
vectors x and y are binary expression patterns with position i assuming the 
value of +1 for up-regulation for the ith component gene and –1 for the down-
regulation of the ith component gene. 
 
1. Hamming Distance 



If the data for x and y are tabulated in a table 
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The Hamming distance is given by 
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This measures gives a measure of when the up- and down-regulation 
patterns of x and y are dissimilar. 

 
 

2. Dependence-based Dissimilarity Measures 
 

Let X and Y be random variables on the set {+1,-1} and let P(X,Y) be 
their joint distribution.  Assume that the gene expression pattern vectors x 
and y are created by randomly choosing values from P(X,Y).  Then the 
table T(x,y) is a contingency table for the random sample.  The degree of 
dependence between X and Y can be estimated by using a statistical 
hypothesis test.  Let P be the probability of erroneously rejecting the null 
hypothesis of independence.  Using this P-value of the dependence test, a 
similarity measure can be defined as 
 

S(x,y) = -log P 
 

The dependence based test will measure the degree of positive or negative 
correlation. 
 
Example 
 

x = (-1,-1,-1,+1,+1,+1) y=(+1,+1,+1,-1,-1,-1) 
 

By the Hamming measure x and y are maximally dissimilar.  By the 
dependence based measure, x and y are maximally similar. 
a.  2χ -based measure 
 
One possibility that can be used is a 2χ -based measure.  In this approach, 

a 2χ -test for dependence between X and Y is done and P( 2χ ) is used at 
the P-value in the similarity measure.  The P-value will be approximated 
by 1- αc where 
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with ),1(2 αχ being the 2χ value from the distribution with 1 degree of 

freedom so that the area on the right of this value is α, and ),(2 yxχ is the  
2χ value from the contingency table T(x,y) obtained as follows: 

 
i) Under the hypothesis that X and Y are independent EXY is 

calculated as 
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where Ex is the sum of row x = +1 or –1 in the matrix T(x,y) and 
Ey is the the sum of column x = +1 or –1 in the matrix T(x,y) 
 

ii) The 2χ value is computed as 
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Note that the 2χ  test is an approximate test that is only valid when 

5≥xyE . 

 
b.  Fisher Exact Test 
 
When the 2χ  test cannot be used, the Fisher exact test should be used 
because it computes the exact probability of obtaining the counts in T 
under the hypothesis that X and Y are independent and with the row and 
column sums constrained by the values given in T. 
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II. Visualizing Micorarray Data 

 
It is usually easiest to understand data if it can be represented in 2 or 3 
dimensions.  For example, a 2-D scatter plot of the expression levels of genes i  
and  j over a number of samples can show the relationship between these two 
genes. 
 



gene j
level

gene i
level  

 
If the data is of higher dimensional, principal components analysis and 
multidimensional scaling can be used to help visualize the data. 
 

A. Principal Components Analysis 
 

In principal components analysis n-dimensional data is converted to d-
dimensional data (d<<n) such that the components in the new space are 
uncorrelated and axis or dimensions of the new space are ordered with 
respect to the amount of variance they explain.  The first component 
explains the most about the data. The second component is orthogonal to 
the first and explains more about the data and so on. 
 
Example – Consider height and weight data for a group of individuals.  
This is 2-D data, but there is a correlation between height and weight.  We 
can use this property to reduce the data to 1D.  PC1 explains most of the 
data and PC2 explains the rest. 
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1. Implementation 
 

Let D be the set of data points in Rn.  The goal is to map these to a new 
d-dimensional space.  Let x be the mean of the points in D and 
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be the covariance matrix.  The eigenvectors vi  of Σ (i = 1, 2, …n) are 
the basis vectors for the new space.  The eigenvector with the largest 



eigenvalue is the first principal component, the second largest, the 
second principal component, etc. 
 
A data point x in the original n-dimensional space can be mapped to 
the new d-dimensional space for nd ≤  by the transformation 
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which projects x onto the first d eigenvectors of Σ. 
 

2. Notes: 
 

PCA changes the coordinate system so as to maximize the variance of 
the data along the coordinate axes 
It is a linear method.  It uses the information from all coordinates. 
 
The similarities between the axes of the original coordinate axes are 
given in the correlation matrix. 
 

3. Application to Microarray Analysis 
 

Sample Application 1 – If we want to compare the sample expression 
patterns from two groups (diseased vs normal, experimental vs 
control).  If we have n genes, the each pattern is a point in n-
dimensional space.  Suppose we want to see if the sample expression 
patterns for these two groups cluster by group.  We might want to 
perform PCA analysis and perform cluster analysis at the top three 
components. 
 
Sample Application 2 – On gene chips (such as the one made by 
Affymetrix), the same gene occupies multiple cells.  In theory, the 
expression level of all cells with the same gene should be perfectly 
correlated.  However, in practice, this is often not the case due to 
imperfections in the technology or hybridization of the sequence 
fragment to other genes in the target.     
 
PCA allows us to see how good the correlation among these cells is.  
To use PCA, we would hybridize k different samples on the same chip. 
For each sample, the expression levels of a gene x in the n cells is an 
n-dimensional vector.  Hence, there are k points in n-dimensional 
space.  Using PCA, if most of the variance is explained by the first 
principal component, the effective dimensionality of the data is 1 and 
there cells are highly correlated. 
 

4. Limitations 
 



Clustering by PCA effectively yields clusters as if the Euclidean 
distance metric had been used.  Hence, it is possible that it might miss 
clusters. 
 
The reduction of dimensionality uses all coordinates.  If only a few 
genes out of a thousand differ between two samples (Application 1), 
clustering by PCA might not yield any meaningful results. 
 

B. Multidimensional Scaling 
 

Suppose that we have a set of data D of size m in an n-dimensional space 
and a m x m dissimilarity matrix S for all pairs of data based on a 
symmetric dissimilarity measure.  Multidimensional scaling will try to 
map the points in D to a d-dimensional space where d<<n so that if two 
data items are dissimilar in n-space, they are dissimilar in d-space.  
Typically the Euclidean distance measure is used. 
 
Example – Let s1, s2, and s3, be sample expression patterns in a high 
dimensional space.  Suppose that we want to map these to a one-
dimensional Euclidean space.  Let d(s1, s2) = 0.5, d(s2, s3) = 0.4, and d(s1, 
s3) = 0.1.  Then the following is a reasonable mapping 
 

s1 s2 s3 
0.25 0.3 

 
To quantify the goodness-of-fit of a mapping, a popular measure is 
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where )(sφ is the location of a sample pattern s in the new space and 
d(si,sj) is the Euclidean metric.  We try to find a mapping that minimized 
dMDS. 

 
III. Cluster Analysis of Microarray Data 


