Bioinformatics — Lecture Notes
Announcements
| need to collect project proposas, copies of the articles, and group meseting times.
Reference: Microarray Data Andysis and Visudization by Arun Jagota
Class 25 — April 16, 2002
|.  Messuring Dissmilarity of Expresson Data
We might want to compare two or more gene or sample expression patterns. This
might be used to differentiate between diseased and norma cells or finding out
the genetic Smilarity of tissues. To do thiswe need adistance metric or a
dissmilarity measure.
Definition— A functionis d : R" ® Risadistance metric if
1) d(x,y) =d(yx)fordl x,y 1 R’
2) d(xy) 2 O0fordl x,y I R'withd(x,y)=0iff x =y
3) d(x,2) £ d(x,y) +d(y,2fordl x,y,zI R’

Definition — A function f(x,y) isadissmilarity measureif f(x,y) > f(w,2) iff x is
lessgmilartoy thaniswto z

A. Digtance Metrics
1. Euclidean Digance

This is the most common distance measure.

d(xy)= & (x - y)’

This should not be used if either

1) Not al components of the vectors being compared have equa weight.
2) Thereismissng daa

Preprocessing the data can often dleviate these problems.

We can dso use the normdized Euclidean distance

[& -y
d(x’y):'—
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2. Minkowski Digance

Thisis gmilar to the Euclidian distance except that 2 is replaced by p.

dxy) = [&1%- v P

To see why ismight be useful, consider the case when p=1. Then every
coordinate i contributes to the Minkowski distance. However, if pislarge,
only the component i with the largest difference contributes to the

distance.

Thereisaso anormdized Minkowski distance.
[alx- vyl
d X, =vi

(x,y) T

3. Mahdonobis Distance (weighted Euclidean distance)

This modification of the Euclidean distance dlows different coordinates to
be weighted differently.

d(xy) =/(x- ) CH(x- y)
where C'* isadiagond matrix that has unequal entries on the diagond to
assign theweights. |f C* istheidentity matrix, we have Eudlidean
distance.

4. Taxi-cab Digance

Thisisaspecia case of the Minkowski distance with p=1

dxy)= [al1x- vl

Oneway of thinking about thisis that the distances are like traveling
around city blocks.

Thereis dso Normdized Taxi-cab distance



Alx- vl
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5. CanberaMetric

Sometimesit is useful to have ametric thet is defined on [0,1]

6. Bray-Curtis Coefficient
Thisisaso defined on theinterva [0,1]
Jax-yl
d(xy) ==

n a Xty
B. Non-metric Dissmilarity Measures

1. Maximum Coordinate Difference

The following computes the maximum absolute distance dlong a
coordinate

d(xy)=max|x -y |

2. Minimum Coordinate Difference

The following computes the maximum absolute distance dong a
coordinate

d(xy)=min |x - y |
3. Dot Product
Thisisadissmilarity verson of the dot product.
d(xy)=-Xxey

4. Pearson’s Linear Dissmilarity



Thisisadissmilarity verson of Pearson’slinear corrdation r between
two vectors. In this dissmilarity, d(x,y)T [0,]] . Here Oindicatesa
perfect amilarity (pogitive corrdation) and 1 indicates a maximum
dissmilarity (negative correlation).

d(x,y)=1'r—2(,x’y) withr (x,y) =2 >_<S)°S(y- y)

Notethat the linear corrdation r isbascaly anormaized dot product by
subtracting off the mean (X and y ) and dividing by the sandard deviation

s,ands, .
Thelinear corrdation (aswell as the Euclidean distance), isavery

frequently used method for comparing the expression pattern between two
genes. It has some advantages over the Euclidean distance in that it can be

rescaled easily ie. r (X,y)=r (cx,cy) for any positive condant c. Thisisnot

true for the Euclidean distance.

A dight modification yields Pearson’s Absolute Vadue Dissmilarity
d(xy)=1-[r(xy)]

In this score, O indicates that X and y are ether maximum smilarity or
dissmilarity and 1 indicates x and y are uncorrelated.

. Spearman Rank Dissmilarity
Thisisadissmilarity verson of Spearman rank corrdation. The rank-
vectorsof x and y are given by r(x) and r(y), repectively. They basicdly

list the place of each entry if the vector was listed in ascending order. If x
=(1,5,3,8), r(x) = (1,3,2,4)

d(x,y) =225 wittr, (x,y) = (1 (9, ()

This emphasized the order and ignores other details. If x andy are two
gene expression patterns, this can be used to tell if the expresson levels of
these two genes both increase or decrease monotonically.

This giverise to the Spearman Absolute Vaue Dissmilarity

d(xy) =1 [r.(xy)|



Here, d(x,y) = 0if x and y have identicd or maximaly dissmilar rank
vectors and d(x,y) = 1 when the rank vectors are random permutations of
the order.

6. Coefficient of Shape Difference

d(xy) =\/ﬁ(e(x, V? - dlxy)

where e(x,y) is the normaized Euclidean metric and

1l o
ax,y)==cax-ay~
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7. Cosine Dissmilarity

Thisisthe dissmilarity verson of the cosne dissmilarity messure. It
assumesvaueson [0,1] and isequa to Owhen x =+ y and 1 when x and

y are orthogondl.
1- cos(X,Y) _ Xoy
d(x,y) =———22 where co3(X, Y) = ————
(%) > S(X,Y) oxlyey

8. Waeighted Dot Product

The weighted dot product is
XWy = & X WY,

where W isthe diagond matrix that contains diagond dementsw; the
weight each of the components.

C. Measuresfor Binary Patterns

Sometimes we may want to discretize the data by preprocessing so that the
datais converted into patterns of up and down regulation. Assume that the
vectors x and y are binary expression patterns with position i assuming the
value of +1 for up-regulation for the it component gene and —1 for the down-
regulation of theit" component gene.

1. Hamming Distance



If the datafor x and y are tabulated in atable

+1§7flfi'8:)(i :+]_yi =+1 #i's;)g :+:|_yi :‘1l;l
T(XYy)=-1§ti's:x =-1y =+1 #i's:x =-1y =-18
+1 -1

The Hamming distance is given by
HD(X,y) =T, (X ¥) + T, 1 (XY)

This measures gives a measure of when the up- and down-regulation
patterns of x and y are dissmilar.

. Dependence-based Dissmilarity Measures

Let X and Y berandom variableson the set {+1,-1} and let P(X,Y) be
their joint digtribution. Assume that the gene expression pattern vectors X
and y are created by randomly choosing values from P(X,Y). Thenthe
table T(x,y) isacontingency table for the random sample. The degree of
dependence between X and Y can be estimated by using a Satistical
hypothesistest. Let P be the probability of erroneoudy reecting the null
hypothesis of independence. Using this P-vaue of the dependence test, a
gmilarity measure can be defined as

S(x,y) = -log P

The dependence based test will measure the degree of positive or negative
correlation.

Example
X =(-1,-1,-1,+1,+1,+1) y=(+1,+1,+1,-1,-1,-1)

By the Hamming measure x and y are maximdly dissmilar. By the
dependence based measure, X and y are maximdly smilar.

a. c?*-based measure

One possibility that can be used isa c?-based measure. In this approach,

a c?-test for dependence between X and Y is done and P(c?) is used at

the P-vauein the amilarity measure. The P-vaue will be approximated
by 1- a. where

a, =argmin (c’(La) £ c*(x,y)

a



with c?(1,a) being the c*vaue from the distribution with 1 degree of
freedom so that the areaon the right of thisvaueisa, and c?(x, y) isthe
c?vaue from the contingency table T(x,y) obtained as follows:

i) Under the hypothesisthat X and Y are independent Exy is
caculated as

where E; isthe sum of row x = +1 or -1 in the matrix T(x,y) and
E, isthethe sum of column x = +1 or —1 in the matrix T(X,y)

i) The c?vaueiscomputed as

Note that the c? test is an gpproximate test that is only vaid when
E, 35
b. Fisher Exact Test

When the ¢? test cannot be used, the Fisher exact test should be used

because it computes the exact probability of obtaining the countsin T
under the hypothesisthat X and Y are independent and with the row and
column sums condrained by the vauesgivenin T.

Pr[T | rowand column sums] = P[T,, _, |row and column sumg]

ag-1row sumgee 1row sum
T+1,-1 é T+1,-1
& n 0
§+ 1 column sumg

6
)

I1. Visudizing Micorarray Data

It isusualy easest to understand dataif it can be represented in 2 or 3
dimensons. For example, a 2-D scatter plot of the expression levels of genesi
and j over anumber of samples can show the relationship between these two
genes.



genej| = o
level

genei
level

If the datais of higher dimensond, principal components analysis and
multidimensional scaling can be used to help visudize the data

A. Principd Components Andyss

In principal components andyss n-dimensiond datais converted to d-
dimensiond data (d<<n) such that the components in the new space are
uncorrelated and axis or dimensions of the new space are ordered with
respect to the amount of variance they explain. Thefirst component
explains the most about the data. The second component is orthogond to
the first and explains more about the data and so on.

Example — Consder height and weight data for agroup of individuds.
Thisis 2-D data, but there is a correlation between height and weight. We
can use this property to reduce the datato 1D. PC1 explains most of the
dataand PC2 explainsthe rest.

height

weight
1. Implementation

Let D bethe set of datapointsin R". The god isto map theseto anew
d-dimensiona space. Let X bethe mean of the pointsin D and

S=§ (x- R)(x- %)

xi D

be the covariance matrix. Theegenvectorsv; of S(i=1, 2, ...n) are
the basis vectors for the new space. The elgenvector with the largest



egenvaueisthefirg principa component, the second largest, the
second principa component, etc.

A datapoint x in the origind n-dimensiona space can be mapped to
the new d-dimensiond spacefor d £ n by the transformation

y=vix fori=12..d

which projects x onto the first d eigenvectorsof S.
2. Notes:

PCA changes the coordinate system so as to maximize the variance of
the data along the coordinate axes
It isalinear method. It uses the information from al coordinates.

The smilarities between the axes of the origind coordinate axes are
given in the corrdaion matrix.

3. Application to Microarray Anayss

Sample Application 1 — If we want to compare the sample expression
patterns from two groups (diseased vs normd, experimentd vs
control). If we have n genes, the each pattern isa point in -
dimensiond space. Suppose we want to see if the sample expression
patterns for these two groups cluster by group. We might want to
perform PCA andysis and perform cluster andysis at the top three
components.

Sample Application 2 — On gene chips (such as the one made by
Affymetrix), the same gene occupies multiple cdlls. In theory, the
expresson leve of dl cdlswith the same gene should be perfectly
correlated. However, in practice, thisis often not the case due to
imperfections in the technology or hybridization of the sequence
fragment to other genesin the target.

PCA dlows usto see how good the correlation among these cellsis.
To use PCA, we would hybridize k different samples on the same chip.
For each sample, the expression levelsof agenex inthen celsisan
n-dimensiond vector. Hence, there are k pointsin n-dimensiond
goace. Usng PCA, if most of the variance is explained by the first
principal component, the effective dimensondity of the datais 1 and
there cdls are highly corrdated.

4. Limitations



Clugtering by PCA €fectively yidds clugters asif the Euclidean
distance metric had been used. Hence, it is possible that it might miss
clusters.

The reduction of dimensondity usesdl coordinates. If only afew
genes out of athousand differ between two samples (Application 1),
clugtering by PCA might not yied any meaningful results.

B. Multidimensond Scding

Suppose that we have a set of data D of Sze min an n-dimensiond space
and am x m dissmilarity matrix S for al pairs of data based on a
symmetric dissmilarity messure. Multidimensond scding will try to

map the pointsin D to ad-dimensiona space where d<<n so that if two
dataitems are dissmilar in n-space, they are dissmilar in d-space.
Typicaly the Euclidean distance messureis used.

Example— Let s1, Sz, and sz, be sample expression patternsin ahigh
dimensiona space. Suppose that we want to map these to a one-
dimensond Euclidean space. Let d(si, s2) = 0.5, d(s2, s3) = 0.4, and d(s;,
s3) = 0.1. Thenthefollowing is areasonable mapping

S Sy S3
025 0.3

To quantify the goodness-of-fit of amapping, a popular measure is

ol - d(s.s)0
d ()= § G (s l)j
si,st dj (si).f(s) 7]
where f (s) isthe location of a sample pattern sin the new space and

d(s.s) isthe Euclidean metric. Wetry to find a mapping thet minimized
dvps

I11. Cluster Analysis of Microarray Data



