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Announcements 
 
 Reference: Microarray Data Analysis and Visualization by Arun Jagota  
 

5 days of classes including today. 
 
Final Projects due May 2 (2 weeks from today). 

 
Class 26 – April 18, 2002  

 
I. Cluster Analysis Applied to Microarray Data 

 
Recall that microarray data can be thought of as gene expression patterns or 
sample expression patterns.  These can be each considered to be vectors.  The first 
thing we have to do before applying cluster analysis is to find a distance between 
the various expression pattern vectors.  This is done using similarity/dissimilarity 
measures such as Euclidean distance, Mahalonobis distance, or linear correlation 
coefficients.  Once a distance matrix is computed, the following clustering 
algorithms can be used.  The clusters formed can differ significantly depending 
upon the distance measure used. 
 
A. Hierarchical Clustering  
 

This is the class of clustering methods we talked about previously ie. 
UPGMA, WPGMA, etc. 

 
B. k-Means Clustering 
 

An alternate method of clustering called k-means clustering, partitions the 
data into k clusters and finds cluster means µµ i for each cluster.  In our case, the 
means will be vectors also.  Usually, the number of clusters k is fixed in 
advance.  To choose k something must be know about the data.  There might 
be a range of possible k values.  To decide which is best, optimization of a 
quantity that maximizes cluster tightness ie. minimizes distances between 
points in a cluster.  A possible measure is given after the method description. 
 
The method is as follows: 
 
1) Pick the initial means µµ 1, µµ 2, … µµ k.  To do this it helps to know something 

about what the clusters might look like. 
2) Assign each data vector x in the data set D to the cluster Ci that has a mean  

µµ i that is closest to x using the similarity measure. 
3) Re-calculate the mean of all the clusters Ci  



4) Repeat steps 2) and 3) until sufficient convergence is reached ie, the 
means to not change much. 

 
In order to choose k, we want to find k that minimizes the following measure 
of cluster tightness is 
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C. Self-organizing Maps 
 

This is basically an application of neural networks to microarray data.  
Assume that there is a 2-dimensional grid of cells and a map from a given set 
of expression data vectors in Rn, ie, there are n nodes in the input layer and a 
connection neuron from each of these to each cell.  Each cell (i, j) gets it own 
weight from n input neurons.   The weight vector µij is the mean of the cluster 
associated with cell (i, j).  Each data vector d gets mapped to the cell (i, j) that 
is closest to d using Euclidean distance. 
 
In order to train the network, the mean vectors µij  for the cells (i, j) must be 
learned.  This is done by the following procedure: 
 
1) The vectors µij are given initial values randomly. 
2) For each data vector d, the following steps are performed: 

a. The cell (i, j) that is closest to d is found. 
b. The vector for every cell (i', j') that is close to (i, j) is updated by 
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where t increases as the learning process procedes and )'',( jiijd is 
the distance between cell (i, j) and cell (i', j'). 

 
II. Hidden Markov Models and Microarray Data 

 
We can use Hidden Markov models for pattern recognition in the study of 
micorarray data.  Suppose that we want to consider gene expression data from a 
tissue sample and want to know if it is control or different from the control 
(diseased, experimentally altered, responding to drug, etc.).  Consider the gene 
expression data vector as a set of emissions, one for each vector coordinate.  Each 
emission has a value that is defined by some probability distribution function.   
This can be continuous, or can even discrete.  To make it discrete, the data should 
be preprocessed to indicate, up-regulation, down-regulation, or no significant 
change. 
 
Using the procedures from lecture earlier, a set of data can be used to fit a HMM 
with two states normal and not normal.  Transition and emission probabilities can 



be estimated.  Then the posterior probabilities calculated to determine the state of 
each tissue sample. 
 

III. Finding Genes Expressed Unusually Different in a Population 
 
The following section addresses the question:  Is gene g expressed unusually in 
the sample? 
 
The first thing to do is to come up with a formal mathematical definition for what 
unusual is.  Assume that the microarray data is log transformed ratio data.  If a 
histogram is constructed of the data, it should yield roughly a normal distribution.  
Anything that is out near either tail can be considered to be unusually expressed.  
Note that this can be either a high or low expression level.   
 
Calculate the Z-score for the data point considered  
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where eg is the expression level, µ is the mean and σ is the standard deviation.  
The Z value will give an indication of the how far the data is toward the tail (α - 
level). 
 

IV. Finding Genes Expressed Significantly in a Population 
 
In order to determine if a gene is significantly up- or down-regulated in a 
population relative to a control, statistical methods such as hypothesis testing have 
to be used.   
 
Suppose that we think that gene x is associated with a cancer.  Assume that this 
gene has been monitored in n tissues with cancer.  Also, assume that the log ratios 
of the gene expression level of gene x compared to normal tissue in the n tissue 
samples is given by n

xxx eee ,..., 21 . 
 
Now we formalize our question.  Is gene x sufficiently up-regulated in the 
cancerous tissues in this group with respect to the control for use to be able to 
infer that it is up-regulated relative to the control in the population of all tissues 
with this cancer C? 
 
One way of approaching this problem is the calculate the average of the i

xe ’s, that 
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.   We could conclude that if this is greater than 0 we have up-

regulation.  However, is this enough about 0.   
 



Let us re-phrase the question:  Is xe  sufficiently above 0 to conclude that gene x is 
up-regulated in the cancerous tissue relative to the control? 
 
A. Using Statistical Inference 
 

1. Normal Distribution 
 

To do this we use statistical inference.  Assume that the size of the group n 
> 30. Then we can invoke the central limit theorem to assume that the 
group mean xe is normally distributed with mean equal to the population 

mean xµ and the standard deviation is nxσ , where xσ  is the population 
standard deviation.  We can then calculate the Z-statistic 
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The question can now be put in terms of statistics:  Is Z sufficiently greater 
than 0 to conclude that gene x is up-regulated in the cancerous population 
relative to control.  Remember that Z ~ N(0, 1). 
 
We formulate the null hypothesis H0: xµ = 0 that means the opposite of 
what we want to find, that is, it states that the mean is not greater than 0.  
This makes the alternative hypothesis HA: xµ > 0.  Our Z statistic is 
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If Z > zα, then we reject the null hypothesis in favor of the alternative with 
confidence 1-α.  Otherwise, we fail to reject the null hypothesis. 
 

2. Student’s T Test 
 
What happens if n < 30 and we do not know the population standard 
deviation?  In this case, we use the student’s t test. 
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where sx is the sample standard deviation. 
 
We proceed as before with the same null hypothesis and alternative and get 
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We then go to a student’s t table and see if t > tα,n-1.  If this is true, we reject 
the null hypothesis.  Otherwise, we fail to reject the null hypothesis. 

 
3. Non-parametric Tests 

 
The student’s t test assumes that the data is normally distributed.  If we do 
not want to make that assumption, we can use a non-parametric test such as 
the sign test. 
 
Let {ex,i}, i = 1, 2, …, n be the set of the expression levels of gene x in 
individual i  in a group of size n drawn from the population.  We want to 
test if mx, the median expression level of the gene in the population is zero 
or not.  Thus, the H0: mx = 0 and HA: mx ≠ 0.  First, we drop all i: ex,i = 0.  
Let n be the size of the remaining group.  Let n+ = {i: ex,i > 0} and n- = {i: 
ex,i < 0}.  Under H0, the probability is ½ that ex,i > 0 and ½ that ex,i < 0 
because the sample group is drawn randomly from the population. 
 
For any confidence level α, we calculate the largest k such that 
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If n+ ≤ k or n- ≥ n-k, then we reject H0 with confidence level α. 
 
Similarly if H0: mx = 0 (≥ 0) and HA: mx < 0 
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If n+ ≤ k, then we reject H0 with confidence level α. 
 

4. Is any gene up-regulated in the population? 
 

Suppose that we have a set of genes S from a micorarray experiment.  S can 
be the whole set or a partial set.  We want to know if at least one gene in the 
set S is up-regulated.  This is done by using a compound test, with H0: 

)0( =∧ ∈ xSx µ  and HA: )0( >∨ ∈ xSx µ .  To do this, we need to do |S| many 
simple tests, one for each gene x in S.  If one of the tests rejects the null 
hypothesis, we reject H0. 
 
There is one caveat.  When we do the simple tests at level α, and reject H0, 
we cannot say this with confidence 1-α.  If we assume that the tests are 



independent, there are two possible correction schemes.  The Bonferroni 
correction uses 
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This is a very simple correction.  A more precise correction is the Sidak 
correction 
 

 Pcorrected(simple test) = 1 – (1 – P(simple test))|S| 
 

If the tests are not independent, in either case, we have an overly 
conservative correction. 
 

5. Ranking and Filtering Genes by How Upregulated they are. 
 

The best way of doing this is by the P-values of their simple tests.  This is 
because the P-value is instantly readable and gives the probability that the 
null hypothesis is rejected erroneously.  Second, it is the natural measure 
from which to establish a cut-off to select top-ranking genes.  The cut-off 
will be based on the amount of risk one is willing to take. 

 
6. Estimating the Mean Expression Level of Gene x in the Population 
 

Suppose that we want to estimate the mean expression level xµ of a gene x 
in a population of tissues with cancer C from the observed expression levels 
of x in a group which is a small subset of the population.  One estimate is 
the group mean xe .  This however will have some error associated with it.  
It is helpful to put some error bounds. 
 
If we have a group with n≥ 30, we can assume that the group is 
approximately normally distributed with mean xµ and standard deviation 

nxσ .  Then a 1- α confidence interval for xµ  is 
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If we have a group with n < 30, we use the student’s t test which yields a 1- 
α confidence interval for xµ  is 
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