
Bioinformatics – Lecture Notes

Announcements

 Reference: Microarray Data Analysis and Visualization by Arun Jagota

3 days of classes including today.

Final Projects due May 2 (Next Thursday). Please let me know your audio-visual
need for your presentation

Class 28 – April 25, 2002

I. Classifying samples from two populations

A. Variable selection

We previously discussed methods that would identify genes that could be used
to discriminate between the two tissues. The problem with these methods is
that the treated each gene individually. We need methods that look at the
genes collectively. The method we choose has to be able to 1) evaluate the
quality of a subset of the variables and 2) search through all subsets of the
data

One method is sequential backward elimination. This method starts from the
full set of genes and removes genes one at a time on the basis of which gene
make the smallest reduction (or largest increase) in the performance of the
classifier among all candidates considered for removal

Another method is greedy selection. In this, we start with an empty set of
genes and add the gene that makes the best one gene classifier. Then we add
the gene that results in the best two-gene classifier, etc. This is faster if we are
interested in obtaining a small number of classifiers.

B. Discriminant analysis

This method uses a discriminant function that defines a decision boundary.

Figure of linear discriminant function

A linear discriminant function has the form

0,)(
0

wxwxf T
ww +=

where x is the point in Rn to be classified, and the vector w in Rn and the
scalar w0 parameterize the function. The point is classified a positive if f(x)>0
and negative otherwise.

A linear discriminant function can be thought of as a one layer neural
network, the preceptron neural network, in which the outer layer only has one
neuron. This neuron computes the step function

 >+

=
otherwise

wxw
xy

T

0

01
)(0

The input layer has n neurons, one for each component of x. The neurons have
the weights which are the components of w. The bias of the output neuron is
given by w0.

Training is done by a set that has elements that are known to lie on each side
of the decision boundary. The data is presented sequentially. If the
perceptron misclassifies a presented data element, the weights have to be
adjusted, ie. y(x) does not equal the true label l(x),

)1)(2(:)1)(2(: 0 −+=−+= xlwwxxlww
One would cycle through the data as many times as are need to classify the
data correctly. After training the perceptron is given new data and should be
able to classify it.

C. Multilayer perceptrons

The multilayer perceptron will have a hidden layer between the input and
output layers. Again there is only one output neuron and the perceptron is
trained on know data.

In the multilayer perceptron, information will travel from the input layer to the
output layer in the following manner. Each hidden neuron will compute the
weighted sum of all its inputs and then apply a sigmoid transfer function to
convert this sum into a number between 0 and 1. After all the hidden neurons
have done this, the output neuron will compute the weighted sum of all these
values and then apply a sigmoid transfer function to convert this sum into a
number between 0 and 1.

If this network had h hidden neurons then it computes a function fw,W(x) on an
input x in Rn

u

hj ni
ijijWw

e
ug

wxgWgxf

−

= =

+
=

= ∑ ∑

1
1

)(

)(
,...,1 ,...,1

,

where g(u) is the sigmoid transfer function, wij is the weight from input
neuron i to hidden neuron j, and Wj is the weight from hidden neuron j to the
output neuron.

D. Training

The neuron has to learn the weights w and W from the training set D that
consists of data that is known to be in one class or the other. To do this, one
can employ gradient descents to minimize an error function. One widely
used error function is the sum-of-squares

()∑
∈

−=
Dd

Ww xdfydWwE 2
,).(.

2
1

),(

where d.y = 0 or 1 give the classification of training data point d and d.x is in
Rn is its input vector. The weights will be varied to minimize E. This is done
by choosing each weight ω i, one at a time, and incrementing it by

i
i

E
ω

ηω
∂
∂−=∆

where 0>η is the learning rate and controls the magnitude of the increment.

Details available on page 73 of Jagota.

E. Validation

It is important to validate the network. To do this, before training break up
the known data in D into a training set and a validation set. Train the network
on the training set and test it on the validation set.

Split the data D into many different pairs of training and validation sets and
pick the network that performs the best

Another method is called k-fold validation. To do this, break up the data into
k equal sets. Train the data on the D minus the ith set and test on the ith set.
Do this for i = 1,…,k. Average the performance over all these runs to give the
performance of the network.

F. Overfitting

If you train a network too much, the error on the validation set will start to
increase, even though the error on the training set keeps decreasing. This is
because the network will be overly tuned to the training data. The way to
prevent this is to stop training as soon as the error on the validation set starts
to rise.

G. Support vector machines

This is a relatively new type of classifier and has a variety of applications.
Define a classifier by the discriminant function

∑+=
µ

µµµ)()(0 xxywwxf o

where µ = 1,…,m is a training set of examples, x is the example to be
classified, xµ is in Rn is the input, and yµ is either +1 or –1 and represents the
binary label of xµ. The dot product is used as a measure of similarity. The
classification rule is

<−
>+

=
0)(1

0)(1
)(_

xfif

xfif
xlabelpredictive

If the coefficients wµ are set to 1, then f(x) is a weighted neighbors classifier
with points xµ similar to x casting stronger votes for their labels yµ than points
dissimilar from x. Note that this discriminant function defines a linear
boundary.

Example – All negative values have 4≤x and all positive values have

6≥x . We need to determine a discriminant function that classifies the entire
training set.

If the boundary that separates the data into two classifications is non-linear,
we need a different discriminant function

∑+=
µ

µµµ),()(0 xxKywwxf

where K is a measure of similarity called the kernel that computes a dot
product in some space that is usually unknown. This means that K is a kernel
function iff there exists a function φwhich maps Rn to some space H such that

)()(),(yxyxK φφ o=

for all x and y in Rn. For example, the polynominal kernel is for some positive
integer p pyxyxK)(),(o= . Another kernel is

22 2||||),(σyxeyxK −−=

Training these requires a background in convex programming which is beyond
the scope of this course. In summary, we have to determine the weights of the
training examples so that the decision boundary is in the right place. To do
this we want this boundary to be as far away from points near the boundary as
possible. In effect, this sets up a margin around the boundary. The goal of
training is to maximize this margin. However, in doing so, we would be
learning the noise along with the data. To compensate for this, we can allow a
soft margin in which we see a boundary that has the possibility of
misclassifying some of the training set data.

Question: Does this remind you of something?

Example – page 83 from Jagota

Next time:

II. Identifying genes expressed differently in paired samples
III. Identifying genes expressed differently in more than two populations
IV. Gene regulation networks

A. Combinatorial approach for parameter estimation
B. Modeling dynamics for parameter estimation
C. Regression for parameter estimation
D. Bayesian networks for parameter estimation

