
Bioinformatics – Lecture Notes   
 
Announcements 
 
 Reference: Microarray Data Analysis and Visualization by Arun Jagota  
 

3 days of classes including today. 
 
Final Projects due May 2 (Next Thursday).  Please let me know your audio-visual 
need for your presentation 

 
Class 28 – April 25, 2002  

 
I. Classifying samples from two populations 
 

A. Variable selection 
 

We previously discussed methods that would identify genes that could be used 
to discriminate between the two tissues.  The problem with these methods is 
that the treated each gene individually.  We need methods that look at the 
genes collectively.  The method we choose has to be able to 1) evaluate the 
quality of a subset of the variables and 2) search through all subsets of the 
data 
 
One method is sequential backward elimination. This method starts from the 
full set of genes and removes genes one at a time on the basis of which gene 
make the smallest reduction (or largest increase) in the performance of the 
classifier among all candidates considered for removal 
 
Another method is greedy selection.  In this, we start with an empty set of 
genes and add the gene that makes the best one gene classifier.  Then we add 
the gene that results in the best two-gene classifier, etc. This is faster if we are 
interested in obtaining a small number of classifiers. 

 
B. Discriminant analysis 
 

This method uses a discriminant function that defines a decision boundary. 
 
 
 
Figure of linear discriminant function  
 
A linear discriminant function has the form 
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where x is the point in Rn to be classified, and the vector w in Rn and the 
scalar w0 parameterize the function.  The point is classified a positive if f(x)>0 
and negative otherwise. 

A linear discriminant function can be thought of as a one layer neural 
network, the preceptron neural network,  in which the outer layer only has one 
neuron.  This neuron computes the step function 
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The input layer has n neurons, one for each component of x. The neurons have 
the weights which are the components of w.  The bias of the output neuron is 
given by w0. 
 
Training is done by a set that has elements that are known to lie on each side 
of the decision boundary.  The data is presented sequentially.  If the 
perceptron misclassifies a presented data element, the weights have to be 
adjusted, ie. y(x) does not equal the true label l(x),  
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One would cycle through the data as many times as are need to classify the 
data correctly.  After training the perceptron is given new data and should be 
able to classify it. 

 
C. Multilayer perceptrons 
 

The multilayer perceptron will have a hidden layer between the input and 
output layers.  Again there is only one output neuron and the perceptron is 
trained on know data.   
 
In the multilayer perceptron, information will travel from the input layer to the 
output layer in the following manner.  Each hidden neuron will compute the 
weighted sum of all its inputs and then apply a sigmoid transfer function to 
convert this sum into a number between 0 and 1.  After all the hidden neurons 
have done this, the output neuron will compute the weighted sum of all these 
values and then apply a sigmoid transfer function to convert this sum into a 
number between 0 and 1. 
 

If this network had h hidden neurons then it computes a function fw,W(x) on an 
input x in Rn 



u

hj ni
ijijWw

e
ug

wxgWgxf

−

= =

+
=



















= ∑ ∑

1
1

)(

)(
,...,1 ,...,1

,

 

where g(u) is the sigmoid transfer function, wij is the weight from input 
neuron i  to hidden neuron j, and Wj is the weight from hidden neuron j to the 
output neuron. 
 

D. Training  
 

The neuron has to learn the weights w and W from the training set D that 
consists of data that is known to be in one class or the other. To do this, one 
can employ gradient descents to minimize an error function.  One widely 
used error function is the sum-of-squares 
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where d.y = 0 or 1 give the classification of training data point d and d.x is in 
Rn is its input vector.  The weights will be varied to minimize E.  This is done 
by choosing each weight ω i, one at a time, and incrementing it by  
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where 0>η  is the learning rate and controls the magnitude of the increment. 
 
Details available on page 73 of Jagota. 

 
E. Validation 
 

It is important to validate the network.  To do this, before training break up 
the known data in D into a training set and a validation set.  Train the network 
on the training set and test it on the validation set.   
 
Split the data D into many different pairs of training and validation sets and 
pick the network that performs the best 
 
Another method is called k-fold validation.  To do this, break up the data into 
k equal sets.  Train the data on the D minus the ith set and test on the ith set.  
Do this for i = 1,…,k.  Average the performance over all these runs to give the 
performance of the network. 
 



 
 
F. Overfitting 
 

If you train a network too much, the error on the validation set will start to 
increase, even though the error on the training set keeps decreasing.  This is 
because the network will be overly tuned to the training data.  The way to 
prevent this is to stop training as soon as the error on the validation set starts 
to rise. 
 

G. Support vector machines  
 

This is a relatively new type of classifier and has a variety of applications.  
Define a classifier by the discriminant function 
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where µ = 1,…,m is a training set of examples, x is the example to be 
classified, xµ is in Rn is the input, and yµ is either +1 or –1 and represents the 
binary label of xµ.  The dot product is used as a measure of similarity.  The 
classification rule is 
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If the coefficients wµ are set to 1, then f(x) is a weighted neighbors classifier 
with points xµ similar to x casting stronger votes for their labels yµ than points 
dissimilar from x.  Note that this discriminant function defines a linear 
boundary. 
 
Example –  All negative values have  4≤x  and all positive values have 

6≥x .  We need to determine a discriminant function that  classifies the entire 
training set. 
 
 
 
 
If the boundary that separates the data into two classifications is non-linear, 
we need a different discriminant function 
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where K is a measure of similarity called the kernel that computes a dot 
product in some space that is usually unknown.  This means that K is a kernel 
function iff there exists a function φwhich maps Rn to some space H such that 
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for all x and y in Rn.  For example, the polynominal kernel is for some positive 
integer p pyxyxK )(),( o= .  Another kernel is 
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Training these requires a background in convex programming which is beyond 
the scope of this course.  In summary, we have to determine the weights of the 
training examples so that the decision boundary is in the right place.  To do 
this we want this boundary to be as far away from points near the boundary as 
possible.  In effect, this sets up a margin around the boundary.  The goal of 
training is to maximize this margin.  However, in doing so, we would be 
learning the noise along with the data.  To compensate for this, we can allow a 
soft margin in which we see a boundary that has the possibility of 
misclassifying some of the training set data. 
 
Question:  Does this remind you of something? 
 
Example – page 83 from Jagota 

 
 
Next time: 
 

II. Identifying genes expressed differently in paired samples 
III. Identifying genes expressed differently in more than two populations 
IV. Gene regulation networks 

A. Combinatorial approach for parameter estimation 
B. Modeling dynamics for parameter estimation 
C. Regression for parameter estimation 
D. Bayesian networks for parameter estimation 

 
 


