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2 days of classes including today. 
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Class 29 – April 30, 2002  

 
I. Identifying genes expressed differently in paired samples 

 
We want to find our if a gene x is expressed sufficiently differently in a set of 
patients before and after treatment so that we can infer that gene x is expressed 
differently in the population before and after treatment. 
 
Assume that we have n patients with ex,b,i and ex,a,i being the before and after 
treatment expression levels for a gene x in patient i.  Let dx,i = ex,b,i - ex,a,i be the 
difference between these two levels for patient i.  In the whole population  the 
mean difference is ∑=

i ixx dnd ,1 . 

 
The question can be rephrased as is xd sufficiently different from zero for us to 
conclude that at the desired significance level gene x is expressed differently 
before and after treatment in the population.   As we have done before, we can 
apply the z-test or t-test if we assume that the distribution is normally distributed.  
If we do not make this assumption, we can use the sign test as before.  
 

II. Identifying genes expressed differently in more than two populations 
 
If we are trying to identify genes that are not expressed identically in all 
populations and we have more than two populations, we have to try other methods 
than presented earlier.   For example, consider the question: Is gene x expressed 
differently in three groups for us to conclude at the desired significance level gene 
x is expressed differently in the three populations.  To do this, we use statistical 
inference once again. 
 
Let µx,1, µx,2, and µx,3 be the unknown mean expression level of gene x in the three 
populations.  The null hypothesis is H0:  µx,1 = µx,2 = µx,3.  This can be thought of 
as H0:  jxixji ,,, µµ =∧ which is a compound hypothesis that consists of three 
simple hypotheses.  Hence, we can use the methods described earlier for 
determining if any genes are expressed differently in two populations. The 
problem with this approach is that the compound test needs to use a more 
stringent confidence level for each of the simple tests than the desired level for the 



compound test.  Therefore, we can also use another method called ANOVA 
(analysis of variance).   
 
You might remember ANOVA from your statistics class and can get quite 
complicated.  We will focus on the most basic approach, i.e. the single-factor 
ANOVA to answer the question with which we started the lecture.  
 
The first step is to arrange the data into a table. 
 

Factor 
Level 

Cancer 
Subtype 1 

Cancer 
Subtype 2 

Cancer 
Subtype 3 

 

 
1,1,xe  2,1,xe  3,1,xe   

 . . .  
Data . . .  
 . . .  
 

1,, 1nxe  . 
3,, 3nxe   

  
2,, 2nxe    

 Ex,1 Ex,2 Ex,3 Ex 

 
where ex,i,j is the expression level of gene x in sample i in group j which is defined 
by the cancer subtype.  The three groups have different numbers of samples, n1, 
n2, n3.  The quantities Ex,j are the column sums 
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Ex  is the sum of the column sums i.e. Ex=Ex,1+Ex,2+Ex,3.  We also define 
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The inter-group variation is 
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and the intra-group variation is 
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where n = n1 + n2 + n3 is the total number of samples.  The degrees of freedom are 
 

df(inter-group) =  # groups – 1 = 2 



df(intra-group) = n - # groups = n – 3 
 
The variances are given by 
 

inter-group variance = inter-group variation/df(inter-group) 
intra-group variance = intra-group variation/df(intra-group) 

 
If inter-group variance is much larger than theintra-group variance, we can reject 
the null hypothesis (that the group means are identical) at a certain high level of 
confidence.  This is done formally using the F-test, with the F-statisitic 
 

  variancegroup-intra
  variancegroup-inter=F  

 
Thus, if F ≥  F(df(inter-group),df(intra-group),α/2) or  
if 1/F ≥  F(df(inter-group),df(intra-group),α/2) H0 is rejected with confidence 1-α.  
Otherwise, we fail to reject H0. 
 

III. Gene regulation networks 
 
Another application of microarray data is to try to infer possible gene regulation 
networks. 
 

A. Combinatorial approach for parameter estimation 
 

Let A and B be two genes.  For example,  A might be an activator for B, A 
might be an inhibitor of B, or neither.  Consider the following problem.  
Given a set of genes {1, 2, …, n} and a set of measurements of their 
expression levels at various time points after some initial time at which 
there was some perturbation of the system (a stimulus), we want to infer 
the structure of the gene network.  If we make a connected graph with the 
nodes being the different genes, the connections will be labeled with ‘+’ or 
‘-’ to denote activation or inhibition, respectively 
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To do this we look for the following.  If B’s expression level starts to rise 
shortly after A’s does, A might be an activator of B.  If B’s expression 
level starts to fall shortly after A’s start’s rising, then A might be an 



inhibitor of B.  Of course, it might just be coincidence in which case we 
will get a false positive.   
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To avoid the false positives, we need to impose constraints on the system 
such as requiring that the system be sufficiently sparse (which may or may 
not work – we cannot tell).  Another possible constraint is to require that 
any one gene cannot act as both an activator and an inhibitor (Chen, 
Fikov, and Skiena).  These authors justify this on the basis that activation 
and inhibition involve different biological mechanisms.   
 
Chen and co-workers take this constraint and define an optimization 
problem that takes a network of many possible activation and inhibition 
paths and removes the edges to enforce the above constraint.  They do this 
by assigning each vertex as an activator ‘+’ or inhibitor ‘-’ while 
maximizing the number of vertices with both and incoming ‘+’ edge and 
an incoming ‘-’ edge under the constraint that the edges leaving a vertex 
has the same sign as the vertex. This is a NP-hard problem and is 
intractable for a large number of genes (thousands) 
 
To make this problem tractable, we need to reduce the number of genes 
considered by some preprocessing approach.  One possible method to do 
so is called varation filtering.  In this process, those genes whose 
expression levels to not change with time are removed from the data set.  
Another possible preprocessing method is to cluster the genes 
conservatively so that all genes in a cluster have very similar expression 
profiles.  All the expression data of genes in this cluster would be replaced 
by one piece of expression data for the cluster.  The network would be 
performed on the cluster data and give a network representing the 
regulation of clusters of genes. 

 
B. Modeling dynamics for parameter estimation 

 
Assume that we know that a small set of genes G = {1, 2, …, n} form a 
gene regulation network, but we do not know the network topology or the 
strengths of the interactions between the genes.  This model can be fitted 
by a recurrent neural net governed by a set of n nonlinear coupled 
differential equations. 
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where xi(t) is the expression level of gene i at time t, wij is the strength and 
nature of the influence of gene j on gene i, iλ is the spontaneous decay rate 

of xi, iτ is a time scaling factor, hi represents some time varying influence 
of an external perturbation to the system and g is a sigmoid function to 
scale its argument (as described earlier).  The network will learn the 
parameters iτ , iλ , and wij from the microarray data. 
 
Solving the model will give expression time courses for the different 
genes.  These can be compared to the data gene expression time courses.  
The sum of the squared errors (or mean square error) should be minimized 
by varying the parameters until convergence is reached.  An additional 
constraint to cause a sparse network would be to minimize ∑ ij ijw2 . 

 
C. Regression for parameter estimation 

 
We can also consider a discrete version of the system of differential 
equations described above 
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where bi are the bias and wij are the weights.  We solve y = Wx + b for W 
and b by using {x = e(t) and y = e(t+∆t)}.  These two parameters are 
determined by minimizing using the least-squared error approach. To do 
this we need to have at least as many time points as genes considered to 
keep the problem from being under constrained.   

 
D. Bayesian networks for parameter estimation 

 
Assume that we have n genes with binary expression data, that is, xi = 1 
means a gene is up-regulated and xi = 0 means that a gene is down 
regulated.  Assume that we know the network and that the interactions are 
probabilistic.  For example, if gene C is off and gene B is on, there is a 
higher probability of gene D being turned off than when gene C is on and 
gene B is off.  Hence, each node of the Bayesian network will contain a 
conditional probability distribution  
 

Pr[Xi | parents of i] 
 



where “parents of i” are the nodes with a directed edge coming into note i.  
The Bayesian network will be the joint distribution over all the variables 
in the graph 
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From the network 
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Pr[A, B, C, D, E] = Pr[A]Pr[C|A]Pr[B]Pr[D|C,B]Pr[E|D] 
 
where the node name denotes the 0,1 random variable. 
 
The parameters that define the Bayesian network have to be determined.  
Assume that the expression data is of the form 
 

{ei(t)∈[0, 1],  t = 1, 2, …, m and i = 1, 2, …, n 
 
Assume that the parents of node i at time t affect node i’s value at time 
t+1.  We can now determine and table Pr[xi(t+1)| parents of i at time t] by 
counting the occurrences of the relevant events in the data.  For example, 
Pr[D(t+1) | B(t), C(t)] 
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A Bayesian network may be used to factor a joint distribution.  Causal 
Bayesian networks can also be used to infer gene network structure.  This 
has the added property that the parents of a node are its direct causes.  If 
we consider a joint distributions Pr(X,Y) in a Bayesian network, it can 
either imply YX → or YX ← .  If we want only YX → we need to use a 
causal Bayesian network.  In fact, the figure show before was a causal 
Bayesian network. 



For example, assume that two genes X and Y have very similar expression 
patterns.  We want to determine whether X regulates Y or Y regulates X 
but do not have the experimental data to differentiate between the two 
possibilities.  One way of dealing with this is to gather more data.  If we 
can force X on and see how it affects Y.  Similarly, we can turn Y on and 
see how if affects X.   Thus, if forcing X on has a great effect on Y but the 
opposite is not true, we can infer that X regulates Y.   
 
However, this regulation might be direct or indirect.  X might regulate Y 
through its effects on one or more other factors that each can directly or 
indirectly affect Y.  In our example network below, turning C on can 
regulate both D and E. 
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If we consider the network YX → , there is forced and unforced 
conditioning.  By Bayes rule, for unforced conditioning on Y = on 
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For forced conditioning 
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The right hand side quantities are easily computable from the parameters 
stored in the network. 


