Bioinformatics— Lecture Notes
Announcements
Reference: Microarray Data Andlyss and Visudization by Arun Jegota
2 days of dassesincluding today.
Find Projects due May 2 (Thursday).
Class 29 — April 30, 2002
I. Identifying genes expressed differently in paired samples

We want to find our if agene x is expressed sufficiently differently in aset of
patients before and after treatment so that we can infer that gene x is expressed
differently in the population before and after trestment.

Assume that we have n patientswith e and ey o being the before and after
trestment expression levelsfor agenex in patient i. Let dyj = expi - & ai bethe
difference between these two levelsfor patient i. In the whole population the
meen differenceis d, =1/ng d,, .

The question can be rephrased asis d  sufficiently different from zero for usto
conclude that a the desired significance level gene x is expressed differently
before and after treatment in the popuation. Aswe have done before, we can
apply the ztest or t-test if we assume that the digtribution is normaly distributed.
If we do not make this assumption, we can use the Sgn test as before.

I1. Identifying genes expressed differently in more than two populations

If we are trying to identify genesthat are not expressed identicdly in dl

populations and we have more than two populations, we have to try other methods
than presented earlier. For example, consider the question: Is gene x expressed
differently in three groups for us to conclude at the desired sgnificance level gene

X isexpressed differently in the three populations. To do this, we use Setitica
inference once again.

Let mx 1, Nk 2, and nmy 3 be the unknown mean expresson leve of gene x in the three
populations. The null hypothesisisHy: mx 1 = mx 2> = mx 3. Thiscan be thought of
asHo: U, ; m); = m), whichisacompound hypothesis thet consists of three
smple hypotheses. Hence, we can use the methods described earlier for
determining if any genes are expressed differently in two populations. The

problem with this gpproach is that the compound test needs to use amore

gringent confidence level for each of the Smple tests than the desired leve for the



compound test. Therefore, we can aso use another method called ANOVA
(andyds of variance).

Y ou might remember ANOV A from your gatistics class and can get quite
complicated. We will focus on the most basic gpproach, i.e. the single-factor
ANOVA to answer the question with which we started the lecture.

Thefirst gep isto arrange the datainto atable.

Factor Cancer Cancer Cancer
Leve Subtypel | Subtype2 | Subtype3
Q(,l,l ex,l,z ex,1,3
Data
ex,nl 1 ex,n3 3
€n,2
Ex,l Ex,2 Ex,3 Ex

where g, j isthe expression level of genex in samplei in group j which is defined
by the cancer subtype. The three groups have different numbers of samples, ny,
e, Ns. The quantities E; are the column sums
E.,=aA¢&.; withj=1, 2, or 3
i=1

Ex isthe sum of the column sumsi.e E=Ex 1+Ex 2+Ex 3. We dso define
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Theinter-group varidion is
&Ef,l + Ex,2 + Ef,sg_ (Ef)

n.L n2 n3 B n
and the intra-group variation is
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wheren=m + m + ng isthe tota number of samples. The degrees of freedom are

df(inter-group) = #groups—1=2



df(intra-group) =n - #groups=n—3
The variances are given by

inter-group variance = inter-group variatior/df(inter-group)
intra-group variance = intra-group variation/df(intra- group)

If inter-group variance is much larger than theintra- group variance, we can regject
the null hypothesis (that the group means are identical) at a certain high leve of
confidence. Thisisdone formaly usng the Ftest, with the F-gatistic

_ inter - group variance
intra - group variance

F

Thus, if F 3 F(df(inter-group),df(intra-group),a/2) or
if /F 3 F(df(inter-group),df (intra-group),a/2) Ho is rgjected with confidence 1-a.
Otherwise, wefail to regject Ho.

Gene regulation networks

Another goplication of microarray dataisto try to infer possible gene regulation
networks.

A. Combinatoria approach for parameter estimation

Let A and B betwo genes. For example, A might be an activator for B, A
might be an inhibitor of B, or neither. Consider the following problem.
Given aset of genes{1, 2, ..., n} and aset of measurements of ther
expresson levels a various time points after someinitid time a which

there was some perturbation of the system (a stimulus), we want to infer
the structure of the gene network. 1f we make a connected graph with the
nodes being the different genes, the connections will be labeled with ‘+ or
‘-’ to denote activation or inhibition, respectively

To do thiswe look for the following. If B's expression level sartsto rise
shortly after A’sdoes, A might be an activator of B. If B'sexpresson
level gartsto fdl shortly after A’s sart’ srising, then A might be an



inhibitor of B. Of course, it might just be coincidence in which case we
will get afdse postive.
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To avoid the false positives, we need to impose congraints on the system
such as requiring that the system be sufficiently sparse (which may or may
not work —we cannot tell). Another possible congtraint is to require that
any one gene cannot act as both an activator and an inhibitor (Chen,
Fikov, and Skiend). These authorsjustify this on the basis that activation
and inhibition involve different biologicd mechanisms

Chen and co-workers take this congtraint and define an optimization
problem that takes a network of many possible activation and inhibition
paths and removes the edges to enforce the above congtraint. They do this
by assgning each vertex as an activator ‘+ or inhibitor ‘-’ while
maximizing the number of vertices with both and incoming ‘+' edge and
anincoming ‘-’ edge under the congraint that the edges leaving a vertex
has the same sgn as the vertex. ThisisaNP-hard problem and is
intractable for alarge number of genes (thousands)

To make this problem tractable, we need to reduce the number of genes
considered by some preprocessing approach. One possible method to do
soiscdled varation filtering. In this process, those genes whose
expression levels to not change with time are removed from the data set.
Another possible preprocessng method is to cluster the genes
consarvatively so that dl genesin aclugter have very smilar expresson
profiles. All the expression data of genesin this cluster would be replaced
by one piece of expression datafor the cluster. The network would be
performed on the cluster data and give a network representing the
regulation of clusters of genes.

. Modding dynamicsfor parameter estimation

Assume that we know that asmall set of genesG={1, 2, ..., n} forma
gene regulation network, but we do not know the network topology or the
srengths of the interactions between the genes. Thismodel can be fitted
by arecurrent neural net governed by a set of n nonlinear coupled
differentid equations.
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where x(t) isthe expression level of genei a timet, w; is the strength and
nature of the influence of genej on genei, | . is the spontaneous decay rate
of X, t, isatime scaling factor, h represents some time varying influence
of an externd perturbation to the sysem and g isa sigmoid function to

scde its argument (as described earlier). The network will learn the
parameters t,, |, and w; from the microarray data.

Solving the mode will give expression time courses for the different

genes. These can be compared to the data gene expression time courses.
The sum of the squared errors (or mean square error) should be minimized
by varying the parameters until convergence isreached. An additiond

congtraint to cause a sparse network would be to minimize § ; W

. Regression for parameter etimation

We can ds0 consider adiscrete verson of the system of differentia
equations described above

7+
(4]

=] o 0 .
>g(t+Dt):g§bl+aw.x.T i=1,2,...n
J
where by are the bias and w;; are the weights. We solvey = Wx + b for W
and b by usng {x = e(t) and y = g(t+Dt)}. These two parameters are
determined by minimizing using the least- squared error approach. To do
this we need to have at least as many time points as genes consdered to
keep the problem from being under constrained.

. Bayedan networks for parameter etimation

Assume that we have n genes with binary expression data, that is, x = 1
means a gene is up-regulated and x; = 0 meansthat a geneis down
regulated. Assume that we know the network and that the interactions are
probabiligic. For example, if gene C isoff and gene B ison, thereisa
higher probability of gene D being turned off than when gene C ison and
gene B isoff. Hence, each node of the Bayesian network will contain a
conditiona probability distribution

Pr[Xi | parents of i]



where “parents of i” are the nodes with a directed edge coming into noteii.
The Bayesan network will be the joint distribution over dl the variables
in the graph

A
PrX,, X,,%,X,1=Q Pr[X, | parents of i]

i=1

From the network

Pr{A, B, C, D, E] = Pr[A]Pr[C|A]Pr[B]Pr[D|C,B] Pr[E|D]
where the node name denotes the 0,1 random variable.

The parameters that define the Bayesian network have to be determined.
Assume that the expression datais of the form

{e®! [0,1], t=1,2,....mandi=1,2,...,n

Assume that the parents of node i a timet affect nodei’s value & time
t+1. We can now determine and table Pr[x(t+1)| parents of i a timet] by
counting the occurrences of the relevant eventsin the data. For example,
PrD(t+1) | B(t), C(t)]

B(t), 00 0110 11
CH®
D(t+1)
0 a=#t:(B(t)=0,C(t)=0,D(t+1) =0)
a+b
1 b =#t: (B(t) =0,C(t) =0,D(t +1) =1)
atb

A Bayesan network may be used to factor ajoint distribution. Causal
Bayesian networks can aso be used to infer gene network structure. This
has the added property that the parents of anode are its direct causes. If
we consider ajoint digtributions Pr(X,Y) in a Bayesian network, it can
gtherimply X ® Yor X = Y. Ifwewantonly X ® Y weneedtousea
causa Bayesan network. In fact, the figure show before was a causal
Bayesian network.



For example, assume that two genes X and Y have very smilar expresson
patterns. We want to determine whether X regulates’Y or Y regulates X
but do not have the experimenta data to differentiate between the two
possibilities. Oneway of deding with thisisto gather more data. If we
can force X on and see how it affects Y. Similarly, wecanturn'Y on and
see how if affects X.  Thus, if forcing X on has agrest effect on Y but the
opposite is not true, we can infer that X regulates Y.

However, thisregulation might be direct or indirect. X might regulate Y
through its effects on one or more other factors that each can directly or
indirectly affect Y. In our example network below, turning C on can
regulate both D and E.

C D

PrfE=e|C=o0n]=
A P[E=e|D=d]P[D=d|B=b,C=onP[B=h|A=a]Pr[A=4]

a,b,d

If we consider the network X ® Y, thereisforced and unforced
conditioning. By Bayesrule, for unforced conditioningon'’Y = on

PI{X = x| Y = on) = 5y ZON X =X]AX =]
amPI'[Y =on| X =x¢Pr[X = x¢

For forced conditioning
P X =x]Y=o0n)=P[X =X

The right hand Sde quantities are easily computable from the parameters
stored in the network.



