Bioinformatics - Lecture Notes
Announcement - Seminar
Understanding Proteins from Physical Principles and Evolutionary Information
Dr. Huan-Xiang Zhou, Florida State University
Thursday, January 24, 1:30-3:30 PM
Student Union, Galaxy Room A
Class 3

1. DNA Sequence Alignment - Why?

Recognition sites might be common - restriction enzymes, start sequences, stop sequences, other regulatory sequences
Homology - evolutionary common progenitor
Mutations
-Deletions
-Insertions
-Transitional Substitution (purine-purine A-G, pyr-pyr T-C)
-Translational Substitution (pur-pyr, pyr-pur)
Example - start with ACGTACGT after 9540 generations with the following probabilities:

Deletion 0.0001
Insertion 0.001
Transitional substitution 0.00008
Translational substitution 0.00002

- - ACG - T-A - - CG -T - - -

ACACGGTCCTAATAATGGCC

- - AC - GTA- C- - G - T - -

CAG - GAAGATCTTAGTTC
However if we align the two sequences by superposition

- ACAC- GGTCCTAAT--AATGGCC

CAG- GAA- G- AT- - CTTAGTTC- -
or using Gotoh's algorithm with mismatch penalty 3 and gap penalty
function $\mathrm{g}(\mathrm{k})=2+2 \mathrm{k}$ for length k gap
ACACG - - GTCCTAATAATGGCC

- CAGGAAGATCT - - TAGTT - - C

The alignment depends on algorithm used!
2. Protein sequence alignment
A. Homologous proteins
i. Evolutionary common origin
ii. Structural similarity
iii. Functional similarity
B. Conserved regions
iv. Functional domains
v. Evolutionary similarity
vi. Structural motif

Example Figure 3.2 page 84
3. As shown before there are many possible alignments - which is correct?

Every alignment has a score
Chose alignment with highest score
Must choose appropriate scoring function
Scoring function based on evolutionary model with insertions, deletions, and substitutions
Use substitution score matrix - contains an entry for every amino acid pair
4. Substitution score matrix

	A	D	K
S	$\mathrm{s}_{\mathrm{S}, \mathrm{A}}$	$\mathrm{s}_{\mathrm{S}, \mathrm{D}}$	$\mathrm{s}_{\mathrm{S}, \mathrm{K}}$
R	$\mathrm{s}_{\mathrm{R}, \mathrm{A}}$	$\mathrm{s}_{\mathrm{R}, \mathrm{D}}$	$\mathrm{s}_{\mathrm{R}, \mathrm{K}}$
K	$\mathrm{s}_{\mathrm{K}, \mathrm{A}}$	$\mathrm{s}_{\mathrm{K}, \mathrm{D}}$	$\mathrm{s}_{\mathrm{K}, \mathrm{K}}$

Ad hoc method - a biologist can set up a score matrix that gives good alignment
Use physical/chemical properties
Statistical approach
5. Statistical approach

Let s and s' be two amino acid sequences of length n that we want to compute an alignment score
Assume only substitutions occur (no insertions or deletions)
Works for local alignment
Odds Ratio and Log Odds Ratio
The score for aligning s and s ' is based on the comparison of the hypothesis that the two sequences are generated randomly with the hypothesis that they come from a common ancestor.

Assume q_{A} is the probability of producing amino acid A in model R (based on the relative frequency at which A is found in proteins). The probability for the null hypothesis (that s and s' do not stem from a common ancestor) is

$$
\mathrm{P}\left(\mathrm{~s}, \mathrm{~s}^{\prime} \mid \mathrm{R}\right)=\prod_{1 \leq i \leq n} \mathrm{q}_{s, i} \prod_{1 \leq i \leq n} \mathrm{q}_{s^{\prime}, i}=\prod_{1 \leq i \leq n} \mathrm{q}_{s, i} \mathrm{q}_{s^{\prime}, i}
$$

The second hypothesis (homologous hypothesis) that s and s' arise from a common ancestor sequence r, of length n, is based on the evolutionary model (E). The probability that the amino acids A and B are aligned and hence have been derived from an ancestor amino acid C is given by $\mathrm{p}_{\mathrm{A}, \mathrm{B}}$ is given by

$$
\mathrm{P}\left(\mathrm{~s}, \mathrm{~s}^{\prime} \mid \mathrm{E}\right)=\prod_{1 \leq i \leq n} \mathrm{p}_{s, i s^{\prime}, i}
$$

How this probability is determined will be explained later.
The odds ratio compares the homologous hypothesis with the null hypothesis

$$
\frac{P\left(s, s^{\prime} \mid E\right)}{P\left(s, s^{\prime} \mid R\right)}=\frac{\prod_{1 \leq i \leq n} \mathrm{p}_{s, i s^{\prime}, i}}{\prod_{1 \leq i \leq n} \mathrm{q}_{s, i} \mathrm{q}_{s^{\prime}, i}}=\prod_{1 \leq i \leq n} \frac{\mathrm{p}_{s, i s^{\prime}, i}}{\mathrm{q}_{s, i}} \mathrm{q}_{s^{\prime}, i}
$$

To achieve a scoring function that is additive rather that multicaplicative the log odds ratio can be used

$$
\mathrm{s}_{\mathrm{A}, \mathrm{~B}}=\log \frac{p_{A B}}{q_{A} q_{B}}
$$

6. Point Accepted Mutation (PAM) and Amino Acid Pair Probabilities

We mentioned that we must choose an appropriate evolutionary model $\mathrm{E}\left(\left(\mathrm{p}_{\mathrm{AB}}\right)_{\mathrm{AB}}\right)$ for the homologous hypothesis, ie we have to find p_{AB} for each pair of amino acids A and B. Since we are using a statistical approach, this has to be estimated from data. If we know that two sequences s and s ' are homologous, we could estimate p_{AB} by finding the value of p_{AB} that would maximize

$$
\mathrm{P}\left(\mathrm{E}\left(\left(\mathrm{p}_{\mathrm{AB}}\right)_{\mathrm{AB}}\right) \mid \mathrm{s}, \mathrm{~s}^{\prime}\right)
$$

This can be done by using the maximum likelihood approach (section 2.1.6 pp 52-53)

Lagrange Multipliers (Section 2.2)
Appendix (Chapter 3)
7. Global Alignment (next)

