Announcements

Campus Bookstore has more books.
Seminar - "Quality Control in Manufacturing Oligo Arrays"
Professor Charlie Colbourn (over 230 journal papers)
Friday February 1, 11: am
EC 2.112

Correction - PAM stands for Point Accepted Mutation
Class 4

1. Point Accepted Mutation (PAM) and Amino Acid Pair Probabilities

We mentioned that we must choose an appropriate evolutionary model $\mathrm{E}\left(\left(\mathrm{p}_{\mathrm{AB}}\right)_{\mathrm{AB}}\right)$ for the homologous hypothesis, ie we have to find p_{AB} for each pair of amino acids A and B. Since we are using a statistical approach, this has to be estimated from data. If we know that two sequences s and s ' are homologous, we could estimate p_{AB} by finding the value of p_{AB} that would maximize

$$
\mathrm{P}\left(\mathrm{E}\left(\left(\mathrm{p}_{\mathrm{AB}}\right)_{\mathrm{AB}}\right) \mid \mathrm{s}, \mathrm{~s}^{\prime}\right)
$$

This can be done by using the maximum likelihood approach (section 2.1.6 pp 52-53) - Review Method Lagrange Multipliers (Section 2.2) - Review Example and Proof of Method
Appendix (Chapter 3) - Find p_{AB} using the maximum likelihood approach and Lagrange multipliers

We now have $p_{A B}=\frac{n_{A B}\left(s, s^{\prime}\right)}{n}$ which is the relative frequency of a pair (A, B) in the alignment of s and s^{\prime} where $n_{A B}\left(s, s^{\prime}\right)$ is the number of times the amino acids A and B are aligned in one column in the alignment of s and s^{\prime} and n is the length of s and s^{\prime}.

To find a value for n_{AB}, some homologous sequences are needed. To do this Dayhoff and co-workers used local sequence alignment.

Problem - They used sequence alignment to find a substitution matrix (substitution score matrix) for sequence alignment - which comes first, the chicken or the egg?

Answer - Use only very closely related sequence (sequences differ in at most 15% of the amino acid.

Caveat - The substitution matrix is only valid for closely related protein sequences

