PGI® Fortran
Reference

The Portland Group
STMicroelectronics

9150 SW Pioneer Court, Suite H
Wilsonville, OR 97070
WWW.pgroup.com

While every precaution has been taken in the preparation of this document, The Portland Group™, a
wholly-owned subsidiary of STMicroelectronics, makes no warranty for the use of its products and
assumes no responsibility for any errors that may appear, or for damages resulting from the use of the
information contained herein. STMicroelectronics retains the right to make changes to this information
at any time, without notice. The software described in this document is distributed under license from
STMicroelectronics and may be used or copied only in accordance with the terms of the license
agreement. No part of this document may be reproduced or transmitted in any form or by any means,
for any purpose other than the purchaser's personal use without the express written permission of
STMicroelectronics.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this manual, STMicroelectronics was aware of a
trademark claim. The designations have been printed in caps or initial caps. Thanks is given to the
Parallel Tools Consortium and, in particular, to the High Performance Debugging Forum for their
efforts.

PGF90, PGF95, PGC++, Cluster Development Kit, CDK and The Portland Group are trademarks and
PGI, PGHPF, PGF77, PGCC, PGPROF, and PGDBG are registered trademarks of
STMicroelectronics, Inc. Other brands and names are the property of their respective owners. The use
of STLport, a C++ Library, is licensed separately and license, distribution and copyright notice can be
found in online documentation for a given release of the PGI compilers and tools.

PGI Fortran Reference
Copyright © 2005, STMicroelectronics, Inc.
All rights reserved.

Printed in the United States of America

First Printing: Release 6.0, March, 2005
Part Number: 2410-990-990-0297
Technical support: trs@pgroup.com

Sales: sales@pgroup.com

Web: WWW.pgroup.com

Table of Contents

[7 AN O TR 15
AUDIENCE DESCRIPTION.ccttttititiiitieieieieteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeteteeeteteeeeeteeeeeeerrereeereereaaeees 15
COMPATIBILITY AND CONFORMANCE TO STANDARDS......uuuuiiiiiiiiiiiteeieeeeeeieeineeeeeeeseeesssnneeeeesesenns 15
(02167 N NI V4N (0 PPN 16
HARDWARE AND SOFTWARE CONSTRAINTSuutvvrireeeeiiiiereeeeeeeeeiiaeeeeeeseeessseeeeeessessnssssssessesenns 17
(003N AT 230 (0) N PR 17
RELATED PUBLICATIONSuuutttiiiieeieeitieeeeeeeeeeetereeeeeeeeestaaeeeeeeeeeesaaseseseseeessnsreseeeseeensssseseeeeeeanns 18

1 LANGUAGE OVERVIEW ...ttt ettt s iaan e s saban e 20
1.1 ELEMENTS OF A FORTRAN PROGRAM UNIT......ccoiiiiiiiiiiieiieiiiiieieee et eeeeivereeee e e 20

111) = L] 11T] F TR 20
1.1.2 Free and FIXEA SOUICEcocveie ittt sttt et s st e s st e e s s erbaeesnes 21
113 STALEMENT OFUEIING ...eveeiieeee ettt e sb ettt e 21
1.2 THE FORTRAN CHARACTER SET ..evveiiiiiiiiiieieeeeeeeeeeeeeeeeeeeesaateeeeessessnnseseeessessnnneseeessennns 22
1.3 FREE FORM FORMATTINGcooouiiiiiiieee ettt ettt e ettt e e e e e enaaaaseeeesessnnnneneeeeeeeans 23
1.4 FIXED FORMATTINGuuutiiiiiiiiiieieeeeeeeeeeaeee e e e e e eeeavee e e e e e eesaaaaeeeeesseesnnsseseeesseesnaneneeeseenns 24
14.1 LOL0] 1110 0T o] 14T L] o SRS 24
14.2 Fixed Format Label Fieldccoooeeiiiiiicie ettt 24
1.4.3 Fixed Format Continuation Fieldcooveiiieiii et 24
1.4.4 Fixed Format Statement Field..........ooocviiiioeiee et 25
145 Fixed Format Debug STAteMENTS.........ccciriiiiiriiieee s 25
1.4.6 Tabh FOrMAtTiNG ..ccveeveieiee e 25
147 Fixed Input File Format — SUMMAIYccocoviiiiiiiiie e 25
1.5 INCLUDING FORTRAN SOURCE FILESouttiiiiiiiiieiiiieeee et eeeaveree e e 26
1.6 THE COMPONENTS OF FORTRAN STATEMENTSuuvuviiiiieiieeiieieeeeeeeeeiinieeeeeeeessnnneeeeeseeenns 26
16.1 SYMBOLIC NAMES ...t re e aeereens 27
1.7 EXPRESSIONS ...evtiiiiiieieeeeeee e e eeeeee et e e e e eeaae e et e e e s eeenaaaeeeeeeseesnasteeeeesssesnsaaseeessessnnaaseeeeseanns 27
1.7.1 EXPression Precedence RUIES.........c.oovivivieieeee e e 28
1.7.2 ArthMELIC EXPreSSIONS.cvveieieieisiisie sttt et et sresresre e eneas 29
1.7.3 Relational EXPreSSIONScvciverieierisesesie et see e seesre et sa e e e re e e ereens 30
174 LOGICAI EXPIESSIONSvvviieiiiteiietiete ettt sttt sn et ene e 31
175 CharaCter EXPIeSSIONSc.ciirieiiirieiirteeeiist ettt 32
1.7.6 Character CONCALENATIONvvveiiveieeetie e et e et e e st e e st e e e s etbeeesereaessbaeeeas 32
1.8 SYMBOLIC NAME SCOPEuuuttiiiieeiiiiinieeeeeeeeeiitreeeeeeeeeetisreeeeeeeeesisreeeseeeeesisreeeeeseensinsees 32
1.9 ASSIGNMENT STATEMENTS......ccitiiiutttteeeeeeeiiitreeeeeeeeeiiitrereeeeeeeseisraseeeseeeeesssrreeeseeeeessrseeeees 32
1.9.1 Arithmetic ASSIGNMENTccviiiiiiiiicie et st e e e et e seesresresneeneas 33
1.9.2 Logical Assignment StAtEMENTc.ccevieiiieieiese e nre 33
1.9.3 Character ASSIGNMENT.......ccviiiieiiie ittt e e e tesbesteereeneesae e eseesrens 34
1,10 LISTING CONTROLS....uuuvtiiiieiietiteeeeeeeeeesittteeeeeseeeseateseeeseesessaaseessesssesiasrerssesssessnesseeessennns 35
1.11 OPENMP DIRECTIVES ..vviiiiiiiieiieeeeeeeeeeesiieeeeeeeeeeeeaaaeseeeeeeeensaaseeeseesesssasssessesssessssessseessennns 35
1,12 HPF DIRECTIVES ...ouutiiiiiiiieieeieeeeee e eeeeaeeee e e e e eeeataaeeeeeeeeeeaaaaeeesesseensaaeseesesssesanssseeeseennns 35

2

i

FORTRAN DATA TYPES.. ...ttt ettt stae et sbae b e stae e nnre s 37
2.1 INTRINSIC DATA TYPES ...ttt ettt ettt ettt ettt e et e e et e e e sataeeesatbeeeeaesaeeenanaeaans 37
21.1 KNG PAramMELEE.....cviiiiiiecceie ettt sttt et eare e srbeesare e 37
2.1.2 Number of Bytes SPecifiCationccveiriiiiiiire e 38
2.2 CONSTANTS Lttt eitiee ettt eetteeeetteeestreeesssaaeeeseeeaassseeeasssaeeansseeeasssseesssssasesssseseassseessssseanns 40
221 INTEQET CONSTANTS ...iiiiiiiie ettt be e be e b 40
2.2.2 Binary, Octal and Hexadecimal CONStants..........cccccevvveieeieeieene e 41
2.2.3 REAI CONSTANTSeiiviicie ittt b e e e et eb et e e beesbesreestaesres 41
224 INtEOET CONSTANTSeeieiier et et e nte e te e e sreenreeneas 42
2.2.5 ComMPIEX CONSTANTS ...ttt ereene e 42
2.2.6 [T [Tor- LI @0] 01y - Ly S 43
2.2.7 Character CONSTANTScoviiiiee ittt ettt st be s re e sabe s saeesabeeas 43
2.2.8 PARAMETER CONSTANTSccviieeiiieic et eetee et stre e et e e e eatee e s sabeeeesaaeeeens 44
2.3 DERIVED TYPES....ciiitiiiieiiiieetiee et teeetteeeeivteessstbeeesssaeeesssseeessssseeessssaeesssseseasssseessssseeans 44
2.4 A RRAY S ..t eeetiteesttee e ettt e esteeeesteeeeestbeeasesaeeestbaeeaassseeeasssaeeessaaeaassseeeasssaaeanssaeeensseeeannras 45
24.1 An Array Declaration EIBMENt ... 45
2.4.2 Deferred SNAPE AITAYSciveiriieieeite ettt sre et reereens 46
2.4.3 RS0 0o] 0 TP 46
24.4 CharaCter SUDSIIING......cceiiiieie et st e e e 46
2.5 FORTRAN POINTERS AND TARGETS ...ociiuiieeiitiieeeeieeeeeieeeeeetveeeeeiaeeeeeaeeeeeareseeaneeeeeaneeeans 47
2.6 FORTRAN BINARY, OCTAL AND HEXADECIMAL CONSTANTS ..evvvvviieeeeiiiriereeeeeeeeennneeeess 47
2.6.1 OCTAL AND HEXADECIMAL CONSTANTS - ALTERNATE FORM §.......coccvviviiiiieienee, 48
2.7 HOLLERITH CONSTANTSvtiiiititeeeiteeeeiteeeeeiveeeeeteeeessseeeatresesssssesessssesessseseasssseesssseeans 49
2.8 STRUCTURESutiieiiiieeeeiteeeeiteeeeeteeeeetreeeeeveeeesasaeeaaareseaaassesesssssesatseeeasssseseanssseesssseeaans 50
2.8.1 R {=ToT0] o R 51
2.8.2 UNION and MAP DECIArationsccoviiivieiieiiiiee ettt sre e srveesare e 52
2.8.3 Data INItIAlIZALION.......c.eeiiiiiee ettt 54
2.9 POINTER VARIABLEScuuttiiiiiiieeiiiieeeitteeeeiveeeesiteeesesaeeesssseeeesssseeessssesassssessessseessssseenns 54
29.1 RESIFICTIONS ..ottt et be et e e sbe e sreestaesres 55
FORTRAN STATEMENTS ...ttt sttt stbe sttt sare e srte s saneesane e 57
3.1 ORIGIN OF STATEMENTooiiiiuiiieeeteeeeeeteeeeeeeee e e et e e eeeeeeeetteeeeeaeeeeeeaeeeeaesaeeeeeaeeeeereeeans 57
3.2 STATEMENTS ...ttt e ettt e ettt e e et e e et e e e eeae e e e eteee e eeaaeeeeeateeeeeteseeeetseseeesseseessseeenaseeeans 58
ACCEPT 8 T T e e b e b e e be e be e beeabeerre e 58
ALLOCATABLE 90 .. ittt ettt ettt s et be e sbe e e sbae e sate e sabe s saeeesrbeeas 59
ALLOCATE 90 .ttt ictie ittt ettt ettt e et et e s b e e s bt e e sbee e sbbeesbeeesbbeesaeeesbbeesnneesrbeen 60
ARRAY (01| R OURRTRTT 61
ASSIGN T e e e e e e ehbe e e ae e sbbeeetee e abbeeaaeeeabbeenbae et 62
BACKSPACE 77 oottt ettt et s e e s b e et e e sbb e e s ar e e ebb e e sare e sabe e eareenaaas 63
BLOGCK DATA 77 ettt ettt ettt ettt et e bt e e be e s sbe e e ebe e e beeenbeeesbeeenbeeenbeas 64
BYTE 8 77 oot be b b e eareear e 64
[I & TP OPRPOURROPRR 65
CASE 90 ittt e b e e be e e be e e be e e be e e beeeabaeesbaeenree et 66
(O 1 R A O I T | PSP 67

CLOSE AT TP PRSP PP PRPRTPRPROR 68

COMMON 77 ettt b e et b e et e et et ete st et te st et etesbe e eteabe e ete e 69
COMPLEX 90, 1 iititeieiesie ettt sttt sttt b e tesb e e tesbe e etesbe e ateabeseetenees 72
CONTAINS 90, ittt sttt st te b ete b et e tesb e eetesb et etesbe e ebeabeseerenees 73
CONTINUE 77 oottt sttt sttt b et b e et sb et be b et e besb et abesbe e ete e 74
CYCLE LSRR 74
DATA 77 ettt R bbbt rene et 75
DEALLOGCATE 77 oottt ettt ettt bbbt 75
DECODE 8 7T bbbttt 76
DIMENSION 90 ..ttt sttt st ettt et sttt 77
D TO I € C=T LAY TR L P 79
DO WHILE 77 ittt ettt bbbt s et ne bt ne bt ne et 81
DOUBLE COMPLEX 8 77 ittt sttt sttt sttt st st 81
] OSSOSO 83
] | SOOI 84
ELSE WHERE 90 ...ttt ettt ettt sb et sbe et bt sbesaetesnesenne s 84
ENCODE 8 7T et bttt ene 85
END T et bR R bt R b ARt R bRt R e et e bt ne e 86
ENTRY OSSOSOV PRSP 89
EQUIVALENCE 77 oottt sttt ettt et sttt 91
EXIT 00ttt bbb bbbttt 92
EXTERNAL 77 ettt ettt b e bbbttt b e ettt e b neene 93
EXTRINSIC HPF ..ottt sttt ettt r s 93
FORALL FO5 .ottt ettt bbbt ne bt ne bt ne e 94
FORMAT T e — Aottt R et et ne et b nenrens 95
FUNCTION 77 oottt ettt ettt sttt ne et 97
GOTO (ASSIGNEA) ..ttt bbbttt e b et b et eebe e st et et e besbesbesbeebeeneaneas 99
GOTO (COMPULEH) 77 cueiiieieiieiee ittt sttt sttt sb e te b e tesbe e etesbeseere e 99
GOTO (UNConditional) 77 .oveieieiecie ettt 100
IF (AFITNMELIC) 77 it et e et besbesresneeneas 100
IF (BIOCK) 77 ettt bbbt b et sh et ere e 101
L T [To7 | T A AR 102
IMPLICIT 77 ettt b ettt b ettt b ettt sbe et nb e ebe e 102
INCLUDE 8 77 ittt ettt ne bt asnenenes 103
INQUIRE T e et b e bR e bt ettt n e bt ne et e 104
INTEGER T e b et b e r e bt ettt n bt ne b e 107
INTENT 0.ttt sttt sttt b et b e et b e et e sb et e tesbe e tesbe e ete st e senrennes 108
INTERFACE 90....iiiiciiieieeite ettt sttt b et sb et sb et sbe e etesnesante e 109
INTRINSIC 77 ettt et b et b et te b e tesbe e ete st e sente e 110
[0] 0 Y R & O OSSPSR 111
MAP L ST PRPRPRSPTN 112
MODULE 90ttt ettt et s bt ne b s 114
NAMELIST 90 ittt bbbttt bbbttt 115
NULLIFY 000ttt b b bR b bbb bRt b et b et 116
OPEN 77 et e bbb bbb et b et bt 116

iv

OPTIONAL 90 .ottt bbbt 119

OPTIONS S SRS 120
PARAMETER 77 .ocoiitetee sttt sttt sb ettt b ettt st ne et 121
PAUSE ..ottt ettt b et bt E ettt e b et et et e et e ere b nrere s 121
POINTER 00 ettt e e b e et b e et e bt te bt tesre e teareneere s 122
POINTER (Cray) 8 77 i ieiieiie ettt sttt sttt sttt sttt sae et e 122
PRINT 77 ettt ettt et b e et b ettt et e s b et e sbe e e besbe e eresbeneere s 124
PRIVATE 00 1ttt ettt et b et R bbb et b e 125
PROGRAM 77 ettt et ettt b ettt b et b et sb ettt et b et 126
PUBLIC 90 ..ttt ettt bbb et sb e et sb et sbe e ene 126
PURE 05 ittt bbb bbbt bbbtk b e et b et b e et b ere 127
READ 90 ottt ettt sttt h ettt ettt b e te s b e te e bt erenrerarea 128
REAL 90 1ottt sttt b et b ettt et et b e e te st e te et e rearerere 130
RECORD 8 T et ettt ettt ens 131
RECURSIVE 90 ...ttt sttt sttt b et sb ettt sa e b s tesbesantesaeseanens 132
REDIMENSION 8 77 .oociiieictie ettt sttt sttt sttt sttt ettt e besae e ntesne e 133
RETURN 77 ettt ettt b e et sb et be et sbe et sbe e nresbeneare s 133
REWIND 77 oottt ettt ettt b et sb et be et sbe e be st nresbenenre s 134
SAVE 77 ettt bbbt bbb nae e enen 135
SELECT CASE 90 ...t ittt ettt bttt 136
SEQUENGCE 90 ..ttt ettt bt 136
ST O P 7T bbbt b ettt nn 137
STRUCTURE 8 77 oottt ettt sttt sb e neaenes 137
SUBROUTINE 77 oottt st b et besn s ans 139
TARGET 90 ottt ettt bbbt bbb bbbt n e bt n et b ne e 140
THEN T e e et b e et a e e R e bt E et et e te e bt te et st eteabe e ere s 140
LI 2 =S & SO 141
UNION I (OSSPSR 142
USE 00 1ttt bRt E R bbbt E bR bt n bt eee 144
VOLATILE 8 77 ottt bbbt bttt 145
WHERE 90 .. it bttt bbbttt 145
WRITE 00 1ttt bbb R bR Rt b R Rt b bbbt enn 146
FORTRAN ARRAY S ...ttt sttt sttt bbbttt nb e 149
4.1 ARRAY TYPES.....iiiiiiiiieiieeiteeeett ettt ettt ettt sttt et ettt ettt sanesaaesbeenaeen 149
411 EXPHCIt SNAPE AFTAYS ..ottt e 150
412 ASSUMED SNAPE AFTAYS.....ecveiveieiiiteriete sttt sttt sttt bbb 150
4.1.3 Deferred SNAPE AITAYScviiiieieie ittt 150
414 ASSUMEA SIZE AFTAYS ...ttt sttt ettt sttt ettt sb ettt b e besaesbesresneas 150
4.2 ARRAY SPECTFICATIONeirutiiienitentientieteneesteenieenseeseesnesssesaeesueesueenseenseesseennessnenseessens 150
4.2.1 EXPHICIE SNAPE AITAYS ...vecviciieicie ettt sre e te e neas 150
4.2.2 ASSUMEA SNAPE ATTAYS......eiveitieieiieieiiesie e ste s e e e e s e ste e sre s e s e esee e enbesresresresneaneas 151
4.2.3 Deferred SNAPE AITAYScveiviieieie sttt sre e e e sr e e sresre e eneas 151
4.2.4 ASSUMEA SIZE ATTAYS ..vvieveeeitesieieeeieseesestestestesseesaeseestestesresresneeneeeeseseeseesaesneenens 151
43 ARRAY SUBSCRIPTS AND ACCESS.....uteutteuttettenteenteenteenteeieseesieesieesueenseenseensesnsesseesseessens 151

431 Array Sections and SUBSCHIPt THPIELS.......ccoovviiiiiie e 152

432 Array Sections and Vector SUDSCIIPLScceovireininereee e, 153
4.4 ARRAY CONSTRUCTORS ..uuvvvvieeeeeeeiiurreeeeeeeeeiiisreeeseseeesiisreseseseeeeeisssseeeseessesisrssseseesemsinnes 153
4.5 CM FORTRAN EXTENSIONSuuutiiiiieeeeeiiitinreeeeeeeeeiinreeeeeeeeesianrereeeeeeesetreseseseeeensnrneeeees 153

45.1 The ARRAY Attribute <P RT 153

45.2 Array Constructors EXtENSIONS § ..coocv e 153

INPUT AND OQUTPUT FORMATTING ...ttt ettt e s 155
5.1 FILE ACCESS IMETHODScottiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e e et e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaees 155

5.1.1 Standard Preconnected UNItS.........covuveiuiiiiie ettt 156
52 OPENING AND CLOSING FILES......uuviiiiiiiiiiiiiiiee ettt eeeaaneee s 156

5.2.1 DITECE ACCESS FlBS...iiviiiitii ittt s e e sba e e sbee e srae e 157

522 ClOSING @ FlE ... 157
53 DATA TRANSFER STATEMENTSuvvtiiiiiiiiiiteeeeeeeeeeiiureeeeeeeeesissaereseseeesntseseseseeesnsssseeeess 159
5.4 UNFORMATTED DATA TRANSFERovvviiiieiiiiiitrieeeeeeeeecitteeeeeeeeeeeetneseeeeeeeeesnnseeeseeseeninnnes 159
5.5 FORMATTED DATA TRANSFERuvvviiiiiieiiiitiieeeeeeeeitreeeeeeeeeevaeeeeeeeeesetaeseseeeeeennnnneeeees 160

55.1 Implied DO List INput OULPUL LISEoveiiieiiiiiee e 160

55.2 Format SPeCIfiCatioNScociiieiieie i 161

5.5.3 Variable Format EXpPressions ,SEXPI=cccccoieiiieieeieeieeniesiesesesseseseessessessessessens 170
5.6 NON-ADVANCING INPUT AND OUTPUT....ccciiiiiieiiiieeeeeeeieeeeeeeeeeeenaeeeeeeesssnannreeeessseennnnes 170
5.7 LIST-DIRECTED FORMATTINGuuuuuiiiieeiiiiiiieeeeeeeeeeiiaeeeeeeeeeessseeeeseseeessssanseeesesssssnnseeses 171

57.1 LiSt-0ireCted INPUL.......ccveieiiie it nnens 171

572 LiSt-direCted QULPULeiveieiciece st neens 172

5.7.3 Commas in EXternal FIel..........oooioueiiiiiiee ettt 174
5.8 NAMELIST GROUPScooiutviriieeeeeeeiieeeeeeeeeeesiareeeeeeeeesistaereeeseeesstssreseseessnssrseeeseesennsnnes 174

58.1 NAMETISE INPULcviieieice bbb 174

5.8.2 NAMELISE QULPUL ...ttt bbbt 175

FORTRAN INTRINSICSottt e et setae e sreeas 177
6.1 FORTRAN 77 AND FORTRAN 90/95 INTRINSICS BY CATEGORYccvvveeerreeeeeneeeeennnen. 177
6.2 FORTRAN 77 AND FORTRAN 90/95 INTRINSICS DESCRIPTIONSccoouvveereeeeeienrneneennn. 194

FY =S T A 194

ACHAR LSO 194

O 1 T A 194

ACOSD A AR 195

ADJUSTL LSO SRR 195

ADJUSTR LSO TR 195

AIMAG A TR RRTTRRTTR 196

AINT A TR 196

o I [TR 197

ALLOCATED 90 ..ttt ettt ettt e e s te e e s s bt e e e s bt it s e s st e e e s s bbe e s sesbae e s sabenas 197

AND B T e e e e — e e a e e e s nba s abesares 198

ANINT A R 198

ANY LSO 198

ASIN A £ 199

vi

ASIND T e e 199

ASSOCIATED 90 ovvvvvevvoeeeeeeeeeeeseseessesesseeeseessssesssssesseeesessssssesssesssessssssesseessesssseesseeesee 200
1 Y N oo 200
F N 2 & OO 201
F Y o OO 201
TN YN T & Ao 201
YR 4 = N 202
Y3 S & VOO 202
CEILING 90 oeoooeeeeeeeoeeeseeeeeeeeeeeeeseeseseeeseees e sesseseeee s seess s sesee e sseee s 202
(oY= & OO 203
[0V =TI G & OO 203
(030 Y 1= IR T OO 204
[010) N Lc T & OO 204
(010 X & OO OO 204
(03] 0 NN & OO 205
COSH 77 eovveeeeeeeeeeeeeeeeeeeeeseeeseseeeesees e ess s es s e s s s es e 205
COUNT 90 ceeoemmeeeeeeeeeoeeeeseeeseeeeseeeesseeseseeeseesssesseseeseseee e s seesse e sesee e sseeee e 205
CPU_TIME 95 .ooooooovveeeoeeeseeeseeeeeeseeessesseseeeseesssesssseesesessssessssesssesssssssssees s sseeee e 206
CSHIFT 90 coooemeeeeeeeeoseeeseeeseeeeeeseeesseeseseeesseessesseseeseeee e sesesse s sssee e se e 207
DATE_AND_TIME 90 oovvveeeoteeeeeeeeeeeeeseseseeeesseessseseseeeseeesssessssessseesssesssseesssessesessseennes 207
)= OO 208
21 [T G & SO TOTON 208
DIGITS 90 coovvvveerooeeeeeeeeeeeseesseeseseeeseseeseesesssessseesseesesseeseeesssesesseesseeeseesssseeseeeesessesseennes 209
5 1Y T 2O 209
DOT _PRODUCT 90 ..vvvveeeroeseeeeeeeoseesseeseessesssessseessssseseessssssssssssssesseesssssssssessessesssennes 209
DPROD 90 ovvveeooveeeeeseeeeeessesseesssseeseeeesesssssessseesseesssseeseseesssessssessseeessesssssesssessessssseennes 210
EOSHIFT 90 woomtoeeeeeeeeeeoreeeseseeseeesesessssesessessssesssssssssessseesssesssssesssssessssssssessseessessssseennes 210
EPSILON 90 cooooreeeemeeeeeeoroeeseeseseeesesessssesessessssesssssssesesssessssssssssesssssessssssssessseessessssseennes 211
=103V -1 & OO 211
230 & OO 211
EXPONENT 90 c.ooooeeeoeeeeeeseeeesesseseeesesessssesessesseeessssssesessssesssesssssesssseessssssssessesessessssseennes 212
FLOOR 90 iovveeeeeoeeseeeeeeeeeseeeseessseeeseeessesesesessseeeseessseeeseeess s esseess e eessseeseesseseesseennes 212
==Y [) NN o OO 212
HUGE 90eovvveeeooeeeeeseeeeeeseesseeseesesseeeseesessseesseesseesessseseeesssssesseenseessessssssessessessessnennes 213
o 1~ S OO 213
IAND 77 oo eeeees e ess e s s e s e s e sen e 213
IBCLR 77 oooeeeeeeeeeeeosoesesessseseseseesssssesseesseeessesssseesseeeesesssesess s eeessssessees e essessseseeseeesesesees 214
IBITS 77 ooeeeeeeeeeeeeoeeseeessseseeeseeesseeess e eees e ses e ee s sesese e eseee e esesesesee e seseeees 214
IBSET 77 ooeoeeeeeeeeeeeseeesssesssesesesesessesesseesseeessesseseesseessesssssess s e s seseees e eesessssseee e sesesees 215
ICHAR 90 ..ooooovveeeeeeeeeeeeeeeeeeseeeeseeeseeeseeees e esees s es e sesese e eseess e eeeessseseee e seeees 215
=01z S OO 215
1T T Ao 216
INDEX 90 eooioveveeeeeoeeeeeeseeeoesesesseeeseeeseeeeseeessseesseessseseseseseeess s ssseeeseeseeeeseseee e 216
ININT 8 77 oo eeeeeeesseees e seeeees s seeese e se e s s s e sesee s 217
INT 77 coeeeeeeeeeeeeee e eeeee e es e e e 217

TOR 77 e 218
ISHET 77 e 218
ISHETC 77 e e 219
LZEXT 8 7T et bbbttt r e 219
JINT B 7T et 220
ININT 8 77ttt b e 220
KIND 90 s 220
KNINT 8 T T e 221
LBOUND 00 et 221
LEN 00, et 222
LEN_TRIM 0. . ittt 222
LGE 00ttt 222
LGT 00ttt e 223
LLE 90 ittt e 223
LLT 90 it e 224
LOC T 224
LOG T e 224
LOG10 T e s 225
LOGICAL 00 et 225
LSHIFET 8 77 it 226
MATMUL 00 226
MAX T e 227
MAXEXPONENT 90 ..ottt 227
MAXLOC 00ttt e 227
MAXVAL 00, e 228
MERGE Q0. s 229
MIN T s 229
MINEXPONENT 90 ..ottt s 229
MINLOC Q0. s bbb 230
MINVAL 0. e 230
MOD 77 s 231
MODULOD 90t 231
MVBITS 90, ittt sr b 232
NEAREST 00t e 232
NEQV 8 77 ittt bbb 233
NINT 77 e s 233
NOT T e 233
NULL 08 e s 234
O R B 77ttt 234
PACK 0. i s 234
PRECISION 0. ..t s 235
PRESENT 00 et 235
PRODUCT 90t 236
RADIX 90 236

RANDOM_NUMBER = 90.....ciiiiiiiiiiiiie s 237

RANDOM_SEED = 90 ...ttt sttt et st 237
RANGE 00 1ttt e e b e be e be e e be e beeebe e e beeeabe e abeeaabeeanreenaras 238
REAL 77 ettt ettt e e e b e e be et e e e be e e breeabee e abaeenree et 238
REPEAT 90 oottt ettt ettt ettt ettt sttt e b e e ebe e e s beeeebe e e sbaeeebeeesbeeebeeesbaeenbeeeaes 239
RESHAPE 00 ittt e e e r e e abb e e e re e ahbe e arreearbeearaeenaes 239
RRSPACING 90 ..ttt ettt ettt e e ebe e et e e nbe e e sbaeeebee e sbreenbeessbeeenbeeeaes 239
RSHIFT 8 77 ittt et ettt e b e et e et e et e e besraesaeas 240
SCALE LS PSSR 240
SCAN 00 it e e e e ate e e e e are e s reenree s 240
SELECTED _INT_KIND = 90....uiiiiiieiieiie e eie ettt snae et san s nnn e 241
SELECTED_REAL_KIND = 90 ..uiiiiiiiiiieiiie ettt sttt e 241
SET _EXPONENT 90, .ttt ettt ettt nne e 242
SHAPE 00 1ttt e e b e e be e be e be e beeebe e abeeaabe e abeeaabeeaareeaaras 242
SHIF T 8 77 ettt e e st e e s bt e e st e e stre e sbbe e sabeestbeesaeeestreens 243
SIGN T e bbb be e be e abe e e be e eabe e aaae e atbe e nareenaras 243
R PP PPORROP 243
SIND A AT PSSP 244
SINH A AT PSSP 244
SIZE £ P 244
SPACING LS SRS 245
RS R AN I O PSSR 245
ST] I PP ROSRP 246
SUM 00 i — et —e e e e —— e e e e e e e e at—e e e anbbe e e e ahbeeeearaeeeaaraeas 246
SYSTEM_CLOCK 90 ..ttt sttt sttt nnes 247
TAN T e bbb be e be e abe e e be e eabe e aaae e atbe e nareenaras 247
TAND 77 e e e et e e b e e nh b e e ahre e atbe e aareeateas 247
TANH 77 ettt ettt e e e e et e e b e e b b e e hre e etbe e nareeateas 248
TINY 00 1ttt e e e —e e be e re e be e e beeaabe e e reeeabeeaaeearbeearreenars 248
TRANSFER 90 oottt ettt e e ae e e s bb e e s are e sbb e e sbee e sbbeesaeeenaeas 248
TRANSPOSE 90 ...ttt ettt et e e s be e e st e e s bre e sbb e e sbeeesrbeesaeeesaeas 249
TRIM £ P 249
UBOUND LSS 250
UNPACK 00 et e e et e e e e —a e e e e e e e bbe e e aabaeeeebrreeaibbeeaans 250
VERIFY 00 ettt et e e e e et e e e et e e e et e e e e st b e e e eentee e e eareeas 251
XOR LI OO 251
A = I < A USRS O PRSP 251
6.3 SUPPORTED HPF INTRINSICS ...cceeiiiiiiiiiieeeiiieeesitee e ettee e et eeereeeesevaeeesneveeessesaeeenesaeaans 252
6.4 CM FORTRAN INTRINSICS §....eeviiiiiiiiiieiiieeeite e ettt e eeivee et eeesitveeesstvaeessesaeeesnseeesnnneas 254
(1S 1 1= R TSRO 254
EOSHIFT 8 et e e e et be b et e et a et a e be e ebeebeaeeaaeeabeeareebe e 255
RESHAPE 8 et e e e et be b et e et a et a e be e ebeebeaeeaaeeabeeareebe e 255
7 3F FUNCTIONS AND VAX SUBROUTINES........cooi ittt 257
7.1 BF ROUTINES ...ttt ettt ett e ettt e e et e e et e e e etae e e eenaeaeeeateeeeeaaeeeeeaseeeeennenas 257

viii

ACCESS .. it —————————— 258
=Y = 11 TR 259
BESSEI TUNCLIONS.....eeieiitiie ettt ettt e e ettt e e st e e e s s bt e e s st b a e s sbeaaessbbaeessbansesanes 259
(01210 [T TR TROTR 260
(o101 1010 o TR 261
(o1 1111 TR 261
(0= LT TR 261
oL (o) g (T Tox 1 4 T 262
oL A TT L T 262
LS 263
L(0 F= =TT 263
L8[(o OSSOSO PSP U RSP RRTPRTROPIO 263
L1 0T o DR 264
L(0] TR 264
L] 011 L (oSS UP USSR 264
(TR 265
LEYCT Y OO 265
11 (<] | O 266
0 1=] g (0] SRS 266
0 1=] ¢ 1 o TSR 266
= oo SRS 267
0[] (PP T VPP PP PR 267
GELCWE ..t bbb bbb e b e Rtk h ettt b ettt b e e bt b e 267
GBEBIV . 268
o T=1 0 [0 PO OSSOSO UV URURURURRRRRN 268
o T=11 (oo TSSOSO U TR PRURURRRRRN 268
0 T=11 o] (o TSSOSOV URUR USRI 269
o T=1 (0o SRRSO 269
0] 11111 269
910511 R 270
10 P 270
1= oV 270
(L0 1411 PR 271
ESAEEY e 271
=T 271
1L TR ORR T 272
FINIK e e e e e e et e e b e e e —e e e be e e be e e be e et e e e bt e ateeabeeseneaats 272
101 0] [0TSR 272
[T F R 273
LT <R 273
0= | 0T3O 273
001 [0 Tod G 274
111 0 1 £ 274
[0 £5) 1 275

PULC <.t 275
[SLULC<] TP PR TR RO UUR PPN 276
(01510] o TR TP U PO PR UP PR UPRRTRTO 276
rand, IrANd, STANGooiiiee ettt et e e ebe e et e e e ebe e s beeebeesebeeebeeees 277
random, irandm, Aran0mcceoceiiiic bbb e ae 277
=T 0 [0 PRSP UPPTSTRPPPRPRN 278
=T 0= SRS 278
FINOBX .ttt ettt ettt st et e et e et e et e ebe e ebe e beesbe e s besreesbeesbeesbeebeenbeaabesaseebsebeesbeenbenrsesbaentes 279
SECNAS, ASECNASveiveireieiitee ittt ettt et e st e et e et e st e s te e sbeesbeetesatesbeeebeebeesbessbestaesbeesbeetesnnesnes 279
] 1o LSRR 280
Sl bbb bbb 280
L £ LI) 1= | A £ = | SR 280
SEIMIB ettt e e h e re e b be e ehre e b beeaheeeahbeeehreeabbeeebaeeabbeeaareentras 281
SYMINK 1.ttt bbb b et b e bt b e R bR e et e bbbt bt be Rt e ene e nas 281
YR (=] 1 OO TP O U PR PRPPROTRTO 282
LSRR 282
LSRR 283
L1470 RO PO PR PR OPRTP 283
UNTINK oottt ettt et e et e et estaesbeesbeesbeebeenbeeabesbeeebsebeesbeenbesrsesbaestes 283
LTz UL SO REPUPRUPRRUONt 284
7.2 VAX SYSTEM SUBROUTINESooiiiiitiiieeiieeeeeitteeeeetteeeeeseeeeeseeeeeesveeeeesseeeeessesseensreseeanes 284
7.2.1 BUIE-IN FUNCLIONS ...ttt re s 284
L IO O =T) TSSOSO TS U PSSP PPTPRPPTON 284
=t) OSSR 284
QOVAL() +evvenee ettt sttt ettt e b bbbt R bRt b e b e Rt e e ek bbb et ne e e nnas 285
722 VAX/VMS SYSTEM SUBROUTINESceeeivieireerireeireesreeereesreesssesesesssessssessssessssesas 285
AT E e e b e bt be e be e be e e be e e be e aabe e abeeaabeeareenaras 285
) I PR SROURRPRR 285
GETARG ...ttt et e b e e be e e be e e be e e b e e e be e e be e teeebe e taeeree s 286
A (OSSPSR 286
D ISR 286
A 2 I PSP R 286
T PR TROT 287
RS L0 AN 5 1 TR 288
B IELYLOOR 288
OPENMP DIRECTIVES FOR FORTRANoooiiiiit ettt ntee e 289
8.1 PARALLELIZATION DIRECTIVESuttiiiiuiiieiiiiieesiieeeesireeeesitaeeesseseseesssseeesssseessssseseessssesssssens 289
8.2PARALLEL ... END PARALLELootiitiiitiieeeeeeeeeeeete ettt eve s 290
8.3 CRITICAL ... END CRITICALooiitieecee ettt eeaee e enee s 292
84 MASTER ... END MASTER........cootiiiiiitie ettt eaeeeaee s 293
8.5 SINGLE ... END SINGLEooiiitiiiieeee ettt ettt ettt s eeaeeeaeean 294
B.ODO ... END DO ..ottt e e et et e et e et e ere e ereeeaeean 295

T BARRIER ..ottt s 297

.8 DOACROSS ... e 297

I N TN B 51 2 S D L PO TRRR 298
8.10 SECTIONS ... END SECTIONSoooiiiiieeeee et e 299
8. 11 PARALLEL SECTIONSttt e e e e eeaneeeenaneeeens 299
A2 ORDERED ... e enarae s 300
LB ATOMIC ... e et e e et e e ettt e e e et e e s et e e e s eaaeeeeeaaeeesaaeeeens 301
LA TLIUSH ... ettt e e et e e ettt e e et e e s et e e e s eaaeeseeaaeeesaaneeens 301
8. 15 THREADPRIVATEoooioieeeeeeeeeeee ettt et st e e et e s e eeseaeee e 301
8.16 RUN-TIME LIBRARY ROUTINEScociiiiiitiiiiiiieeiiiiitieeeeeeeeeieeeeeeeeeeesaneeeeeeeseensnneeseeesseennnnnes 302
8.17 ENVIRONMENT VARIABLESuutttiiiiiiiiiiiteeeeeeeeeeiireeeeeeesessasseeeeesseesisssesesessssssnssssesesssmnsnnes 304
O HPFE DIRECTIVES.ttt ettt e st e s st e s s st e e e s s bt e e s sbaae e eaees 305
9.1 ADDING HPF DIRECTIVES TO PROGRAMSouvviiiiiiiieiitiieieeeeeeeeiieeeeeeeeeeeinreeeeeeeeennnnes 305
9.2 HPF DIRECTIVE SUMMARYooiiutttiiiieeeeiiiteeeeeeeeeeiiareeeeeeeeesaaaeeeseeeeesnstaeseseseeennssnnseeeens 306
ALIGN = REALIGN ..ottt ettt ettt b e e et s e st a e e s e abbe s e sban e e s sbbee s 307
DIMENSION ...ttt ettt e et e e s e bt e e e st e e s s eb b e e e s sabas s s sabaeesssbbaeeseabaneesarenas 308
DYNAMIC ...ttt e et e s et e e e st e e e s ettt e e s sbas s s sbbsesssbbaeessbeneesrenas 309
DISTRIBUTE - REDISTRIBUTEooiiitiie ettt vttt svae s 309
INDEPENDENT ...ttt e e s st e e s e bt e e e s sbb e e e s sabbe e s sabeeesssbbeeessrbeneaans 311
N L 1= N R 311
PROGCESSORS ...ttt ettt e e e et s e st e e e s sab e e s aabee e e sbaeeessbaeeesasbeeeesnnes 312
NO SEQUENCGE.........oii ittt e et e et e s ba e s be e e beesabeeateesrbeesnreennnes 313
SEQUENC E ... oottt sttt s e e st e e s ba e et e e s be e e beeenbeeesteeeteessteeaneenses 313
TEMPLATE ...ttt e e ettt e e e s s ettt b et e e e e e s s sbbbabeeesesssbbbabeeeeesssasrreres 314
APPENDIX A [o I 1 @ A IS 317
ABSTRACT _TO _PHYSICAL....cittiieiie ettt sttt st 318
GLOBAL _ALIGNMENT ...ttt te et s sae e st a e be e e nbestaesraesneas 319
GLOBAL _DISTRIBUTIONottt ettt sttt baebe e snaesraesneas 319
GLOBAL _LBOUND......ciciicee ettt ettt sae e s be e te et e entesneesta e teenreennean 319
GLOBAL _SHAPKEottt sttt ettt st e s ae e s be e te et e eneesneesta e teeneenneeas 320
LTI 27 I] 74 SSTS 320
GLOBAL _TEMPLATE ...ttt sttt ettt st et e e ste et e aneesne e ta e teeseeanneas 321
GLOBAL_TO_LOCAL ...ttt ettt ettt st nte e eneeaneesnaensaeseenaeenennrannnens 321
GLOBAL_UBOUNDciiiiiieieeie e ste sttt sre e steesteesteaeesneeaneessaensaenseensesseessanssens 322
LOCAL _BLKCNT ittt sttt ettt ettt et sre e sae e b e beenbeennenne e 323
LOCAL_LINDEX ...ttt sttt st et ee et sbe et et enbesne e 324
LOCAL_TO_GLOBAL ...ttt sttt ettt st sttt ettt s et steente e s 325
LOCAL_UINDEXt ciiiiiiieiee e ste sttt st ste s teete et estt e st s taesteetessaessaesaeesaeesteenteensesneenneenes 325
MY _PROCESSORottt st te et st s b e e be et e e saestaesteesteesteanneenes 326
PHYSICAL _TO _ABSTRACT ...ttt sttt ee s s ta e te e ste st s re e ste e steebeeneesneesreenreens 326
N = TR 329

X1

List of Tables

Figure 1-1: Order of StatemMENtSccccviveiiiieiierieeie ettt et ste e te et ereeeaesteesseeseesaessnessseans 22
Table 1-1: FOrtran CharaCtersc.ccueirieieinieiiinteteiieteteteteteseee et st sre et s naene e 22
Table 1-3: Fixed Format Record Positions and Fields..........cocccceciveririnenninennineinenecnenenenn, 24
Table 1-4: Fortran Operator PreCedencCe.ivvirieriieiieiieieeiiesitete ettt 28
Table 2-1: Fortran Intrinsic Data TYPeS......ccvecvieierierieieeieeiestesieesieete e seeseee e eseeeesnnessaeseens 38
Table 2-2: Data Types Kind Parameters (€Xamples)cceeveriieriierieriieiiesieneeie e eeeseeseeeeeens 38
Table 2-3: Data Type EXteNSIONS. ...ccueeiuieieiiiiieiiierit ettt ettt ettt ettt e e eeeens 39
Table 2-4: Data Type RanKscoooiiiiieeee e 40
Table 2-5: Example of Real CONSLANtSccooiiriiiieiiieiieieeiesieeeee e 42
Table 2-6: Double Precision CONSIANLS.c..eerereeriiieirieietenteeeiesreteiesreeeb et seene e 42
Table 3.2: OPTIONS Statementcccccueriiriinirieieieieieteie sttt st 120
Table 5-1: OPEN SPECITIETS ...eeccviiiiieeiieiiiieiie ettt esteeiteeteseeetee st e saeesbeeebeessbeessseessseensseenssas 157
Table 5-2: Format Character Controls for a Prnter..........cocecveeveiniecieinecinineeiieeneeeseene 162
Table 5-3: List Directed INPut ValUescccoevviiiieieiieiieiieiecieseee et see e 171
Table 5-4: Default List Directed Output FOrmattingcccceeevevvierieneeniieieeieseesieeveeve e 173
Table 6.1: NUmeric FUNCHONScccoioieiiiiiiicierceeceee et 178
Table 6.2: Mathematical FUNCHONS..........cc.ccoouiiriiniiiiiiiciicrceeeee s 181
Table 6.3: Real Manipulation FUNCHONS........cceeiieiiiiiiiieriiee e 183
Table 6.4: Bit Manipulation FUNCHIONSccoiiiiiiiiiiieiieieeee e 184
Table 6.5: Fortran 90/95 Bit Manipulation Subroutine..............ccocoeeiiereeieeoeniereereeeee e 186
Table 6.6: Elemental Character and Logical FUnCtionsccccoceeirieiieieneneneseecececee 187

xii

Table 6.7: Fortran 90/95 Vector/Matrix FUNCHONScccuevviiiiiiiiiieeeeieeeeceee et enes 188

Table 6.8: Fortran 90/95 Array Reduction FUNCHONScccovveiiiiinienieiieieeieeeeeeie e 188
Table 6.9: Fortran 90/95 String Construction FUnCtions...............ecceeveevieneecieeienieneeeeeeene e 190
Table 6.10: Fortran 90/95 Array Construction/Manipulation Functions........c..c.ccecevveverceienenee. 190
Table 6.11: Fortran 90/95 General Inquiry FUNCLIONS..........cccceecierierieniieieeeeeeeeeee e 191
Table 6.12: Fortran 90/95 Numeric Inquiry FUNCHIONSccocvriiiiinieiieieieieeeeee e 191
Table 6.13: Fortran 90/95 Array Inquiry FUNCLiONSccccoeiiiiiiiiiieieeeeeeeeeee e 192
Table 6.14: Fortran 90/95 String Inquiry FUNCHIONcoooiiiiiiiiiiiieieeeeeeeeee e 192
Table 6.15: Fortran 90/95 SUDTOULINES.........co.eoveirieirierieiienietnientetee ettt ettt seeve e neenens 193
Table 6.16: Fortran 90/95 Transfer FUNCHONoovecivinieininiiinicncecrceeneee e 193
Table 6.17: Miscellaneous FUNCHONS..........c.coerieireniiinineineceneeeseeee et 193
Table 6.8: HPF Intrinsics and Library Proceduresccceveuerierienieniiiieeieseeieeve e eve e 252
Table 8-1: Initialization of REDUCTION Variablesc.coccevvenieinieneineneeneneineneeneneenens 292
Table 9-1: HPF Directive SUMMATY.........cccccverieeiieeieriienieesieesiestesteseesseeeeesseeseesseenseensesnsessnesses 306
Table A.1: HPF_ LOCAL LIBRARY Procedures..........cccccveruerierierieniieieeeeeeeeneeeieeeesvesenennees 317

List of Figures

Figure 1-1: Order of Statements.coouiiiiiieriiieeiece ettt 22

Xiii

Preface

This manual describes The Portland Group's implementation of the FORTRAN 77, Fortran 90/95 and
High Performance Fortran (HPF) languages. Collectively, The Portland Group compilers that
implement these languages are referred to as the PGl Fortran compilers. This manual is part of a set of
manuals describing the Fortran language and the compilation tools available from The Portland Group.
This manual presents the Fortran language statements, intrinsics, and extension directives. The Portland
Group’s Fortran compilation system includes a compilation driver, multiple Fortran compilers,
associated runtime support and mathematical libraries, and associated software development tools for
debugging and profiling the performance of Fortran programs. Depending on the target system, The
Portland Group’s Fortran software development tools may also include an assembler or a linker. You
can use these tools to create, debug, optimize and profile your Fortran programs. The following section,
"Related Publications," lists other manuals in the PGI documentation set.

Audience Description

This manual is intended for people who are porting or writing Fortran programs using the PGI Fortran
compilers. To use Fortran you should be aware of the role of Fortran and of source-level programs in
the software development process and you should have some knowledge of a particular system or
workstation cluster. To use the PGI Fortran compilers, you need to be familiar with the Fortran
language, either FORTRAN77, Fortran 90/95 or HPF, and the basic commands available on your host
system.

Compatibility and Conformance to Standards

The PGI Fortran compilers, PGF77, PGF95 and PGHPF, run on a variety of 32-bit and 64-bit x86
processor-based host systems. The PGF77 compiler accepts an enhanced version of FORTRAN 77 that
conforms to the ANSI standard for FORTRAN 77 and includes various extensions from VAX/VMS
Fortran, IBM/VS Fortran, and MIL-STD-1753. The PGF95 compiler accepts a similarly enhanced
version of the ANSI standard for Fortran 90/95. The PGHPF compiler accepts the HPF language and is
largely, though not strictly, a superset of Fortran 90/95. The PGHPF compiler conforms to the High
Performance Fortran Language Specification Version 1.1, published by the Center for Research on
Parallel Computation, at Rice University (with a few limitations and modifications, consult the PGHPF
Release Notes for details).

For further information on the Fortran language, you can also refer to the following:

e American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

Preface 15

e [SO/IEC 1539 : 1991, Information technology — Programming Languages — Fortran, Geneva,
1991 (Fortran 90).

e [SO/IEC 1539 : 1997, Information technology — Programming Languages — Fortran, Geneva,
1997 (Fortran 95).

e Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

e High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston,
Texas (1993), http://www.crpc.rice.edu/HPFF.

e High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston,
Texas (1997), http://www.crpc.rice.edu/HPFF.

e OpenMP Fortran Application Program Interface, Version 1.1, November 1999,
http://www.openmp.org.

e Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

e IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

e Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

Organization

This manual is divided into the following chapters and appendices:
Chapter 1, Language Overview, provides an introduction to the Fortran language.

Chapter 2, Fortran Data Types, describes the data types supported by PGI Fortran compilers and
provides examples using various data types. Memory allocation and alignment issues are also discussed.

Chapter 3, Fortran Statements, describes each Fortran and HPF statement that the PGI Fortran
compilers accept. Many HPF statements are in the form of compiler directives which can be ignored by
non-HPF compilers.

Chapter 4, Fortran Arrays, describes special characteristics of arrays in Fortran 90/95.

Chapter 5, Fortran Input/Output and Formatting, describes the input, output, and format statements that
allow programs to transfer data to or from files.

Chapter 6, Fortran Intrinsics, lists the Fortran intrinsics and subroutines supported by the PGI Fortran
comilers.

16 Preface

Chapter 7, 3F Functions and VAX System Subroutines, describes the functions and subroutines in the
Fortran run-time library and discusses the VAX/VMS system subroutines and the built-in functions
supported by the PGI Fortran compilers.

Chapter 8, PGl Language Extensions, lists the language extensions that the PGI Fortran compilers
support.

Chapter 9, Directives, describes the HPF directives which support data distribution and alignment, and
influence data parallelism by providing additional information to the PGHPF compiler.

Chapter 10, OpenMP Directives for Fortran, describes how OpenMP shared-memory parallel
programming compiler directives, library routines, and environment variables are used to specify
shared-memory parallelism in Fortran programs.

Appendix A, HPF_LOCAL Library Procedures, lists the HPF LOCAL LIBRARY procedures
supported by the PGHPF compiler.

Hardware and Software Constraints

The PGI compilers operate on a variety of host systems and produce object code for a variety of target
systems. Details concerning environment-specific values and defaults and host-specific features or
limitations are presented in the PGl User’s Guide, the man pages for each compiler in a given
installation, and in the release notes and installation instructions included with all PGI compilers and
tools software products.

Conventions
This PGI Fortran Reference manual uses the following conventions:
italic is used for commands, filenames, directories, arguments, options and for
emphasis.
Constant Width isused in examples and for language statements in the text.
[iteml] square brackets indicate optional items. In this case item1 is optional.

{item2 | item3} braces indicate that a selection is required. In this case, you must select
either item2 or item3.

filename ... ellipsis indicate a repetition. Zero or more of the preceding item may occur.
In this example, multiple filenames are allowed.

FORTRAN Fortran language statements are shown using upper-case characters and a
reduced point size.

Preface 17

<TAB> non-printing characters, such as TAB, are shown enclosed in greater than

and less than characters and a reduced point size.

this symbol indicates an area in the text that describes a Fortran 90/95
Language enhancement. Enhancements are features that are not described
in the ANSI Fortran 90/95 standards.

This symbol indicates an area in the text that describes a FORTRAN 77
enhancement. Enhancements may be VAX/VMS Fortran enhancements,
IBM/VM enhancements, or military standard MIL-STD-1753
enhancements.

Related Publications

The following documents contain additional information related to HPF and other compilers and tools
available from The Portland Group, Inc.

18

The PGI User's Guide describes the general features and usage guidelines for all PGI
compilers, and describes in detail various available compiler options in a user's guide
format.

The PGHPF User's Guide describes the PGHPF compiler and describes some details
concerning the PGI implementation of HPF in a user's guide format.

Fortran 95 Handbook, from McGraw-Hill, describes the Fortran 95 language and the
statements, data types, input/output format specifiers, and additional reference material
that defines ANSI/ISO Fortran 95.

System V Application Binary Interface Processor Supplement by AT&T UNIX System
Laboratories, Inc, (available from Prentice Hall, Inc.)

The High Performance Fortran Handbook, from MIT Press, describes the HPF language
in detail.

High Performance Fortran Language Specification, Rice University, Houston Texas
(1993), is the specification for the HPF language and is available online at
http://www.crpc.rice.edu/HPFF.

American National Standard Programming Language Fortran, ANSI x.3-1978 (1978).

Programming in VAX FORTRAN, Version 4.0, Digital Equipment Corporation
(September, 1984).

IBM VS FORTRAN, IBM Corporation, Rev. GC26-4119.

Preface

Preface

Military Standard, FORTRAN, DOD Supplement to American National Standard
Programming Language FORTRAN, ANSI X3.-1978, MIL-STD-1753 (November 9,
1978).

19

1 Language Overview

This chapter describes the basic elements of the Fortran language, the format of Fortran statements, and
the types of expressions and assignments accepted by the PGI Fortran compilers.

The PGF77 compiler accepts as input FORTRAN 77 and produces as output assembly language code,
binary object code or binary executables in conjunction with the assembler, linker and libraries on the
target system. The input language must be extended FORTRAN 77 as specified in this reference
manual. The PGF95 and PGHPF compilers function similarly for Fortran 90/95 and HPF respectively.

This chapter is not an introduction to the overall capabilities of Fortran. Rather, it is an overview of the
syntax requirements of programs used with the PGI Fortran compilers. The Fortran 95 Handbook and
The High Performance Fortran Handbook provide details on the capabilities of Fortran 90/95 and HPF
languages.

1.1 Elements of a Fortran Program Unit

A Fortran program is composed of SUBROUTINE, FUNCTION, MODULE, BLOCK DATA, or
PROGRAM program units.

Fortran source code consists of a sequence of program units which are to be compiled. Every program
unit consists of statements and optionally comments beginning with a program unit statement, either a
SUBROUTINE, FUNCTION, or PROGRAM statement, and finishing with an END statement
(BLOCK DATA and MODULE program units are also allowed).

In the absence of one of these statements, the PGI Fortran compilers insert a PROGRAM statement.

11.1 Statements

Statements are either executable statements or nonexecutable specification statements. Each statement
consists of a single line or source record, possibly followed by one or more continuation lines. Multiple
statements may appear on a single line if they are separated by a ; (semicolon). Comments may appear
on any line following a comment character (!).

Language Overview 20

1.1.2 Free and Fixed Source

Fortran permits two types of source formatting, fixed source form and free source form. Fixed source
form uses the traditional Fortran approach where specific column positions are reserved for labels,
continuation characters, and statements and blank characters are ignored. The PGF77 compiler supports
only fixed source form. The PGF77 compiler also support a less restrictive variety of fixed source form
called tab source form. Free source form introduced with Fortran 90 places few restrictions on source
formatting; the context of an element, as well as the position of blanks, or tabs, separate logical tokens.
Using the compiler option —Mfreeform you can select free source form as an option to PGF95 or
PGHPF.

1.1.3 Statement Ordering

The rules defining the order in which statements appear in a program unit have been relaxed, as
compared to the ANSI standard, as follows:

e DATA statements can be freely interspersed with PARAMETER statements and other
specification statements.

e NAMELIST statements are supported and have the same order requirements as FORMAT and
ENTRY statements.

e The IMPLICIT NONE statement can precede other IMPLICIT statements.

Language Overview 21

Figure 1-1: Order of Statements

OPTIONS Statement
PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA
statements
USE statements
IMPLICIT NONE statement
Comments | NAMELIST
and IMPLICIT statements
FORMAT DATA Other PARAMETER
Specification statements
ItNtCLUDItE statements statements
statements and
ENTRY
statements Statement Function
Definition
Executable Statements
CONTAINS Statement
Internal subprograms or module subprograms
END Statement
1.2 The Fortran Character Set

Table 1-1 shows the Fortran character set. Character variables and constants can use any ASCII
character. The value of the command-line option —Mupcase determines if the compiler distinguishes
between case (upper and lower) in identifiers. By default, without the —Mupcase option selected, the
compiler does not distinguish between upper and lower case characters in identifiers (upper and lower
case are always significant in character constants).

Table 1-1: Fortran Characters

Character Description Character Description
s Comma A-Z, a-z Alphabetic
: Colon <space> Space character
; Semicolon = Equals
_ Underscore character + Plus
< Less than - Minus
> Greater than * Asterisk

22

Chapter 1

Character Description Character Description

? Question mark / Slash

% Percent (Left parenthesis

" Quotation mark) Right parenthesis

$ Currency symbol [Left bracket
Decimal point] Right bracket

! Exclamation mark <CR> Carriage return

0-9 Numeric <TAB> Tabulation character

Table 1-2 shows C language character escape sequences that the PGI Fortran compilers recognize in
character string constants. These values depend on the command-line option —Mbackslash.

Table 1-2: C Language Character Escape Sequences

Character Description
\v vertical tab
\a alert (bell)
\n newline
\t tab
\b backspace
\f formfeed
\r carriage return
\0 null
\ apostrophe (does not terminate a string)
\" double quotes (does not terminate a string)
A\ \
\x X, where X is any other character
\ddd character with the given octal representation.

1.3 Free Form Formatting

Using free form formatting, columns are not significant for the elements of a Fortran line, and a blank
or series of blanks or tabs and the context of a token specify the token type. 132 characters are valid per
line, and the compiler option —Mextend does not apply. Comments are indicated by a blank line, or by
following a Fortran line with the ! character. All characters after the ! are stripped out of the Fortran
text.

Using free form formatting, the & character at the end of a line means the following line represents a
continuation line. If a continuation line starts with the & character, then the characters following the &
are the start of the continuation line. Without a leading & at the start of the continuation line, all
characters on the line are part of the continuation line, including any initial blanks or tabs.

Language Overview 23

A single Fortran line may contain multiple statements. The ; (semicolon) separates multiple statements
on a single line. Free format labels are valid at the start of a line, as long as the label is separated from
the remaining statements on the line by at least one blank or a <TAB>. Labels consist of a numeric field
drawn from digits 0 to 9. The label cannot be more than 5 characters.

1.4 Fixed Formatting

This section describes the two types of fixed formatting that PGI Fortran compilers support, column
formatting and tab formatting.

1.41 Column Formatting

Using column formatting a Fortran record consists of a sequence of up to 73 ASCII characters, the last
being <CR>. There is a fixed layout as shown in the table below.

Table 1-3: Fixed Format Record Positions and Fields

Position Field
1-5 Label field
6 Continuation field
7-72 Statement field

Characters beyond position 72 on a line are ignored unless the —Mextend option is specified. In
addition, any characters following a ! character are comments and are disregarded during compilation.

1.4.2 Fixed Format Label Field

The label field holds up to five characters. The characters C or * in the first character position of a label
field indicate a comment line.

In addition to the characters C or *, either of the characters D or ! in the first position of a label field
also indicate a comment line.

When a numeric field drawn from digits 0 to 9 is placed in the label field, the field is a label. A line
with no label, and with five space characters or a <TAB> in the label field, is an unlabeled statement.
Each label must be unique in its program unit. Continuation lines must not be labeled. Labels can only
be jumped to when they are on executable statements.

1.4.3 Fixed Format Continuation Field

The sixth character position, or the position after the tab, is the continuation field. This field is ignored
in comment lines. It is invalid if the label field is not five spaces. A value of 0, <space> or <TAB>
indicates the first line of a statement. Any other value indicates a subsequent, continuation line to the
preceding statement.

24 Chapter 1

1.4.4 Fixed Format Statement Field

The statement field consists of valid identifiers and symbols, possibly separated by <space> or <TAB>
and terminated by <CR>.

Within the statement field tabs and spaces are ignored as are comments, characters following a !, or
any characters found beyond the 72nd character (unless the option —Mextend is enabled).

1.4.5 Fixed Format Debug Statements

The letter D in column 1 using fixed formatting designates the statement on the specified line is a
debugging statement. The compiler will treat the debugging statement as a comment, that is ignoring it,
unless the command line option —Mdlines is set during compilation. In that case, the compiler acts as if
the line starting with D were a Fortran statement and compiles the line according to the standard rules.

1.4.6 Tab Formatting

The PGI Fortran compilers support an alternate form of fixed source from called tab source form. A tab
formatted source file is made up of a label field, an optional continuation indicator and a statement
field. The label field is terminated by a tab character. The label cannot be more than 5 characters.

A continuation line is indicated by a tab character followed immediately by a digit. The statement field
starts after a continuation indicator, when one is present. The 73rd and subsequent characters are
ignored.

1.4.7 Fixed Input File Format — Summary

Tab-Format lines are supported. A tab in columns 1-6 ends the statement label field and begins an
optional continuation indicator field. If a non-zero digit follows the tab character, the continuation field
exists and indicates a continuation field. If anything other than a non-zero digit follows the tab
character, the statement body begins with that character and extends to the end of the source statement.
Note that this does not override Fortran's free source form handling since no valid Fortran statement can
begin with a non-zero digit. The tab character is ignored if it occurs in a line except in Hollerith or
character constants.

Input lines may be of varying lengths. If there are fewer than 72 characters, the line is padded with
blanks; characters after the 72nd are ignored unless you use the —Mextend option on the command line.

If the —Mextend option is used on the command line then the input line can extend to 132 characters.
The line is padded with blanks if it is fewer than 132 characters; characters after the 132nd are ignored.
Note that use of this option extends the statement field to position 132.

Blank lines are allowed at the end of a program unit.

The number of continuation lines allowed is extended to 1000 lines.

Language Overview 25

1.5 Including Fortran Source Files

The sequence of consecutive compilation of source statements may be interrupted so that an extra

source file can be included. This is carried out using the INCLUDE statement which takes the form:
INCLUDE "filename"

where filename is the name of the file to be included. Pairs of either single or double quotes are

acceptable enclosing filename.

The INCLUDE file is compiled to replace the INCLUDE statement, and on completion of that source
the file is closed and compilation continues with the statement following the INCLUDE.

INCLUDE files are especially recommended when the same COMMON blocks and the same
COMMON block data mappings are used in several program units. For example the following
statement includes the file MYFILE.DEF .

INCLUDE "MYFILE.DEF"
Recursive includes are not allowed. That is, if a file includes a file, that file may not also include the

same file.

Nested includes are allowed, up to a PGI Fortran defined limit of 20.

1.6 The Components of Fortran Statements

Fortran program units are made up of statements which consist of expressions and elements. An
expression can be broken down to simpler expressions and eventually to its elements combined with
operators. Hence the basic building block of a statement is an element. An element takes one of the
following forms:

. A constant represents a fixed value.
. A variable represents a value which may change during program execution.

. An array is a group of values that can be referred to as a whole, as a section, or
separately. The separate values are known as the elements of the array. The array has a
symbolic name.

. A function reference or subroutine reference is the name of a function or subroutine
followed by an argument list. The reference causes the code specified at
function/subroutine definition to be executed and if a function, the result is substituted
for the function reference.

26 Chapter 1

1.6.1 Symbolic Names

Symbolic names identify different entities in Fortran source code. A symbolic name is a string of letters
and digits, which must start with a letter and be terminated by a character not in the symbolic names set
(for example a <space> or a <TAB> character). Underscore (_) characters may appear within
symbolic names. Only the first thirty-one characters identify the symbolic name. Below are several
examples of symbolic names:

NUM CRA9 Y

numericabcdefghijklmnopgrstuvwxyz

The last example is identified by its first 31 characters and is equivalent to:

numericabcdefghijklmnopgrstuvwx

The following examples are invalid symbolic names.

8Q

This is invalid because it begins with a number.

FIVE.4

This is invalid because it contains a period which is an invalid character for a symbolic name.

1.7 Expressions

Each data item, such as a variable or a constant, represents a particular value at any point during
program execution. These elements may be combined together to form expressions, using binary or
unary operators, so that the expression itself yields a value. A Fortran expression may be any of the
following:

. A scalar expression

. An array expression

. A constant expression

. A specification expression
. An initialization expression

. Mixed array and scalar expressions

Language Overview 27

1.7.1 Expression Precedence Rules

Arithmetic, relational and logical expressions may be identified to the compiler by the use of
parentheses, as described in the section on arithmetic expressions. When no guidance is given to the
compiler it will impose a set of precedence rules to identify each expression uniquely.
Table 1-4 shows the operator precedence rules for expressions.

Table 1-4: Fortran Operator Precedence

Operator

Evaluated

Unary defined

* %

* or [/
Unary + or -
Binary + or -

Relational operators: GT., .GE., .

Relational operators ==, /=

Relational operators <, <=, >, >=

Relational operators .EQ., .NE., .LT.

.NOT.

.AND.

.OR.

.NEQV. and .EQV.
Binary defined

Highest

same precedence
same precedence

same precedence

Lowest

An expression is formed as:

expr binary-operator expr

or

unary-operator expr

where an expr is formed as

expression or element

For example,

28

Chapter 1

A+B
-C
+D

These are simple expressions whose components are elements. Expressions fall into one of four classes:
arithmetic, relational, logical or character.

Operators of equal rank are evaluated left to right. Thus:

A*B+B**C .EQ. X+Y/Z .AND. .NOT. K-3.0 .GT. T

is equivalent to:

((((A*B)+(B**C)) .EQ. (X+(Y/Z))) .AND. (.NOT. ((K-3.0) .GT. T)))

1.7.2 Arithmetic Expressions

Arithmetic expressions are formed from arithmetic elements and arithmetic operators. An arithmetic
element may be:

e an arithmetic expression
e avariable

e aconstant

e anarray element

e a function reference

e afield of a structure
The arithmetic operators specify a computation to be performed on the elements. The result is a numeric
result. Table 1-4 shows the arithmetic operators.

Note that a value should be associated with a variable or array element before it is used in an
expression. Arithmetic expressions are evaluated in an order determined by a precedence associated
with each operator. Table 1-5 shows the precedence of each arithmetic operator.

This following example is resolved into the arithmetic expressions (A) + (B * C) rather than (A

+ B) * (C).

A+ B * C

Normal ranked precedence may be overcome using parentheses which force the item(s) enclosed to be
evaluated first.

Language Overview 29

(A + B) * C

The compiler resolves this into the expressions (A + B) * (C).

Operator Function

*ox Exponentiation

* Multiplication

/ Division

+ Addition or unary plus

- Subtraction or unary minus

Operator Precedence
*x First
*and / Second
+and - Third

The type of an arithmetic expression is:

INTEGER if it contains only integer elements.
REAL if it contains only real and integer elements.
DOUBLE

PRECISION if it contains only double precision, real and integer elements.

if any element is complex. Any element which needs conversion to complex will be
COMPLEX converted by taking the real part from the original value and setting the imaginary
part to zero.

DOUBLE
COMPLEX if any element is double complex.

1.7.3 Relational Expressions

A relational expression is composed of two arithmetic expressions separated by a relational operator.
The value of the expression is true or false (. TRUE . or . FALSE.) depending on the value of the
expressions and the nature of the operator. The table below shows the relational operators.

30 Chapter 1

Operator Relationship

.LT. Less than

.LE. Less than or equal to
.EQ. Equal to

NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

In relational expressions the arithmetic elements are evaluated to obtain their values. The relationship is
then evaluated to obtain the true or false result. Thus the relational expression:
TIME + MEAN .LT. LAST

means if the sum of TIME and MEAN is less than the value of LAST, then the result is true, otherwise it
is false.

1.7.4 Logical Expressions

A logical expression is composed of two relational or logical expressions separated by a logical

operator. Each logical expression yields the value true or false (- TRUE. or . FALSE.) The following
table shows the logical operators.

Operator Relationship

.AND. True if both expressions are true.

.OR. True if either expression or both is true.

NOT. This is a unary operator; it is true if the expression is false, otherwise it is
false.

NEQV. False if both expressions have the same logical value

.XOR. Same as .NEQV.

.EQV. True if both expressions have the same logical value

In the following example, TEST will be .TRUE. if A is greater than B or 1 is not equal to J+17.

TEST = A .GT. B .OR. I .NE. J+17

Language Overview 31

1.7.5 Character Expressions

An expression of type CHARACTER can consist of one or more printable characters. Its length is the
number of characters in the string. Each character is numbered consecutively from left to right
beginning with 1. For example:

'ab_ &'

'A@HJi2"

'var[1,12]"

1.7.6 Character Concatenation

A character expression can be formed by concatenating two (or more) valid character expressions using
the concatenation operator //. The following table shows several examples of concatenation.

Expression Value
'ABC'//'YZ' "ABCYZ"
'JOHN "//'SMITH' "JOHN SMITH"
'J'//'JAMES '//JOY' "] JAMES JOY"

1.8 Symbolic Name Scope

Fortran 90/95 and HPF scoping is expanded from the traditional FORTRAN 77 capabilities which
provide a scoping mechanism using subroutines, main programs, and COMMONSs. Fortran 90/95 and
HPF add the MODULE statement. Modules provide an expanded alternative to the use of both
COMMONSs and INCLUDE statements. Modules allow data and functions to be packaged and defined
as a unit, incorporating data hiding and using a scope that is determined with the USE statement.

Names of COMMON blocks, SUBROUTINEs and FUNCTIONs are global to those modules that
reference them. They must refer to unique objects, not only during compilation, but also in the link
stage.

The scope of names other than these is local to the module in which they occur, and any reference to the

name in a different module will imply a new local declaration. This includes the arithmetic function
statement.

1.9 Assignment Statements
A Fortran assignment statement can be any of the following:

e An intrinsic assignment statement

32 Chapter 1

e A statement label assignment
e An array assignment

e A masked array assignment
e A pointer assignment

e A defined assignment

1.9.1 Arithmetic Assignment

The arithmetic assignment statement has the following form:

object = arithmetic-expression

where object is one of the following:

e Variable

e Function name (within a function body)
e Subroutine argument

e Array element

e Field of a structure

The type of object determines the type of the assignment (INTEGER, REAL, DOUBLE PRECISION or
COMPLEX) and the arithmetic-expression is coerced into the correct type if necessary.

In the case of:

complex = real expression
the implication is that the real part of the complex number becomes the result of the expression and the
imaginary part becomes zero. The same applies if the expression is double precision, except that the
expression will be coerced to real.
The following are examples of arithmetic assignment statements.

A= (P+Q) * (T/V)

B=R**T**xD

1.9.2 Logical Assignment Statement

The logical assignment statement has the following form:

Language Overview 33

object = logical-expression

where object is one of the following:

Variable

Function name (only within the body of the function)
Subroutine argument

Array element

A field of a structure

The type of object must be logical.

In the following example, FLAG takes the logical value .TRUE. if P+Q is greater than R; otherwise
FLAG has the logical value . FALSE.

FLAG= (P+Q) .GT. R

1.9.3 Character Assignment

The form of a character assignment is:

object = character expression

where object is one of the following:

Variable

Function name (only within the body of the function)
Subroutine argument

Array element

Character substring

A field of a structure

Above, object must be of type character.

None of the character positions being defined in object can be referenced in the character expression
and only such characters as are necessary for the assignment to object need to be defined in the
character expression. The character expression and ob ject can have different lengths. When object is
longer than the character expression trailing blanks are added to the object; and if object is shorter than
the character expression the right-hand characters of the character expression are truncated as necessary.

In the following example, note that all the variables and arrays are assumed to be of type character.

FILE = 'BOOKS'

PLOT(3:8) = 'PLANTS'

34 Chapter 1

TEXT(I,K+1) (2:B-1) = TITLE//X

1.10 Listing Controls

The PGI Fortran compilers recognize three compiler directives that affect the program listing process:

%LIST Turns on the listing process beginning at the following source code line.
%NOLIST Turns off the listing process (including the %NOLIST line itself).
%EJECT Causes a new listing page to be started.

These directives have an effect only when the —Mlist option is used. All of the directives must begin in
column one.

1.11 OpenMP Directives

OpenMP directives in a Fortran program provide information that allows the PGF77 and PGF95
compilers to generate executable programs that use multiple threads and processors on a shared-
memory parallel (SMP) computer system. An OpenMP directive may have any of the following forms:

I SOMP directive
CSOMP directive
*SOMP directive

A complete list and specifications of OpenMP directives supported by the PGF77 and PGF95
compilers, along with descriptions of the related OpenMP runtime library routines, can be found in
Chapter 8, OpenMP Directives for Fortran.

1.12 HPF Directives

HPF directives in a Fortran program provide information that allows the PGHPF compiler to explicitly
create data distributions from which parallelism can be derived. An HPF directive may have any of the
following forms:

CHPFS directive
IHPFS directive
*HPFS$ directive

Since HPF supports two source forms, fixed source form and free source form, there are a variety of
methods to enter a directive. The C, !, or * must be in column 1 for fixed source form directives. In free
source form, Fortran limits the comment character to !. If you use the 'HPF$ form for the directive
origin, your code will be universally valid. The body of the directive may immediately follow the
directive origin. Alternatively, any number of blanks may precede the HPF directive. Any names in the

Language Overview 35

body of the directive, including the directive name, may not contain embedded blanks. Blanks may
surround any special characters, such as a comma or an equals sign.

The directive name, including the directive origin, may contain upper or lower case letters (case is not

significant). A complete list and specifications of HPF directives supported by the PGHPF
compiler can be found in Chapter 9, HPF Directives.

36 Chapter 1

2 Fortran Data Types

Every Fortran element and expression has a data type. The data type of an element may be implicit in
its definition or explicitly attached to the element in a declaration statement. This chapter describes the
Fortran data types and constants that are supported by the PGI Fortran compilers.

Fortran provides two kinds of data types, intrinsic data types and derived data types. Types provided by
the language are intrinsic types. Types specified by the programmer and built from the intrinsic data
types are called derived types.

2.1 Intrinsic Data Types

Fortran provides six different intrinsic data types as shown in Table 3-1. Tables 3-2 and 3-3 show
variations and different "kinds" of the intrinsic data types supported by the PGI Fortran compilers.

2.1.1 Kind Parameter

The Fortran 95 KIND parameter specifies a precision for intrinsic data types. The KIND parameter
follows a data type specifier and specifies size or type of the supported data type. A KIND specification
overrides the length attribute that the statement implies and assigns a specific length to the item,
regardless of the compiler's command-line options. A KIND is defined for a data type by a
PARAMETER statement, using sizes supported on the particular system.

The following are some examples using a KIND specification:

INTEGER (SHORT) :: L
REAL (HIGH) B

REAL (KIND=HIGH) XVAR, YVAR

Fortran Data Types 37

These examples require that the programmer use a PARAMETER statement to define kinds:

INTEGER, PARAMETER :: SHORT=1
INTEGER HIGH
PARAMETER (HIGH=8)

Table 2-2 shows several examples of KINDs that a system could support.

Table 2-1: Fortran Intrinsic Data Types

Data Type Value
INTEGER An integer number.
REAL A real number.

DOUBLE PRECISION A double precision floating point number, real number,
taking up two numeric storage units and whose precision is

greater than REAL.
LOGICAL A value which can be either TRUE or FALSE.
COMPLEX A pair of real numbers used in complex arithmetic. Fortran

provides two precisions for COMPLEX numbers.
CHARACTER A string consisting of one or more printable characters.

Table 2-2: Data Types Kind Parameters (examples)

Type Kind Size
INTEGER SHORT 1 byte
INTEGER LONG 4 bytes
REAL HIGH 8 bytes

2.1.2 Number of Bytes Specification

The PGI Fortran compilers support a length specifier for some data types. The data type can be
followed by a data type length specifier of the form *s, where S is one of the supported lengths for the
data type. Such a specification overrides the length attribute that the statement implies and assigns a
specific length to the specified item, regardless of the compiler options. For example, REAL*8 is
equivalent to DOUBLE PRECISION. Table 2-3 shows the lengths of data types, their meanings, and
their sizes.

38 Chapter 2

Table 2-3: Data Type Extensions

Type Meaning Size
LOGICAL*1 Small LOGICAL 1 byte
LOGICAL*2 Short LOGICAL 2 bytes
LOGICAL*4 LOGICAL 4 bytes
LOGICAL*8 LOGICAL 8 bytes
BYTE Small INTEGER 1 byte
INTEGER*1 Same as BYTE 1 byte
INTEGER*2 Short INTEGER 2 bytes
INTEGER*4 INTEGER 4 bytes
INTEGER*8 INTEGER 8 bytes
REAL*4 REAL 4 bytes
REAL*8 DOUBLE PRECISION 8 bytes
COMPLEX*8 COMPLEX 8 bytes
COMPLEX*16 DOUBLE COMPLEX 16 bytes

The BYTE type is treated as a signed one-byte integer and is equivalent to LOGICAL*1.
Assignment of a value too big for the data type to which it is assigned is an undefined operation.

A specifier is allowed after a CHARACTER function name even if the CHARACTER type word has a
specifier.

For example:

CHARACTER*4 FUNCTION C*8 (VAR1)

The function size specification C* 8 overrides the CHARACTER* 4 specification. Logical data items can
be used with any operation where a similar sized integer data item is permissible and vice versa. The
logical data item is treated as an integer or the integer data item is treated as a logical of the same size
and no type conversion is performed.

Floating point data items of type REAL or DOUBLE PRECISION may be used as array subscripts, in
computed GOTOs, in array bounds and in alternate returns the PGI Fortran compilers convert the
floating point number to an integer.

The data type of the result of an arithmetic expression corresponds to the type of its data. The type of an

expression is determined by the rank of its elements. Table 3-4 shows the ranks of the various data
types, from lowest to highest.

Fortran Data Types 39

Table 2-4: Data Type Ranks
Data Type Rank
LOGICAL 1 (lowest)
LOGICAL*8 2
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8 (Double precision)
COMPLEX*8 (Complex)
COMPLEX*16 (Double complex)

O 0 9 &N L B~ W

(highest)

The data type of a value produced by an operation on two arithmetic elements of different data types is
the data type of the highest-ranked element in the operation. The exception to this rule is that an
operation involving a COMPLEX*8 element and a REAL*8 element produces a COMPLEX*16 result.
In this operation, the COMPLEX*8 element is converted to a COMPLEX*16 element, which consists
of two REAL*8 elements, before the operation is performed.

In most cases, a logical expression will have a LOGICAL*4 result. In cases where the hardware
supports LOGICAL*8 and if the expression is LOGICAL*8, the result may be LOGICAL¥*S.

2.2 Constants

A constant is an unchanging value that can be determined at compile time. It takes a form
corresponding to one of the data types. The PGI Fortran compilers support decimal (INTEGER and
REAL), unsigned binary, octal, hexadecimal, character and Hollerith constants.

The use of character constants in a numeric context, for example, in the right-hand side of an arithmetic
assignment statement, is supported. These constants assume a data type that conforms to the context in
which they appear.

2.2.1 Integer Constants
The form of a decimal integer constant is:
[s1dqdy...dy [_kind-parameter]

where S is an optional sign and d; is a digit in the range 0 to 9. The optional _kind-parameter is a

Fortran 90/95 feature supported only by PGF95 and PGHPF, and specifies a supported kind. The value
of an integer constant must be within the range for the specified kind.

40 Chapter 2

The value of an integer constant must be within the range -2147483648 to 2147483647 inclusive
(-231 to (231 - 1)). Integer constants assume a data type of INTEGER*4 and have a 32-bit storage
requirement.

The -i8 compilation option causes all data of type INTEGER to be promoted to an 8 byte INTEGER.
The —i8 option does not override an explicit data type extension size specifier (for example
INTEGER*4). The range, data type and storage requirement change if the —i8 flag is specified (this
flag is not supported on all targets). With the —i8 flag, the range for integer constants is -2° to (2% - 1)),
and in this case the value of an integer constant must be within the range -9223372036854775808 to
9223372036854775807. If the constant does not fit in an INTEGER*4 range, the data type is
INTEGER*8 and the storage requirement is 64 bits.

Below are several examples of integer constants.

+2

-36

437
-36_SHORT

369 12

2.2.2 Binary, Octal and Hexadecimal Constants

The PGI compilers and Fortran 90/95 support various types of constants besides decimal constants.
Fortran allows unsigned binary, octal, or hexadecimal constants in DATA statements. PGI compilers
support these constants in DATA statements, and additionally, supports some of these constants outside
of DATA statements. For more information on support of these constants, refer to Section 2.6, “Fortran
Binary, Octal and Hexadecimal Constants.”

2.2.3 Real Constants

Real constants have two forms, scaled and unscaled. An unscaled real constant consists of a signed or
unsigned decimal number (a number with a decimal point). A scaled real constant takes the same form
as an unscaled constant, but is followed by an exponent scaling factor of the form:

E+digits [_ kind-parameter]

Edigit [_ kind-parameter]

E-digits [_ kind-parameter]

where digits is the scaling factor, the power of ten, to be applied to the unscaled constant. The first two
forms above are equivalent, that is, a scaling factor without a sign is assumed to be positive. Table 2-5
shows several real constants.

Fortran Data Types 41

Table 2-5: Example of Real Constants

Constant Value

1.0 unscaled single precision constant

1. unscaled single precision constant
-.003 signed unscaled single precision constant
-.003_LOW signed unscaled constant with kind LOW.
-1.0 signed unscaled single precision constant
6.1E2_LOW is equivalent to 610.0 with kind LOW
+2.3E3_HIGH is equivalent to 2300.0 with kind HIGH
6.1E2 is equivalent to 610.0

+2.3E3 is equivalent to 2300.0

-3.5E-1 is equivalent to -0.35

2.2.4 Integer Constants

A double precision constant has the same form as a scaled REAL constant except that the E is replaced
by D and the kind parameter is not permitted. Table 2-6 shows several double precision constants.

D+digits

Ddigit

D-digits

Table 2-6: Double Precision Constants

Constant Value
6.1D2 is equivalent to 610.0
+2.3D3 is equivalent to 2300.0
-3.5D-1 is equivalent to -0.35
+4D4 is equivalent to 40000.

2.2.5 Complex Constants

A complex constant is held as two real or integer constants separated by a comma and surrounded by
parentheses. The first real number is the real part and the second real number is the imaginary part.
Together these values represent a complex number. Integer values supplied as parameter for a
COMPLEX constant are converted to REAL numbers. Below are several examples:

42 Chapter 2

(18,-4)
(3.5,-3.5)
(6.1E2,+2.3E3)

2.2.6 Logical Constants

A logical constant is one of:

.TRUE. [_kind-parameter]
.FALSE.[_kind-parameter]

The logical constants .TRUE. and .FALSE. are by default defined to be four-byte values -1 and 0
respectively. A logical expression is defined to be .TRUE. if its least significant bit is 1 and .FALSE.

. B3
otherwise .
Below are several examples:

.TRUE.
.FALSE.
.TRUE._ BIT

The abbreviations T and F can be used in place of .TRUE. and .FALSE. in data initialization statements
and in NAMELIST input.

2.2.7 Character Constants

Character string constants may be delimited using either an apostrophe (') or a double quote ("). The
apostrophe or double quote acts as a delimiter and is not part of the character constant. Use two
apostrophes together to include an apostrophe as part of the expression. If a string begins with one
variety of quote mark, the other may be embedded within it without using the repeated quote or
backslash escape. Within character constants, blanks are significant. For further information on the use
of the backslash character, refer to —Mbackslash in the PGl User’s Guide.

A character constant is one of:

[kind-parameter] "[characters]"
[kind-parameter] '[characters]'

Below are several examples of character constants.

* The option —Munixlogical defines a logical expression to be TRUE if its value is non-zero, and FALSE
otherwise; also, the internal value of .TRUE. is set to one. This option is not available on all target
systems.

Fortran Data Types 43

'abe!

'abc !
tab''c!
"Test Word"
GREEK_"pee"

A zero length character constant is writtenas ' ' or " ".

If a character constant is used in a numeric context, for example as the expression on the right side of an
arithmetic assignment statement, it is treated as a Hollerith constant. The rules for typing and sizing
character constants used in a numeric context are described in the “Hollerith Constants” section.

2.2.8 PARAMETER Constants

The PARAMETER statement permits named constants to be defined. Refer to the description of the
PARAMETER statement found in Chapter 3 for more details on defining constants.

2.3 Derived Types

A derived type is a type made up of components whose type is either intrinsic or another derived type.
The TYPE and END TYPE keywords define a derived type. For example, the following derived type
declaration defines the type PERSON and the array CUSTOMER of type PERSON:

! Declare a structure to define a person derived type
TYPE PERSON

INTEGER ID

LOGICAL LIVING

CHARACTER (LEN=20) FIRST, LAST, MIDDLE

INTEGER AGE
END TYPE PERSON

TYPE (PERSON) CUSTOMER (10)

A derived type statement definition is called a derived-type statement (the statements between TYPE
PERSON and END TYPE PERSON in the previous example. The definition of a variable of the new
type is called a TYPE statement (CUSTOMER in the previous example); note the use of parentheses in
the TYPE statement.

The % character accesses the components of a derived type. For example:

CUSTOMER (1) $ID = 11308

44 Chapter 2

2.4 Arrays

Arrays in Fortran are not data types, but are data objects of intrinsic or derived type with special
characteristics. A dimension statement provides a data type with one or more dimensions. There
are several differences between Fortran 90/95 and traditional FORTRAN 77 arrays.

Note: Fortran 90/95 supports all FORTRAN 77 array semantics.

An array is a group of consecutive, contiguous storage locations associated with a symbolic name
which is the array name. Each individual element of storage, called the array element, is referenced by
the array name modified by a list of subscripts. Arrays are declared with type declaration statements,
DIMENSION statements and COMMON statements; they are not defined by implicit reference. These
declarations will introduce an array name and establish the number of dimensions and the bounds and
size of each dimension. If a symbol, modified by a list of subscripts is not defined as an array, then it
will be assumed to be a FUNCTION reference with an argument list.

Fortran 90/95 arrays are “objects” and operations and expressions involving arrays may apply to every
element of the array in an unspecified order. For example, in the following code, where A and B are
arrays of the same shape (conformable arrays), the following expression adds six to every element of B
and assigns the results to the corresponding elements of A:

A =B+ 6

Fortran arrays may be passed with unspecified shapes to subroutines and functions, and sections of
arrays may be used and passed as well. Arrays of derived type are also valid. In addition, allocatable
arrays may be created with deferred shapes (number of dimensions is specified at declaration, but the
actual bounds and size of each dimension are determined when the array is allocated while the program
is running).

2.4.1 An Array Declaration Element

An array declaration has the following form:

name ([1b:Jub [, [1b:Jub]l...)

where name is the symbolic name of the array, Ib is the specification of the lower bound of the
dimension and ub is the specification of the upper bound. The upper bound, ub must be greater than the
lower bound Ib. The values Ib and ub may be negative. The bound Ib is taken to be 1 if it is not
specified. The difference (ub-lb+1) specifies the number of elements in that dimension. The number of
Ib,ub pairs specifies the rank of the array. Assuming the array is of a data type that requires N bytes per
element, the total amount of storage of the array is:

N* (ub-1b+1) * (ub-1b+1) *. ..

The dimension specifiers of an array subroutine argument may themselves be subroutine arguments or
members of COMMON.

Fortran Data Types 45

2.4.2 Deferred Shape Arrays

Deferred-shape arrays are those arrays whose shape can be changed by an executable statement.
Deferred-shape arrays are declared with a rank, but with no bounds information. They assume their
shape when either an ALLOCATE statement or a REDIMENSION statement is encountered.

For example, the following statement declares a deferred shape REAL array A of rank two:

REAL A(:, :)

2.4.3 Subscripts

A subscript is used to specify an array element for access. An array name qualified by a subscript list
has the following form:

name (sub [, sub] ...)

where there must be one sub entry for each dimension in array name.

Each sub must be an integer expression yielding a value which is within the range of the lower and
upper bounds. Arrays are stored as a linear sequence of values in memory and are held such that the
first element is in the first store location and the last element is in the last store location. In a multi-

dimensional array the first subscript varies more rapidly than the second, the second more rapidly than
the third, and so on (column major order).

2.4.4 Character Substring

A character substring is a contiguous portion of a character variable and is of type character. A
character substring can be referenced, assigned values and named. It can take either of the following
forms:

character variable name (x1:x2)

character array name (subscripts) (x1:x2)

where x1 and x2 are integers and x1 denotes the left-hand character position and x2 the right-hand one.
These are known as substring expressions. In substring expressions X1 must be both greater than or
equal to 1 and less than x2 and x2 must be less than or equal to the length of the character variable or
array element.

For example:

J(2:4)

the characters in positions 2 to 4 of character variable J .
K(3,5) (1:4)

46 Chapter 2

the characters in positions 1 to 4 of array element K(3,5) -

A substring expression can be any valid integer expression and may contain array element or function
references.

2.5 Fortran Pointers and Targets

Fortran pointers are similar to allocatable arrays. Pointers are declared with a type and a rank; however
they do not actually represent a value, but represent a value's address. Fortran 90/95 has a specific
assignment operator, =>, for use in pointer assignments.

2.6 Fortran Binary, Octal and Hexadecimal Constants

The PGI Fortran compilers support two representations for Binary, Octal, and Hexadecimal numbers,
The standard Fortran 90/95 representation and the PGI extension representation. Refer to the next
section for details on the alternate representation.

Fortran supports binary, octal and hexadecimal constants in DATA statements. The form of a binary
constant is:

B! blbzbn !
B"blbz...bn"

where b j is either 0 or 1.

The form of an octal constant is:
0'c1Co...Ch "
O"01C2...Cn"

where C j is in the range 0 through 7.

The form of a hexadecimal constant is:
Z'ajay..a,’

lealaz_nan n

Or

Fortran Data Types 47

! alaz...an 'X
"ajap..an"X

where a is in the range 0 through 9 or a letter in the range A through F or a through f (case mixing is
allowed).

2.6.1 Octal and Hexadecimal Constants - Alternate Form §

The PGF95 and PGHPF compilers support additional extensions. This is an alternate form for octal
constants, outside of DATA statements. The form for an octal constant is:

'€1Cp...CH 'O
The form of a hexadecimal constant is:
'alaz...an X

where Cj is a digit in the range 0 to 7 and a; is a digit in the range 0 to 9 or a letter in the range A to F or
a to f (case mixing is allowed). You can specify up to 64 bits (22 octal digits or 16 hexadecimal digits).

Octal and hexadecimal constants are stored as either 32-bit or 64-bit quantities. They are padded on the
left with zeroes if needed and assume data types based on how they are used.

The following are the rules for converting these data types:

e A constant is always either 32 or 64 bits in size and is typeless. Sign-extension and type-conversion
are never performed. All binary operations are performed on 32-bit or 64-bit quantities. This
implies that the rules to follow are only concerned with mixing 32-bit and 64-bit data.

e When a constant is used with an arithmetic binary operator (including the assignment operator) and
the other operand is typed, the constant assumes the type and size of the other operand.

e When a constant is used in a relational expression such as .EQ., its size is chosen from the operand
having the largest size. This implies that 64-bit comparisons are possible.

e When a constant is used as an argument to the generic AND, OR, EQV, NEQV, SHIFT, or
COMPL function, a 32-bit operation is performed if no argument is more than 32 bits in size;
otherwise, a 64-bit operation is performed. The size of the result corresponds to the chosen
operation.

e When a constant is used as an actual argument in any other context, no data type is assumed;
however, a length of four bytes is always used. If necessary, truncation on the left occurs.

e When a specific 32-bit or 64-bit data type is required, that type is assumed for the constant. Array
subscripting is an example.

48 Chapter 2

When a constant is used in a context other than those mentioned above, an INTEGER*4 data type
is assumed. Logical expressions and binary arithmetic operations with other untyped constants are
examples.

When the required data type for a constant implies that the length needed is more than the number
of digits specified, the leftmost digits have a value of zero. When the required data type for a
constant implies that the length needed is less than the number of digits specified, the constant is
truncated on the left. Truncation of nonzero digits is allowed.

In the example below, the constant I (of type INTEGER*4) and the constant J (of type INTEGER*2)
will have hex values 1234 and 4567, respectively. The variable D (of type REAL*8) will have the hex
value x4000012345678954 after its second assignment:

2.7
The

I = '1234'X ! Leftmost Pad with zero.

J = '1234567'X ! Truncate Leftmost 3 hex digits
D = '40000123456789ab'X

D = NEQV(D, 'ff'X) ! 64-bit Exclusive Or

Hollerith Constants

form of a Hollerith constant is:

anch...cn

where n specifies the positive number of characters in the constant and cannot exceed 2000 characters.
A Hollerith constant is stored as a byte string with four characters per 32-bit word. Hollerith constants
are untyped arrays of INTEGER*4. The last word of the array is padded on the right with blanks if
necessary. Hollerith constants cannot assume a character data type and cannot be used where a
character value is expected. The data type of a Hollerith constant used in a numeric expression is
determined by the following rules:

Sign-extension is never performed.

The byte size of the Hollerith constant is determined by its context and is not strictly limited to 32
or 64 bits like hexadecimal and octal constants.

When the constant is used with a binary operator (including the assignment operator), the data type
of the constant assumes the data type of the other operand.

When a specific data type is required, that type is assumed for the constant. When an integer or
logical is required, INTEGER*4 and LOGICAL*4 are assumed. When a float is required, REAL*4
is assumed (array subscripting is an example of the use of a required data type).

When a constant is used as an argument to certain generic functions (AND, OR, EQV, NEQV,
SHIFT, and COMPL), a 32-bit operation is performed if no argument is larger than 32 bits;

Fortran Data Types 49

otherwise, a 64-bit operation is performed. The size of the result corresponds to the chosen
operation.

e When a constant is used as an actual argument, no data type is assumed and the argument is passed
as an INTEGER*4 array. Character constants are passed by descriptor only.

e When a constant is used in any other context, a 32-bit INTEGER*4 array type is assumed.

When the length of the Hollerith constant is less than the length implied by the data type, spaces are
appended to the constant on the right. When the length of the constant is greater than the length implied
by the data type, the constant is truncated on the right.

2.8 Structures

A structure, a DEC extension to FORTRAN 77, is a user-defined aggregate data type having the
following form:

STRUCTURE [/structure name/] [field namelist]

field declaration
[field declaration]

[field declaration]
END STRUCTURE

Where:
structu re_name

is unique and is used both to identify the structure and to allow its use in subsequent RECORD
statements.

field_namelist

is a list of fields having the structure of the associated structure declaration. A field_namelist
is allowed only in nested structure declarations.

field_declaration

can consist of any combination of substructure declarations, typed data declarations, union
declarations or unnamed field declarations.

Fields within structures conform to machine-dependent alignment requirements. Alignment of fields

also provides a C-like "struct" building capability and allows convenient inter-language
communications.

50 Chapter 2

Field names within the same declaration nesting level must be unique, but an inner structure declaration
can include field names used in an outer structure declaration without conflict. Also, because records
use periods to separate fields, it is not legal to use relational operators (for example, .EQ., .XOR.),
logical constants (TRUE. or .FALSE.), or logical expressions ((AND., .NOT., .OR.) as field names in
structure declarations.

Fields in a structure are aligned as required by hardware; therefore a structure's storage requirements are
machine-dependent. Because explicit padding of records is not necessary, the compiler recognizes the
%PFILL intrinsic, but performs no action in response to it.

Data initialization can occur for the individual fields.

2.8.1 Records

A record, a DEC extension to FORTRAN 77, is a user-defined aggregate data item having the
following form:

RECORD /structure name/record namelist
[, /structure name/record namelist]

[, /structure name/record namelist]

Where:
structure_name

is the name of a previously declared structure.
record_namelist

is a list of one or more variable or array names separated by commas.
You create memory storage for a record by specifying a structure name in the RECORD statement. You
define the field values in a record either by defining them in the structure declaration or by assigning
them with executable code.
You can access individual fields in a record by combining the parent record name, a period (.), and the
field name (for example, recordname.fieldname). For records, a scalar reference means a reference to a
name that resolves to a single typed data item (for example, INTEGER), while an aggregate reference
means a reference that resolves to a structured data item.
Scalar field references may appear wherever normal variable or array elements may appear with the
exception of COMMON, SAVE, NAMELIST, DATA and EQUIVALENCE statements. Aggregate

references may only appear in aggregate assignment statements, unformatted I/O statements, and as
parameters to subprograms.

Fortran Data Types 51

The following is an example of RECORD and STRUCTURE usage.

STRUCTURE /person/ ! Declare a structure to define a person
INTEGER id
LOGICAL living
CHARACTER*5 first, last, middle
INTEGER age
END STRUCTURE
! Define population to be an array where each element is
! of type person. Also define a variable, me, of type
! person.
RECORD /person/ population(2), me

me.age = 34 ! Assign values for the variable me to
me.living = .TRUE. ! some of the fields.
me.first = 'Steve'

me.id = 542124822

population(l) .last = 'Jones' ! Assign the "last" field of

! element 1 of array population.
population(2) = me ! Assign all the values of record

! "me" to the record population(2)

2.8.2 UNION and MAP Declarations

A UNION declaration, a DEC extension to FORTRAN 77, is a multi-statement declaration defining a
data area that can be shared intermittently during program execution by one or more fields or groups of
fields. It declares groups of fields that share a common location within a structure. Each group of fields
within a union declaration is declared by a MAP declaration, with one or more fields per MAP
declaration.

Union declarations are used when one wants to use the same area of memory to alternately contain two
or more groups of fields. Whenever one of the fields declared by a union declaration is referenced in a
program, that field and any other fields in its map declaration become defined. Then, when a field in
one of the other map declarations in the union declaration is referenced, the fields in that map
declaration become defined, superseding the fields that were previously defined.

A union declaration is initiated by a UNION statement and terminated by an END UNION statement.
Enclosed within these statements are one or more map declarations, initiated and terminated by MAP
and END MAP statements, respectively. Each unique field or group of fields is defined by a separate
map declaration.

The format of a UNION statement is asdescribed in the following example:

UNION
map_declaration

52 Chapter 2

[map_declaration]

[map declaration]
END UNION

The format of the map_declaration is as follows:

MAP
field declaration
[field declaration]

[field declaration]
END MAP

where field_declaration is a structure declaration or RECORD statement contained within a union
declaration, a union declaration contained within a union declaration, or the declaration of a typed data
field within a union.

Data can be initialized in field declaration statements in union declarations. Note, however, it is illegal
to initialize multiple map declarations in a single union.

Field alignment within multiple map declarations is performed as previously defined in structure
declarations.

The size of the shared area for a union declaration is the size of the largest map defined for that union.
The size of a map is the sum of the sizes of the field(s) declared within it plus the space reserved for
alignment purposes.

Manipulating data using union declarations is similar to what happens using EQUIVALENCE
statements. However, union declarations are probably more similar to union declarations for the
language C. The main difference is that the language C requires one to associate a name with each
"map" (union). Fortran field names must be unique within the same declaration nesting level of maps.

The following is an example of RECORD, STRUCTURE, MAP and UNION usage. The size of each

element of the recarr array would be the size of typetag (4 bytes) plus the size of the largest MAP, the
employee map (24 bytes).

Fortran Data Types 53

STRUCTURE /account/

INTEGER typetag ! Tag to determine defined map.
UNION
MAP I Structure for an employee
CHARACTER*12 ssn ! Social Security Number
REAL*4 salary
CHARACTER*8 empdate ! Employment date
END MAP
MAP ! Structure for a customer
INTEGER*4 acct_cust
REAL*4 credit_amt
CHARACTER*8 due_date
END MAP
MAP ! Structure for a supplier
INTEGER*4 acct_supp
REAL*4 debit_amt
BYTE num_items
BYTE items (12) ! Items supplied
END MAP
END UNION

END STRUCTURE

RECORD /account/ recarr (1000)

2.8.3 Data Initialization

Within data type declaration statements, data initialization is allowed. This is an extension to the
Fortran language. Data is initialized by placing values bounded by slashes immediately following the
symbolic name (variable or array) to be initialized. Initialization of fields within structure declarations
is allowed, but initialization of unnamed fields and records is not.

Hollerith, octal and hexadecimal constants can be used to initialize data in both data type declarations
and in DATA statements. Truncation and padding occur for constants that differ in size from the
declared data item (as specified in the discussion of constants).

2.9 Pointer Variables

The POINTER statement, a CRAY extension to FORTRAN 77 which is distinct from the Fortran
90/95 POINTER specification statement or attribute, declares a scalar variable to be a pointer
variable (of data type INTEGER), and another variable to be its pointer-based variable.

The syntax of the POINTER statement is:

POINTER (pl, v1) [, (p2, v2) ...

vl and v2

54 Chapter 2

are pointer-based variables. A pointer-based variable can be of any type, including
STRUCTURE. A pointer-based variable can be dimensioned in a separate type, in a
DIMENSION statement, or in the POINTER statement. The dimension expression may
be adjustable, where the rules for adjustable dummy arrays regarding any variables which
appear in the dimension declarators apply.

pl and p2

are the pointer variables corresponding to v1 and v2. A pointer variable may not be an array.
The pointer is an integer variable containing the address of a pointer-based variable. The
storage located by the pointer variable is defined by the pointer-based variable (for example,
array, data type, etc.). A reference to a pointer-based variable appears in Fortran statements
like a normal variable reference (for example, a local variable, a COMMON block variable, or
a dummy variable). When the based variable is referenced, the address to which it refers is
always taken from its associated pointer (that is, its pointer variable is dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is defined.

The pointer is defined in one of the following ways:

By assigning the value of the LOC function.

By assigning a value defined in terms of another pointer variable.

By dynamically allocating a memory area for the based variable. If a pointer-based variable is
dynamically allocated, it may also be freed.

The following code illustrates the use of pointers:

29.1

REAL XC(10)
COMMON IC, XC
POINTER (P, I)
POINTER (Q, X (5))

= LOC(IC)
I =20 ' IC gets O
P = LOC(XC)
Q= P + 20 ! same as LOC(XC(6))
X(1) =0 ! XC(6) gets 0
ALLOCATE (X) ! Q9 locates an allocated memory area

Restrictions

The following restrictions apply to the POINTER statement:

Fortran Data Types 55

No storage is allocated when a pointer-based variable is declared.
If a pointer-based variable is referenced, its pointer variable is assumed to be defined.

A pointer-based variable may not appear in the argument list of a SUBROUTINE or FUNCTION
and may not appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or SAVE statements.

A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION subprogram. If
a pointer-based variable is an adjustable array, it is assumed that the variables in the dimension
declarator(s) are defined with an integer value at the time the SUBROUTINE or FUNCTION is
called. For a variable which appears in a pointer-based variable's adjustable declarator, modifying
its value during the execution of the SUBROUTINE or FUNCTION does not modify the bounds of
the dimensions of the pointer-based array.

A pointer-based variable is assumed not to overlap with another pointer-based variable.

[*] The option —Munixlogical defines a logical expression to be true if its value is non-zero and false
otherwise; also, the internal value of . TRUE. is 1.

56

Chapter 2

3 Fortran Statements

This chapter describes each of the Fortran statements supported by the PGI Fortran compilers. Each
description includes a brief summary of the statement, a syntax description, a complete description and
an example. The statements are listed in alphabetical order. The first section lists terms that are used
throughout the chapter.
Definition of Terms
character scalar memory reference

is a character variable, a character array element, or a character member of a structure.
integer scalar memory reference

is an integer variable, an integer array element, or an integer member of a structure.
logical scalar memory reference

is a logical variable, a logical array element, or a logical member of a structure.

obsolescent

The statement is unchanged from the FORTRAN 77 definition but has a better replacement in
Fortran 95.

3.1 Origin of Statement

At the top of each reference page is an indication of the origin of the statement.

Heading Explanation

77 FORTRAN 77 statements that are essentially unchanged from the
original FORTRAN 77 standard and are supported by the PGF77
compiler.

Fortran Statements 57

90/95 This statement is either new for Fortran 90/95, or significantly
changed in Fortran 95 from its original FORTRAN 77 definition
and is supported by the PGF95 and PGHPF compilers.

HPF The statement has its origin in the HPF standard.
§ Extension to the Fortran language.
CMF Indicates a CM Fortran feature (CM Fortran is a version of

Fortran that was produced by Thinking Machines Corporation for
parallel computers).

3.2 Statements

ACCEPT § 77

The ACCEPT statement has the same syntax as the PRINT statement and causes formatted input to be
read on standard input. ACCEPT is identical to the READ statement with a unit specifier of asterisk

(*).

Syntax
ACCEPT f [,iolist]
ACCEPT namelist
f format-specifier, a * indicates list directed input.
iolist is a list of variables to be input.
namelist is the name of a namelist specified with the NAMELIST statement.
Examples

ACCEPT *, IA, ZA
ACCEPT 99, I, J, K
ACCEPT SUM

99 FORMAT (I2, I4, I3)

58 Chapter 3

Non-character Format-specifier 8

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the
compiler accepts it and treats it as if the contents were character. For example, below sum is treated as a
format descriptor:

real sum
sum = 4h()
accept sum

and is roughly equivalent to

character*4 ch
ch = '()!
accept ch

See Also
READ, PRINT

ALLOCATABLE 90

The ALLOCATABLE specification statement (attribute) specifies that an array with fixed rank but
deferred shape is available for a future ALLOCATE statement. An ALLOCATE statement allocates
space for the allocatable array.

Syntax
ALLOCATABLE [::] array-name [(deferred-array-spec)]
[, array-name [(deferred-array-spec)11] ...
array-name is the name of the allocatable array.

deferred-array-spec isa: character.

Example
REAL SCORE(:), NAMES(:,:)
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: TEST
ALLOCATABLE SCORE, NAMES
INTEGER, ALLOCATABLE :: REC1(: ,: , :)
See Also

ALLOCATE, DEALLOCATE

Fortran Statements 59

ALLOCATE 90

The ALLOCATE statement is an extension to FORTRAN 77 but is part of the Fortran 90/95 standard.
It allocates storage for each pointer-based variable and allocatable array which appears in the statement.
ALLOCATE also declares storage for deferred-shape arrays.

Syntax
ALLOCATE (allocation-list [, STAT= var])

allocation-list is:

allocate-object [allocate-shape-spec-list]
allocate-object is:

variable-name

structure-component

allocate-shape-spec-list is:

[allocate-lower-bound : 1 allocate-upper-bound

var is an integer variable, integer array element or an integer member of a
STRUCTURE (that is, an integer scalar memory reference). This variable
is assigned a value depending on the success of the ALLOCATE statement.

name is a pointer-based variable or name of an allocatable COMMON enclosed
in slashes.

Description

For a pointer-based variable, its associated pointer variable is defined with the address of the allocated
memory area. If the specifier STAT= is present, successful execution of the ALLOCATE statement
causes the status variable to be defined with a value of zero. If an error occurs during execution of the
statement and the specifier STAT=is present, the status variable is defined to have the integer value
one. If an error occurs and the specifier STAT= is not present, program execution is terminated.

A dynamic, or allocatable COMMON block is a common block whose storage is not allocated until an
explicit ALLOCATE statement is executed. Note: allocatable COMMON blocks are an extension to
FORTRAN 77 supported only by PGF77 compiler, and not by the PGF95 or PGHPF compilers.

For an ALLOCATABLE array, the array is allocated with the executable ALLOCATE statement.

60 Chapter 3

Examples

COMMON P, N, M

POINTER (P, A(N,M))

COMMON, ALLOCATABLE /ALL/X(10), Y
ALLOCATE (/ALL/, A, STAT=IS)
PRINT *, IS

X(5) = A(2, 1)

DEALLOCATE (A)

DEALLOCATE (A, STAT=IS)

PRINT *, 'should be 1', IS
DEALLOCATE (/ALL/)

For a deferred shape array, the allocate must include the bounds of the array.

REAL, ALLOCATABLE :: A(:), B(:)
ALLOCATE (A(10), B(SIZE(A)))

REAL A(:,:)

N=3

M=1

ALLOCATE (A(1:11, M:N))

INTEGER FLAG, N
REAL, ALLOCATABLE:: B(:,:)
ALLOCATE (B(N,N) , STAT=FLAG)

ARRAY CMF

The ARRAY attribute defines the number of dimensions in an array that may be defined and the
number of elements and bounds in each dimension.

Syntax

ARRAY [::] array-name (array-spec)
[, array-name (array-spec) 1

array-name is the symbolic name of an array.

array-spec is a valid array specification, either explicit-shape, assumed-shape,
deferred-shape, or assumed size (refer to Chapter 4, "Arrays" for details on
array specifications).

Fortran Statements 61

Description

ARRAY can be used in a subroutine as a synonym for DIMENSION to establish an argument as an
array, and in this case the declarator can use expressions formed from integer variables and constants to
establish the dimensions (adjustable arrays). Note however that these integer variables must be either
arguments or declared in COMMON; they cannot be local. Note that in this case the function of
ARRAY is merely to supply a mapping of the argument to the subroutine code, and not to allocate
storage.

The typing of the array in an ARRAY statement is defined by the initial letter of the array name in the
same way as variable names, unless overridden by an IMPLICIT or type declaration statement. Arrays
may appear in type declaration and COMMON statements but the array name can appear in only one
array declaration.

Example

REAL, ARRAY(3:10):: ARRAY ONE
INTEGER, ARRAY (3,-2:2):: ARRAY TWO

This specifies ARRAY ONE as a vector having eight elements with the lower bound of 3 and the upper
bound of 10.

ARRAY _TWO as a matrix of two dimensions having fifteen elements. The first dimension has three
elements and the second has five with bounds from -2 to 2.

ASSIGN 77

(Obsolescent) The ASSIGN statement assigns a statement label to a variable. Internal procedures can be
used in place of the ASSIGN statement. Other cases where the ASSIGN statement is used can be
replaced by using character strings (for different format statements that were formally assigned labels
by using an integer variable as a format specifier).

Syntax
ASSIGN a TO b
a is the statement label.
b is an integer variable.
Description

Executing an ASSIGN statement assigns a statement label to an integer variable. This is the only way
that a variable may be defined with a statement label value. The statement label must be:

. A statement label in the same program unit as the ASSIGN statement.

62 Chapter 3

. The label of an executable statement or a FORMAT statement.

A variable must be defined with a statement label when it is referenced:

. In an assigned GOTO statement.

. As a format identifier in an input/output statement and while so defined must not be
referenced in any other way.

An integer variable defined with a statement label can be redefined with a different statement label, the
same statement label or with an integer value.

Example
ASSIGN 40 TO K
GO TO K
40 L =P + I + 56
BACKSPACE 77

When a BACKSPACE statement is executed the file connected to the specified unit is positioned before
the preceding record.

Syntax
BACKSPACE unit
BACKSPACE ([UNIT=]unit [,ERR=errs] [, IOSTAT=ios])
UNIT=unit unit is the unit specifier.
ERR=S S is an executable statement label for the statement used for processing an
error condition.
IOSTAT=i0S i0s is an integer variable or array element. i0S becomes defined with 0 if no
error occurs, and a positive integer when there is an error.
Description

If there is no preceding record, the position of the file is not changed. A BACKSPACE statement
cannot be executed on a file that does not exist. Do not issue a BACKSPACE statement for a file that is
open for direct or append access.

Fortran Statements 63

Examples
BACKSPACE 4
BACKSPACE (UNIT=3)

BACKSPACE (7, IOSTAT=IOCHEK, ERR=50)

BLOCK DATA 77

The BLOCK DATA statement introduces a number of statements that initialize data values in
COMMON blocks. No executable statements are allowed in a BLOCK DATA segment.

Syntax
BLOCK DATA [name]
[specification]
END [BLOCK DATA [hame]]
name is a symbol identifying the name of the block data and must be unique
among all global names (COMMON block names, program name, module
names). If missing, the block data is given a default name.
Example
BLOCK DATA
COMMON /SIDE/ BASE, ANGLE, HEIGHT, WIDTH
INTEGER SIZE
PARAMETER (SIZE=100)
INTEGER BASE (0:SIZE)
REAL WIDTH(0:SIZE), ANGLE (0:SIZE)
DATA (BASE(I),I=0,SIZE)/SIZE*-1,-1/,
+ (WIDTH(I),I=0,SIZE)/SIZE*0.0,0.0/
END

The BYTE statement establishes the data type of a variable by explicitly attaching the name of a
variable to a 1-byte integer. This overrides the implication of data typing by the initial letter of a
symbolic name.

64 Chapter 3

Syntax

BYTE name [/clist/1,

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Description

Byte statements may be used to dimension arrays explicitly in the same way as the DIMENSION
statement. BYTE declaration statements must not be labeled.

Example

BYTE TB3, SEC, STORE (5,5)

CALL 77

The CALL statement transfers control to a subroutine.

Syntax
CALL subroutine [([actual-arg-list]...1)]
subroutine is the name of the subroutine.
argument is the actual argument being passed to the subroutine. The first argument
corresponds to the first dummy argument in the SUBROUTINE statement
and so on.
actual-arg-list has the form:
[keyword =] subroutine-argument
keyword is a dummy argument name in the subroutine interface.
subroutine-argument is an actual argument.
Description

Actual arguments can be expressions including: constants, scalar variables, function references and
arrays.

Actual arguments can also be alternate return specifiers. Alternate return specifiers are labels prefixed
by asterisks (*) or ampersands (&). The ampersand is an extension to FORTRAN 77.

Fortran Statements 65

Recursive calls are allowed using the —Mrecursive command-line option.

Examples

CASE

CALL CRASH ! no arguments
CALL BANG(1.0) ! one argument
CALL WALLOP(V, INT) ! two arguments

CALL ALTRET (I, *10, *20)

SUBROUTINE ONE
DIMENSION ARR (10, 10)

REAL WORK

INTEGER ROW, COL

PI=3.142857

CALL EXPENS (ARR, ROW, COL,WORK, SIN (PI/2)+3.4)
RETURN

END

90

The CASE statement begins a case-statement-block portion of a SELECT CASE construct.

Syntax

Example

66

[case-name:] SELECT CASE (case-expr)
[CASE selector [name]

block]
[CASE DEFAULT [case-name]

block

END SELECT [case-nhame]

SELECT CASE (FLAG)

CASE (1, 2, 3)
TYPE=1

CASE (4:6)
TYPE=2

CASE DEFAULT
TYPE=0

END SELECT

Chapter 3

Type

Executable

See Also
SELECT CASE

CHARACTER 90

The CHARACTER statement establishes the data type of a variable by explicitly attaching the name of
a variable to a character data type. This overrides the implication of data typing by the initial letter of a
symbolic name.

Syntax
The syntax for CHARACTER has two forms, the standard Fortran form and the PGI extended form.
This section describes both syntax forms.

CHARACTER [character-selector] [, attribute-list ::1 entity-list

character-selector the character selector specifies the length of the character string. This
has one of several forms:

([LEN=] type-param-value)
* character-length [,]

Character-selector also permits a KIND specification. Refer to the Fortran 95 Handbook for more
syntax details.

attribute-list is the list of attributes for the character variable.
entity-list is the list of defined entities.
Syntax Extension 8§

CHARACTER [*len] [,] name [dimension] [*len] [/clist/],

len is a constant or *. A * is only valid if the corresponding name is a
dummy argument.

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Fortran Statements 67

Description
Character type declaration statements may be used to dimension arrays explicitly in the same way as the

DIMENSION statement. Type declaration statements must not be labeled.

Note: The data type of a symbol may be explicitly declared only once. It is established by type
declaration statement, IMPLICIT statement or by predefined typing rules. Explicit declaration of a type
overrides any implicit declaration. An IMPLICIT statement overrides predefined typing rules.

Examples
CHARACTER A*4, B*6, C
CHARACTER (LEN=10):: NAME

Ais 4 and B is 6 characters long and C is 1 character long. NAME is 10 characters long.

CLOSE 77

The CLOSE statement terminates the connection of the specified file to a unit.

Syntax

CLOSE ([UNIT=] u [,ERR= errs] [,DISP[OSE]= sta]
[, IOSTAT=ios] [,STATUS= sta])

u is the external unit specifier where U is an integer.

errs is an error specifier in the form of a statement label of an executable
statement in the same program unit. If an error condition occurs, execution
continues with the statement specified by errs.

ios is an integer scalar; if this is included ios becomes defined with 0 (zero)
if no error condition exists or a positive integer when there is an error
condition. A value of -1 indicates an end-of-file condition with no error. A
value of -2 indicates an end-of-record condition with no error when using
non-advancing /0.

sta is a character expression, where case is insignificant, specifying the file
status and the same keywords are used for the dispose status. Status can be
'KEEP' or 'DELETE' (the quotes are required). KEEP cannot be specified
for a file whose dispose status is SCRATCH. When KEEP is specified (for
a file that exists) the file continues to exist after the CLOSE statement;

68 Chapter 3

conversely DELETE deletes the file after the CLOSE statement. The
default value is KEEP unless the file status is SCRATCH.
Description

A unit may be the subject of a CLOSE statement from within any program unit. If the unit specified
does not exist or has no file connected to it the use of the CLOSE statement has no effect. Provided the
file is still in existence it may be reconnected to the same or a different unit after the execution of a
CLOSE statement. Note that an implicit CLOSE is executed when a program stops.

Example

In the following example, the file on UNIT 6 is closed and deleted.

CLOSE (UNIT=6, STATUS="'DELETE"')

COMMON 77

The COMMON statement defines global blocks of storage that are either sequential or non sequential.
There are two forms of the COMMON statement, a static form and a dynamic form. Each common
block is identified by the symbolic name defined in the COMMON block.

Syntax
COMMON / [name 1 /nlist [, /name/nlist] ...

name is the name of each common block and is declared between the /.../
delimiters for a named common and with no name for a blank common.

nlist is a list of variable names where arrays may be defined in DIMENSION
statements or formally declared by their inclusion in the COMMON block.

Common Block Rules and Behaviors

A common block is a global entity. Any common block name (or blank common) can appear more than
onice in one or more COMMON statements in a program unit. The following is a list of rules associated
with common blocks:

Blank Common The name of the COMMON block need not be supplied; without a name,
the common is a BLANK COMMON. In this case the compiler uses a
default name.

Same Names There can be several COMMON block statements of the same name in a
program segment; these are effectively treated as one statement, with
variables concatenated from one COMMON statement of the same name to

Fortran Statements 69

the next. This is an alternative to the use of continuation lines when
declaring a common block with many symbols.

Common blocks with the same name that are declared in different program
share the same storage area when combined into one executable program
and they are defined using the SEQUENCE attribute.

HPF In HPF, a common block is non-sequential by default, unless there is an
explicit SEQUENCE directive that specifies the array as sequential. Note
this may require that older FORTRAN 77 programs assuming sequence
association in COMMON statements have SEQUENCE statements for
COMMON variables.

Example

DIMENSION R (10)
COMMON /HOST/ A, R, Q(3), U

This declares a common block called HOST

Note: The different types of declaration used for R (declared in a DIMENSION statement) and Q
(declared in the COMMON statement).

The declaration of HOST in a SUBROUTINE in the same executable program, with a different shape
for its elements would require that the array be declared using the SEQUENCE attribute.

SUBROUTINE DEMO
'HPF$ SEQUENCE HOST
COMMON/HOST/STORE (15)

RETURN
END

Common Blocks and Subroutines

If the main program has the common block declaration as in the previous example, the COMMON
statement in the subroutine causes STORE (1) to correspond to A, STORE (2) to correspond to R(1),
STORE (3) to correspond to R(2), and so on through to STORE(15) corresponding to the variable U.

Common Block Records and Characters

You can name records within a COMMON block. Because the storage requirements of records are
machine-dependent, the size of a COMMON block containing records may vary between machines.
Note that this may also affect subsequent equivalence associations to variables within COMMON
blocks that contain records.

70 Chapter 3

Both character and non-character data may reside in one COMMON block. Data is aligned within the
COMMON block in order to conform to machine-dependent alignment requirements.

Blank COMMON is always saved. Blank COMMON may be data initialized.

See Also
The SEQUENCE directive.

Syntax Extension — dynamic COMMON)

A dynamic, or allocatable, COMMON block is a common block whose storage is not allocated until an
explicit ALLOCATE statement is executed. PGF77 supports dynamic COMMON blocks, while
PGF95 and PGHPF do not.

If the ALLOCATABLE attribute is present, all named COMMON blocks appearing in the COMMON
statement are marked as allocatable. Like a normal COMMON statement, the name of an allocatable
COMMON block may appear in more than one COMMON statement. Note that the ALLOCATABLE
attribute need not appear in every COMMON statement.

The following restrictions apply to the dynamic COMMON statement:

e Before members of an allocatable COMMON block can be referenced, the common block must
have been explicitly allocated using the ALLOCATE statement.

e The data in an allocatable common block cannot be initialized.

e The memory used for an allocatable common block may be freed using the DEALLOCATE
statement.

e If a SUBPROGRAM declares a COMMON block to be allocatable, all other subprograms
containing COMMON statements of the same COMMON block must also declare the COMMON
to be allocatable.

Example (dynamic COMMON)

COMMON, ALLOCATABLE /ALL1l/ A, B, /ALL2/ AA, BB
COMMON /STAT/ D, /ALLl/ C

This declares the following variables:
ALL1

is an allocatable COMMON block whose members are A, B, and C.
ALL2

Fortran Statements 71

is an allocatable COMMON block whose members are AA, and BB.
STAT
is a statically-allocated COMMON block whose only member is D.

A reference to a member of an allocatable COMMON block appears in a Fortran statement just like a
member of a normal (static) COMMON block. No special syntax is required to access members of
allocatable common blocks. For example, using the above declarations, the following is a valid pgf77
statement:

AA =B * D

COMPLEX 90

The COMPLEX statement establishes the data type of a variable by explicitly attaching the name of a
variable to a complex data type. This overrides the implication of data typing by the initial letter of a
symbolic name.

Syntax

The syntax for COMPLEX has two forms, the standard Fortran form and the PGI extended form. This
section describes both syntax forms.

COMPLEX [([KIND =] kind-value) 1 [, attribute-list ::] entity-list

COMPLEX permits a KIND specification. Refer to the Fortran 95 Handbook for more syntax details.

attribute-list is the list of attributes for the character variable.
entity-list is the list of defined entities.

Syntax Extension 8

COMPLEX name [*n] [dimensions] [/clist/] [, name] [/clist/]

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement below for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Description

COMPLEX statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. COMPLEX statements must not be labeled.

72 Chapter 3

Note: The data type of a symbol may be explicitly declared only once. It is established by type
declaration statement, IMPLICIT statement or by predefined typing rules. Explicit declaration of a type
overrides any implicit declaration. An IMPLICIT statement overrides predefined typing rules.

Example

COMPLEX CURRENT
COMPLEX DIMENSION(8) :: CONV1, FLUX1

The default size of a COMPLEX variable is 8 bytes. With the -r8 option, the default size of a
COMPLEX variable is 16 bytes.

CONTAINS 90

The CONTAINS statement precedes a subprogram, a function or subroutine, that is defined inside a
main program, external subprogram, or module subprogram (internal subprogram). The CONTAINS
statement is a flag indicating the presence of a subroutine or function definition. An internal
subprogram defines a scope for the internal subprogram's labels and names. Scoping is defined by use
and host scoping rules within scoping units. Scoping units have the following precedence for names:

. A derived-type definition.
. A procedure interface body.
. A program unit or a subprogram, excluding contained subprograms.

Syntax

SUBROUTINE X
INTEGER H, I

CONTAINS
SUBROUTINE Y
INTEGER I
I =1I+H

END SUBROUTINE Y
END SUBROUTINE X

Type

Non-executable

Fortran Statements 73

See Also

MODULE

CONTINUE 77

The CONTINUE statement passes control to the next statement. It is supplied mainly to overcome the
problem that transfer of control statements are not allowed to terminate a DO loop.

Syntax
CONTINUE
Example
DO 100 I = 1,10
SUM = SUM + ARRAY (I)
IF(SUM .GE. 1000.0) GOTO 200
100 CONTINUE
200

The CYCLE statement interrupts a DO construct execution and continues with the next iteration of the
loop.

Syntax
CYCLE [do-construct-name]
Example
DO
IF (A(I).EQ.0) CYCLE
B=100/A(I)
IF (B.EQ.5) EXIT
END DO
See Also
EXIT, DO

74 Chapter 3

DATA 77

The DATA statement assigns initial values to variables before execution.

Syntax
DATA vlist/dlist/ [[, 1vlist/dlist/] ...
vlist is a list of variable names, array element names or array names separated
by commas.
dlist is a list of constants or PARAMETER constants, separated by commas,

corresponding to elements in the vlist. An array name in the vlist demands
that dlist constants be supplied to fill every element of the array.

Repetition of a constant is provided by using the form:

n*constant-value
n a positive integer, is the repetition count.

Example

REAL A, B, C(3), D(2)
DATA A, B, C(1), D /1.0, 2.0, 3.0, 2*4.0/

This performs the following initialization:

A =1.0
B =2.0
c(1) = 3.0
D(1) = 4.0
D(2) = 4.0
DEALLOCATE 77

The DEALLOCATE statement causes the memory allocated for each pointer-based variable or
allocatable array that appears in the statement to be deallocated (freed). Deallocate also deallocates
storage for deferred-shape arrays.

Syntax
DEALLOCATE (allocate-object-list [, STAT= var 1)

Where:

Fortran Statements 75

allocate-object-list is a variable name or a structure component.

al is a pointer-based variable or the name of an allocatable COMMON
block enclosed in slashes.

var var the status indicator, is an integer variable, integer array element or
an integer member of a structure.

Description

An attempt to deallocate a pointer-based variable or an allocatable COMMON block which was not
created by an ALLOCATE statement results in an error condition.

If the specifier STAT= is present, successful execution of the statement causes var to be defined with
the value of zero. If an error occurs during the execution of the statement and the specifier STAT= is
present, the status variable is defined to have the integer value one. If an error occurs and the specifier
STAT= is not present, program execution is terminated.

Examples

REAL, ALLOCATABLE :: X(:,:)
ALLOCATE (X(10,2))

X=0
DEALLOCATE (X)

COMMON P, N, M
POINTER (P, A(N,M))

COMMON, ALLOCATABLE /ALL/X(10), Y
ALLOCATE (/ALL/, A, STAT=IS)
PRINT *, IS

X(5) = A(2, 1)

DEALLOCATE (A)

DEALLOCATE (A, STAT=IS)

PRINT *, 'should be 1', IS
DEALLOCATE (/ALL/)

DECODE § 77

The DECODE statement transfers data between variables or arrays in internal storage and translates that
data from character form to internal form, according to format specifiers. Similar results can be
accomplished using internal files with formatted sequential READ statements.

76 Chapter 3

Syntax

DECODE (¢, f, b [,IOSTAT= ios 1 [, ERR= errs]) [list]

c is an integer expression specifying the number of bytes involved in translation.

f is the format-specifier.

b is a scalar or array reference for the buffer area containing formatted data
(characters).

ios is the an integer scalar memory reference which is the input/output status specifier:

if this is specified i0s becomes defined with zero if no error condition exists or a
positive integer when there is an error condition.

errs an error specifier which takes the form of a statement label of an executable
statement in the same program unit. If an error condition occurs execution
continues with the statement specified by errs

list is a list of input items.

Non-character Format-specifier §

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the
compiler accepts it and treats it as if the contents were character. For example, below sum is treated as a
format descriptor:

real sum
sum = 4h()
accept sum

and is roughly equivalent to
character*4 ch

ch = '()"
accept ch

See Also
READ, PRINT

DIMENSION 90

The DIMENSION statement defines the number of dimensions in an array and the number of elements
in each dimension.

Fortran Statements 77

Syntax

DIMENSION [::] array-name (array-spec)
[, array-name (array-spec)]

DIMENSION array-name ([lb:Jubl[, [1b:]Jub]...)
[,name ([1b:]Jub[, [1b:]Jubl...)]

array-name is the symbolic name of an array.

array-spec is a valid array specification, either explicit-shape, assumed-shape,
deferred-shape, or assumed size (refer to Chapter 4, "Arrays" for details on
array specifications).

1b:ub is a dimension declarator specifying the bounds for a dimension (the lower
bound Ib and the upper bound ub). Ib and ub must be integers with ub
greater than 1b. The lower bound Ib is optional; if it is not specified, it is
taken to be 1.

Description

DIMENSION can be used in a subroutine to establish an argument as an array, and in this case the
declarator can use expressions formed from integer variables and constants to establish the dimensions
(adjustable arrays). Note however that these integer variables must be either arguments or declared in
COMMON; they cannot be local. Note that in this case the function of DIMENSION is merely to
supply a mapping of the argument to the subroutine code, and not to allocate storage.

The typing of the array in a DIMENSION statement is defined by the initial letter of the array name in
the same way as variable names. The letters I, J, K, L, M and N imply that the array is of INTEGER
type and an array with a name starting with any of the letters A to H and O to Z will be of type REAL,
unless overridden by an IMPLICIT or type declaration statement. Arrays may appear in type declaration
and COMMON statements but the array name can appear in only one array declaration.

DIMENSION statements must not be labeled.

Examples
DIMENSION ARRAY1(3:10), ARRAY2(3,-2:2)

This specifies ARRAY1 as a vector having eight elements with the lower bound of 3 and the upper
bound of 10.

ARRAY?2 as a matrix of two dimensions having fifteen elements. The first dimension has three
elements and the second has five with bounds from -2 to 2.

78 Chapter 3

CHARACTER B(0:20) *4

This example sets up an array B with 21 character elements each having a length of four characters.
Note that the character array has been dimensioned in a type declaration statement and therefore cannot
subsequently appear in a DIMENSION statement.

DO (lterative

90

The DO statement introduces an iterative loop and specifies the loop control index and parameters.
There are two forms of DO statement, block and non-block (FORTRAN 77 style). There are two forms
of block do statements, DO iterative and DO WHILE. Refer to the description of DO WHILE for more
details on this form of DO statement.

Syntax
DO (block)

[do-construct-name :] DO [label] [loop-control]

[execution-part-construct]

[label] END DO

loop-control

is an increment index expression of the form:

[index=ele2 [, e3]] label

index
el
e2
e3

DO (non-block)

DO label

label

index
el
e2

Fortran Statements

(/1]

labels the last executable statement in the loop (this must not be a transfer
of control).

is the name of a variable called the DO variable.
is an expression which yields an initial value for i.
is an expression which yields a final value for i.

is an optional expression yielding a value specifying the increment value
for i. The default for €3 is 1.

index = el, e2 [, e3]

labels the last executable statement in the loop (this must not be a transfer
of control).

is the name of a variable called the DO variable.
is an expression which yields an initial value for i.

is an expression which yields a final value for i.
79

e3 is an optional expression yielding a value specifying the increment value
for i. The default for e3 is 1.

Description

The DO loop consists of all the executable statements after the specifying DO statement up to and
including the labeled statement, called the terminal statement. The label is optional. If omitted, the
terminal statement of the loop is an END DO statement.

Before execution of a DO loop, an iteration count is initialized for the loop. This value is the number of
times the DO loop is executed, and is:

INT ((e2-el+e3) /e3)
If the value obtained is negative or zero that the loop is not executed.

The DO loop is executed first with i taking the value el, then the value (el+e3), then the value
(el+e3+e3), etc.

It is possible to jump out of a DO loop and jump back in, as long as the do index variable has not been
adjusted. In a nested DO loop, it is legal to transfer control from an inner loop to an outer loop. It is
illegal, however, to transfer into a nested loop from outside the loop.

Syntax Extension)

Nested DO loops may share the same labeled terminal statement if required. They may not share an
END DO statement.

Examples
DO 100 J = -10,10
DO 100 I = -5,5
100 SUM = SUM + ARRAY (I,J)
DO

A(I)=A(I)+1
IF (A(I).EQ.4) EXIT
END DO

DO I=1,N
A(I)=A(I)+1
END DO

80 Chapter 3

DO WHILE 77

The DO WHILE statement introduces a logical do loop and specifies the loop control expression.

The DO WHILE statement executes for as long as the logical expression continues to be true when
tested at the beginning of each iteration. If expression is false, control transfers to the statement
following the loop.

Syntax
DO [label[,]] WHILE expression

The end of the loop is specified in the same way as for an iterative loop, either with a labeled statement
or an END DO.

label labels the last executable statement in the loop (this must not be a transfer
of control).
expression is a logical expression and label.
Description

The logical-expression is evaluated. If it is . FALSE ., the loop is not entered. If it is . TRUE ., the loop
is executed once. Then logical-expression is evaluated again, and the cycle is repeated until the
expression evaluates . FALSE.

Example
DO WHILE (K == 0)
SUM = SUM + X

END DO

DOUBLE COMPLEX § 77

The DOUBLE COMPLEX statement establishes the data type of a variable by explicitly attaching the
name of a variable to a double complex data type. This overrides the implication of data typing by the
initial letter of a symbolic name.

Syntax

The syntax for DOUBLE COMPLEX has two forms, a standard Fortran 90/95 entity based form, and
the PGI extended form. This section describes both syntax forms.

DOUBLE COMPLEX [, attribute-list ::]1 entity-list

Fortran Statements 81

attribute-list is the list of attributes for the double complex variable.
entity-list is the list of defined entities.
Syntax Extension)
DOUBLE COMPLEX name [/clist/]1 [, namel [/clist/]...

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Description

Type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. Type declaration statements must not be labeled. Note: the data type of a
symbol may be explicitly declared only once. It is established by type declaration statement, IMPLICIT
statement or by predefined typing rules. Explicit declaration of a type overrides any implicit
declaration. An IMPLICIT statement overrides predefined typing rules.

The default size of a DOUBLE COMPLEX variable is 16 bytes. With the -r8 option, the default size of
a DOUBLE COMPLEX variable is also 16 bytes.

Examples

DOUBLE COMPLEX CURRENT, NEXT

DOUBLE PRECISION 90

The DOUBLE PRECISION statement establishes the data type of a variable by explicitly attaching the
name of a variable to a double precision data type. This overrides the implication of data typing by the
initial letter of a symbolic name.

Syntax

The syntax for DOUBLE PRECISION has two forms, a standard Fortran 90/95 entity based form, and
the PGI extended form. This section describes both syntax forms.

DOUBLE PRECISION [, attribute-list ::] entity-list

attribute-list is the list of attributes for the double precision variable.
entity-list is the list of defined entities.
Syntax Extension 8

DOUBLE PRECISION name [/clist/] [, name] [/clist/]...

82 Chapter 3

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Description

Type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. Type declaration statements must not be labeled. Note: The data type of a
symbol may be explicitly declared only once. It is established by type declaration statement, IMPLICIT
statement or by predefined typing rules. Explicit declaration of a type overrides any implicit
declaration. An IMPLICIT statement overrides predefined typing rules.

The default size of a DOUBLE PRECISION variable is 8 bytes.

Example

DOUBLE PRECISION PLONG

ELSE 77

The ELSE statement begins an ELSE block of an IF block and encloses a series of statements that are
conditionally executed.

Syntax

IF logical expression THEN
statements

ELSE IF logical expression THEN
statements

ELSE
statements

END IF

The ELSE section is optional and may occur only once. Other IF blocks may be nested within the
statements section of an ELSE block.

Example

IF (I.LT.15) THEN
M= 4

ELSE
M=5

END IF

Fortran Statements 83

ELSE IF 77

The ELSE IF statement begins an ELSE IF block of an IF block series and encloses statements that are
conditionally executed.

Syntax

IF logical expression THEN
statements
ELSE IF logical expression THEN
statements
ELSE

statements
END IF

The ELSE IF section is optional and may be repeated any number of times. Other IF blocks may be
nested within the statements section of an ELSE IF block.

Example

IF (I.GT.70) THEN
M=1

ELSE IF (I.LT.5) THEN
M=2

ELSE IF (I.LT.1l6) THEN
M=3

END IF

ELSE WHERE 90

The WHERE statement and the WHERE ELSE WHERE construct permit masked assignments to the
elements of an array (or to a scalar, zero dimensional array).
Syntax
WHERE Statement
WHERE (logical-array-expr) array-variable = array-expr
WHERE Construct
WHERE (logical-array-expr)
array-assignments

[ELSE WHERE

84 Chapter 3

array-assignments]
END WHERE
Examples

INTEGER SCORE (30)

CHARACTER GRADE (30)

WHERE (SCORE > 60) GRADE = 'P'

WHERE (SCORE > 60)
GRADE = 'P'

ELSE WHERE
GRADE = 'F'

END WHERE

The ENCODE statement transfers data between variables or arrays in internal storage and translates that
data from internal to character form, according to format specifiers. Similar results can be accomplished
using internal files with formatted sequential WRITE statements.

Syntax

ENCODE

i0s

errs

list

Fortran Statements

(c,f,b[, 10STAT=i0s] [,ERR=errs]) [list]

is an integer expression specifying the number of bytes involved in
translation.

is the format-specifier.

is a scalar or array reference for the buffer area receiving formatted data
(characters).

is the an integer scalar memory reference which is the input/output status
specifier: if this is included, i0S becomes defined with zero if no error
condition exists or a positive integer when there is an error condition.

an error specifier which takes the form of a statement label of an executable
statement in the same program. If an error condition occurs execution
continues with the statement specified by errs .

a list of output items.

85

Non-character Format-specifier

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the
compiler accepts it and treats it as if the contents were character. For example, below sum is treated as a
format descriptor:

real sum
sum = 4h()
accept sum

and is roughly equivalent to
character*4 ch

ch = '()"
accept ch

See Also
READ, PRINT

END 77

The END statement terminates a segment of a Fortran program. There are several varieties of the END
statement. Each is described below.

END Syntax
END

Description

The END statement terminates a module. The END statement has the same effect as a RETURN
statement in a SUBROUTINE or FUNCTION, or the effect of a STOP statement in a PROGRAM
program unit. END may be the last statement in a compilation or it may be followed by a new program
unit or module.

END DO Syntax
The END DO statement terminates a DO or DO WHILE loop.

END DO

Description

86 Chapter 3

The END DO statement terminates an indexed DO or DO WHILE statement which does not contain a
terminal-statement label.

The END DO statement may also be used as a labeled terminal statement if the DO or DO WHILE
statement contains a terminal-statement label.

END FILE Syntax
END FILE u
END FILE ([UNIT=]u, [,IOSTAT =ios] [, ERR=errs])
u is the external unit specifier where u is an integer.

IOSTAT=i0S an integer scalar memory reference which is the input/output specifier: if
this is included in list , i0s becomes defined with zero if no error condition
exists or a positive integer when there is an error condition.

ERR=€rrs an error specifier which takes the form of a statement label of an executable
statement in the same program. If an error condition occurs execution
continues with the statement specified by errs.

Description

When an END FILE statement is executed an endfile record is written to the file as the next record. The
file is then positioned after the endfile record. Note that only records written prior to the endfile record
can be read later.

A BACKSPACE or REWIND statement must be used to reposition the file after an END FILE
statement prior to the execution of any data transfer statement. A file is created if there is an END FILE
statement for a file connected but not in existence.

For example:

END FILE(20)

END FILE (UNIT=34, IOSTAT=IOERR, ERR=140)

END IF Syntax
The END IF statement terminates an IF. ELSE or ELSE IF block.
Syntax

END IF

Description

Fortran Statements 87

The END IF statement terminates an IF block. Thre must be a matching block IF statement (at the same
IF level) earlier in the same subprogram.

Syntax Extension - END MAP)
END MAP Syntax

The END MAP statement terminates a MAP declaration.
Syntax

END MAP

Description
See the MAP statement for details.
END SELECT Syntax

The END SELECT statement terminates a SELECT declaration.

Syntax
END SELECT
Example

SELECT CASE (FLAG)

CASE (1, 2, 3)
TYPE=1

CASE (4:6)
TYPE=2

CASE DEFAULT
TYPE=0

END SELECT

Syntax Extension — END STRUCTURE 8
END STRUCTURE Syntax

The END STRUCTURE statement terminates a STRUCTURE declaration.
Syntax

END STRUCTURE

Description

See the STRUCTURE statement for details.
88 Chapter 3

Syntax Extension - END UNION)
END UNION

The END UNION statement terminates a UNION declaration.
Syntax

END UNION

Description

See the UNION statement for details.

ENTRY 77

The ENTRY statement allows a subroutine or function to have more than one entry point.

Syntax

ENTRY name [(variable, variable...)]

name is the symbolic name, or entry name, by which the subroutine or function
may be referenced.

variable is a dummy argument. A dummy argument may be a variable name, array
name, dummy procedure or, if the ENTRY is in a subroutine, an alternate
return argument indicated by an asterisk. If there are no dummy arguments
name may optionally be followed by (). There may be more than one
ENTRY statement within a subroutine or function, but they must not
appear within a block IF or DO loop.

Description

The name of an ENTRY must not be used as a dummy argument in a FUNCTION, SUBROUTINE or
ENTRY statement, nor may it appear in an EXTERNAL statement.

Within a function a variable name which is the same as the entry name may not appear in any statement
that precedes the ENTRY statement, except in a type statement.

If name is of type character the names of each entry in the function and the function name must be of

type character. If the function name or any entry name has a length of (*) all such names must have a
length of (*); otherwise they must all have a length specification of the same integer value.

Fortran Statements 89

A name which is used as a dummy argument must not appear in an executable statement preceding the
ENTRY statement unless it also appears in a FUNCTION, SUBROUTINE or ENTRY statement that
precedes the executable statement. Neither must it appear in the expression of a statement function
unless the name is also a dummy argument of the statement function, or appears in a FUNCTION or
SUBROUTINE statement, or in an ENTRY statement that precedes the statement function statement.

If a dummy argument appears in an executable statement, execution of that statement is only permitted
during the execution of a reference to the function or subroutine if the dummy argument appears in the
dummy argument list of the procedure name referenced.

When a subroutine or function is called using the entry name, execution begins with the statement
immediately following the ENTRY statement. If a function entry has no dummy arguments the function
must be referenced by hame() but a subroutine entry without dummy arguments may be called with or
without the parentheses after the entry name.

An entry may be referenced from any program unit except the one in which it is defined.

The order, type, number and names of dummy arguments in an ENTRY statement can be different from
those used in the FUNCTION, SUBROUTINE or other ENTRY statements in the same program unit
but each reference must use an actual argument list which agrees in order, number and type with the
dummy argument list of the corresponding FUNCTION, SUBROUTINE or ENTRY statement. When a
subroutine name or an alternate return specifier is used as an actual argument there is no need to match
the type.

Entry names within a FUNCTION subprogram need not be of the same data type as the function name,
but they all must be consistent within one of the following groups of data types:

BYTE, INTEGER*2, INTEGER*4, LOGICAL*1, LOGICAL*2, LOGICAL*4,
REAL*4, REAL*8, COMPLEX*8

COMPLEX*16

CHARACTER

If the function is of character data type, all entry names must also have the same length specification as
that of the function.

90 Chapter 3

Example
FUNCTION SUM (TALL, SHORT, TINY)
SUM=TALL- (SHORT+TINY)

RETURN
ENTRY SUM1 (X, LONG, TALL, WIDE, NARROW)

SUM1= (X*LONG) + (TALL*WIDE) +NARROW
RETURN
ENTRY SUM2 (SHORT, SMALL, TALL, WIDE)

SUM2= (TALL-SMALL) + (WIDE-SHORT)
RETURN

END

When the calling program calls the function SUM it can do so in one of three ways depending on which
ENTRY point is desired.

For example if the call is:

Z=SUM2 (LITTLE, SMALL, BIG, HUGE)
the ENTRY point is SUM?2.

If the call is:

Z=SUM(T, X, Y)
the ENTRY point is SUM and so on.

EQUIVALENCE 77

The EQUIVALENCE statement allows two or more named regions of data memory to share the same
start address. Arrays that are subject to the EQUIVALENCE statement in HPF are treated as sequential
and any attempt at non-replicated data distribution or mapping is ignored for such arrays.

Syntax

EQUIVALENCE (list) [, (list) .. .]

Fortran Statements 91

list is a set of identifiers (variables, arrays or array elements) which are to be
associated with the same address in data memory. The items in a list are
separated by commas, and there must be at least two items in each list.
When an array element is chosen, the subscripts must be integer constants
or integer PARAMETER constants.

Description

The statement can be used to make a single region of data memory have different types, so that for
instance the imaginary part of a complex number can be treated as a real value. make arrays overlap, so
that the same region of store can be dimensioned in several different ways. Records and record fields
cannot be specified in EQUIVALENCE statements.

Syntax Extension)

An array element may be identified with a single subscript in an EQUIVALENCE statement even
though the array is defined to be a multidimensional array. Also, EQUIVALENCE of character and
non-character data is allowed as long as misalignment of non-character data does not occur.

Example

COMPLEX NUM
REAL QWER (2)
EQUIVALENCE (NUM, QWER (1))

In the above example, QWER (1) is the real part of NUM and QWER (2) is the imaginary part.
EQUIVALENCE statements are illegal if there is any attempt to make a mapping of data memory
inconsistent with its linear layout.

=41 90

The EXIT statement interrupts a DO construct execution and continues with the next statement after the
loop.

Syntax
EXIT [do-construct-name]
Example
DO
IF (A(I).EQ.0) CYCLE
B=100/A(I)
IF (B.EQ.5) EXIT
END DO

92 Chapter 3

See Also

CYCLE, DO

EXTERNAL 77

The EXTERNAL statement identifies a symbolic name as an external or dummy procedure. This
procedure can then be used as an actual argument.

Syntax
EXTERNAL proc [,proc] ..
proc is the name of an external procedure, dummy procedure or block data
program unit. When an external or dummy procedure name is used as an
actual argument in a program unit it must appear in an EXTERNAL
statement in that program unit.
Description

If an intrinsic function appears in an EXTERNAL statement an intrinsic function of the same name
cannot then be referenced in the program unit. A symbolic name can appear only once in all the
EXTERNAL statements of a program unit.

EXTRINSIC HPF

The EXTRINSIC statement identifies a symbolic name as an external or dummy procedure that is
written in some language other than HPF.
Syntax

EXTRINSIC (extrinsic-kind-keyword) procedure name

extrinsic-kind-keyword is the name of an extrinsic interface supported. The currently
supported value is F77_ LOCAL.

procedure name is either a subroutine-statement or a function-statement defining a name for
an external and extrinsic procedure.

Description

The EXTRINSIC procedure can then be used as an actual argument once it is defined. The call to an
EXTRINSIC procedure should be semantically equivalent to the execution of an HPF procedure in that

Fortran Statements 93

on return from the procedure, all processors are still available, and all data and templates will have the
same distribution and alignment as when the procedure was called.
See Also

For a complete description of the PGHPF extrinsic facility, along with examples, refer to the PGHPF
User’s Guide.

FORALL F95

The FORALL statement and the FORALL construct provide a parallel mechanism to assign values to
the elements of an array. The FORALL statement is interpreted essentially as a series of single
statement FORALL's.

Syntax
FORALL (forall-triplet-spec-list [, scalar-mask-expr]) forall-assignment
or
FORALL (forall-triplet-spec-list [, scalar-mask-expr])
forall-body
[forall-body 1]...
END FORALL

where forall-body is one of:

forall-assignment
where-statement
where-construct
forall-statement
forall-construct
Description
The FORALL statement is computed in four stages:
First, compute the valid set of index values. Second, compute the active set of index values, taking into
consideration the scalar-mask-expr. If no scalar-mask-expr is present, the valid set is the same as the

active set of index values. Third, for each index value, the right-hand-side of the body of the FORALL
is computed. Finally, the right-hand-side is assigned to the left-hand-side, for each index value.

94 Chapter 3

Examples

A(I) = D(I)
B(I) = C(I) * 2
END FORALL

FORALL (I = 1:5)

WHERE (A(I,:) /= 0.0)
A(I,:) = A(I-1,:) + A(I+1,:)
ELSEWHERE
B(I,:) = A(6-1I,:)
END WHERE
END FORALL
FORMAT /7

The FORMAT statement specifies format requirements for input or output.

Syntax
label FORMAT (list-items)
list-items can be any of the following, separated by commas:

. Repeatable editor commands which may or may not be preceded by an integer constant
which defines the number of repeats.

. Nonrepeatable editor commands.

. A format specification list optionally preceded by an integer constant which defines the
number of repeats.

Each action of format control depends on the next edit code and the next item in the input/output list
where one is used. If an input/output list contains at least one item there must be at least one repeatable
edit code in the format specification. An empty format specification () can only be used if no list items

Fortran Statements 95

are specified; in such a case one input record is skipped or an output record containing no characters is
written. Unless the edit code or the format list is preceded by a repeat specification, a format
specification is interpreted from left to right. Where a repeat specification is used the appropriate item is
repeated the required number of times.

Description

Refer to Chapter 5, Fortran 1/0 and Formatting, for more details on using the FORMAT statement.

Examples

WRITE (6,90) NPAGE
90 FORMAT ('1PAGE NUMBER ', I2,16X, 'SALES REPORT, Cont.')

produces:

PAGE NUMBER 10 SALES REPORT, Cont.

The following example shows use of the tabulation specifier T:

PRINT 25
25 FORMAT (T41,'COLUMN 2',T21, 'COLUMN 1')
produces:
COLUMN 1 COLUMN 2
DIMENSION A (6)
DO 10 I = 1,6
10 A(I) = 25.
TYPE 100,A
100 FORMAT(' ',F8.2,2PF8.2,F8.2) ! ' !
C ! gives single spacing
produces:

25.00 2500.00 2500.00
2500.00 2500.00 2500.00

Note that the effect of the scale factor continues until another scale factor is used.

Non-character Format-specifier 8

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the
compiler accepts it and treats it as if the contents were character. For example, below sum is treated as a
format descriptor:

96 Chapter 3

real sum
sum = 4h()
accept sum

and is roughly equivalent to

character*4 ch
ch = '()!
accept ch

See Also
READ, PRINT

FUNCTION 77

The FUNCTION statement introduces a program unit; the statements that follow all apply to the
function itself and are laid out in the same order as those in a PROGRAM program unit.

Syntax
[function-prefix] FUNCTION name [#*n] ([argument [,argument]...]1)

E':ND [FUNCTION [function-name]]
function-prefix is one of:
[type-spec] RECURSIVE
[RECURSIVE] type-spec

where type-spec is a valid type specification. Type will explicitly apply a
type to the function. If the function is not explicitly typed then the function
type is taken from the initial letter and is dictated by the usual default.

name is the name of the function and must be unique amongst all the program
unit names in the program. name must not clash with any local, COMMON
or PARAMETER names.

*n is the optional length of the data type.

argument is a symbolic name, starting with a letter and containing only letters and

digits. An argument can be of type REAL, INTEGER, DOUBLE
PRECISION, CHARACTER, LOGICAL, COMPLEX, or BYTE, etc.

Fortran Statements 97

Description

The statements and names apply only to the function, except for subroutine or function references and
the names of COMMON blocks. The function must be terminated by an END statement.

A function produces a result; this allows a function reference to appear in an expression, where the
result is assumed to replace the actual reference. The symbolic name of the function must appear as a
variable in the function, unless the RESULT keyword is used. The value of this variable, on exit from
the function, is the result of the function. The function result is undefined if the variable has not been
defined.

The type of a FUNCTION refers to the type of its result.

Recursion is allowed if the —Mrecursive option is used on the command-line and the RECURSIVE
prefix is included in the function definition.

Examples
FUNCTION FRED(A,B,C)
REAL X

END
FUNCTION EMPTY () ! Note parentheses
END

PROGRAM FUNCALL
SII.DE:TOTAL (A,B,Q)

ENI'D

FUNCTION TOTAL (X,Y,Z)

END

FUNCTION AORB (A,B)
IF(A-B)1,2,3

1 AORB = A
RETURN

2 AORB = B
RETURN

3 AOCRB = A + B
RETURN
END

See Also

PURE, RECURSIVE, RESULT
98 Chapter 3

GOTO (Assigned)

(Obsolescent) The assigned GOTO statement transfers control so that the statement identified by the

statement label is executed next. Internal procedures can be used in place of the ASSIGN statement
used with an assigned GO TO.

Syntax
GOTO integer-variable-name[[, 1 (list)]
integer-variable-name
must be defined with the value of a statement label of an executable
statement within the same program unit. This type of definition can only be
done by the ASSIGN statement.
list consists of one or more statement labels attached to executable statements
in the same program unit. If a list of statement labels is present, the
statement label assigned to the integer variable must be in that list.
Examples
ASSIGN 50 TO K
GO TO K(50,90)
90 G=D**5
50 F=R/T
GOTO (Computed) 77

The computed GOTO statement allows transfer of control to one of a list of labels according to the
value of an expression.

Syntax
GOTO (list) [,1 expression
list is a list of labels separated by commas.
expression selects the label from the list to which to transfer control. Thus a value of 1

implies the first label in the list, a value of 2 implies the second label and so
on. An expression value outside the range will result in transfer of control
to the statement following the computed GOTO statement.

Fortran Statements 99

Example

READ *, A, B
GO TO (50,60,70)A
WRITE (*, 10) A, B

10 FORMAT (' ', I3, F10.4, 5X, 'A must be 1, 2
+ or 3')
STOP
50 X=A**B ! Come here if A has the value 1
GO TO 100
60 X=(A*56) * (B/3) !Come here if A is 2
GO TO 100
70 X=A*B ! Come here if A has the value 3
100 WRITE (*, 20) A, B, X
20 FORMAT (' ', I3, F10.4, 5X, F10.4)
GOTO (Unconditional) 77

The GOTO statement unconditionally transfers control to the statement with the label label. The
statement label label must be declared within the code of the program unit containing the GOTO
statement and must be unique within that program unit.

Syntax
GOTO label
label is a statement label
Example
TOTAL=0.0
30 READ *, X
IF (X.GE.O0) THEN
TOTAL=TOTAL+X
GOTO 30
END IF
IF (Arithmetic) 77

(Obsolescent) The arithmetic IF statement transfers control to one of three labeled statements. The
statement chosen depends upon the value of an arithmetic expression.

100 Chapter 3

Syntax
IF (arithmetic-expression) label-1, label-2, label-3

Control transfers to label-1, label-2 or label-3 if the result of the evaluation of the arithmetic-expression
is less than zero, equal to zero or greater than zero respectively.

Example
IF X 10, 20, 30

if X is less than zero then control is transferred to label 10.
if X equals zero then control is transferred to label 20.

if X is greater than zero then control is transferred to label 30.

IF (Block) 77
The block IF statement consists of a series of statements that are conditionally executed.

Syntax

IF logical expression THEN
statements

ELSE IF logical expression THEN
statements

ELSE
statements

END IF

The ELSE IF section is optional and may be repeated any number of times. Other IF blocks may be
nested within the statements section of an ELSE IF block.

The ELSE section is optional and may occur only once. Other IF blocks may be nested within the
statements section of an ELSE block.

Example

IF (I.GT.70) THEN
M=1

ELSE IF (I.LT.5) THEN
M=2

ELSE IF (I.LT.1l6) THEN
M=3

END IF

Fortran Statements 101

IF (I.LT.15) THEN
M= 4

ELSE
M=5

END IF

IF (Logical) 77

The logical IF statement executes or does not execute a statement based on the value of a logical
expression.

Syntax
IF (logical-expression) statement
logical-expression is evaluated and if it is true the statement is executed. If it is false
statement is not executed and control is passed to the next executable
statement.
statement can be an assignment statement, a CALL statement or a GOTO
statement.
Examples
IF(N .LE. 2) GOTO 27
IF(HIGH .GT. 1000.0 .OR. HIGH .LT. 0.0) HIGH=1000.0

The IMPLICIT statement redefines the implied data type of symbolic names from their initial letter.
Without the use of the IMPLICIT statement all names that begin with the letters I, J, K, L, M or N are
assumed to be of type integer and all names beginning with any other letters are assumed to be real.

Syntax
IMPLICIT spec (al[,al...) [,spec (a[,al...)]
IMPLICIT NONE
spec is a data type specifier.
a is an alphabetic specification expressed either as a or al-a2, specifying an
alphabetically ordered range of letters.
102

Chapter 3

Description
IMPLICIT statements must not be labeled.
Symbol names may begin with a dollar sign ($) or underscore (_) character, both of which are of type

REAL by default. In an IMPLICIT statement, these characters may be used in the same manner as other
characters, but they cannot be used in a range specification.

The IMPLICIT NONE statement specifies that all symbolic names must be explicitly declared,
otherwise an error is reported. If IMPLICT NONE is used, no other IMPLICIT can be present.

Examples
IMPLICIT REAL (L,N)
IMPLICIT INTEGER (S,W-3Z)
IMPLICIT INTEGER (A-D,$,)
INCLUDE § 77

The INCLUDE statement directs the compiler to start reading from another file.

Note: The INCLUDE statement is used for FORTRAN 77. There is no support for VAX/VMS text
libraries or the module_name pathname qualifier that exists in the VAX/VMS version of the INCLUDE
statement.Syntax

INCLUDE 'filename [/ [NO]LIST]'
INCLUDE "filename [/[NO]JLIST]"

The INCLUDE statement may be nested to a depth of 20 and can appear anywhere within a program
unit as long as Fortran's statement-ordering restrictions are not violated.

§ The qualifiers /LIST and /NOLIST can be used to control whether the include file is expanded
in the listing file (if generated).

Either single or double quotes may be used.

If the final component of the file pathname is /LIST or /NOLIST, the compiler will assume it is a
qualifier, unless an additional qualifier is supplied.

The filename and the /LIST or /NOLIST qualifier may be separated by blanks.

The include file is searched for in the following directories:

Fortran Statements 103

e Each -l directory specified on the command-line.

e The directory containing the file that contains the INCLUDE statement (the current working
directory.)
e The standard include area.

Example
INCLUDE '/mypath/list /list'

This line includes a file named /mypath/list and expands it in the listing file, if a listing file is used.

INQUIRE 77

An INQUIRE statement has two forms and is used to inquire about the current properties of a particular
file or the current connections of a particular unit. INQUIRE may be executed before, during or after a
file is connected to a unit.

Syntax
INQUIRE (FILE=filename, list)
INQUIRE ([UNIT=]unit, list)

In addition list may contain one of each of the following specifiers in any order, following the unit
number if the optional UNIT specifier keyword is not supplied.

ACCESS=acc acc returns a character expression specifying the access method for the file
as either DIRECT or SEQUENTIAL. The default is SEQUENTIAL.

ACTION=acc accis a character expression specifying the access types for the connection.
Either READ, WRITE, or READWRITE.

BLANK= blnk bInk is a character expression which returns the value NULL or ZERO or
UNDEFINED. A character scalar memory reference taking the value NULL
or ZERO. NULL causes all blank characters in numeric formatted input
fields to be ignored with the exception of an all blank field which has a
value of zero. ZERO causes all blanks other than leading blanks to be
treated as zeros. This specifier must only be used when a file is connected
for formatted input/output.

DELIM= del_char
del_char is a character expression which returns the value APOSTROPHE,
QUOTE or NONE or UNDEFINED. These values specify the character
delimiter for list-directed or namelist formatted data transfer statements.

104 Chapter 3

DIRECT= dir_char

ERR= errs

EXIST= value

FILE=fin

FORM= fm

dir_char a character reference which returns the value YES if DIRECT is
one of the allowed access methods for the file, NO if not and UNKNOWN if it
is not known if DIRECT is included.

errs an error specifier which returns the value of a statement label of an
executable statement within the same program. If an error condition occurs
execution continues with the statement specified by errs.

value a logical variable or logical array element which becomes .TRUE. if
there is a file/unit with the name or .FALSE. otherwise.

fin is a character expression whose value is the file name expression, the
name of the file connected to the specified unit.

fm is a character expression specifying whether the file is being connected
for FORMATTED or UNFORMATTED input/output. The default is
UNFORMATTED.

FORMATTED= fmt

IOSTAT= i0S

NAME= fn

NAMED= nmd

NEXTREC= nr

NUMBER= num

OPENED= od

Fortran Statements

fmt a character memory reference which takes the value YES if
FORMATTED is one of the allowed access methods for the file, NO if not
and UNKNOWN if it is not known if FORMATTED is included.

i0s input/output status specifier where i0S is an integer reference: if this is
included in list, i0s is defined as O if no error condition occurred and a
positive integer when there is an error condition.

fn a character scalar memory reference which is assigned the name of the
file when the file has a name, otherwise it is undefined

nmd a logical scalar memory reference which becomes .TRUE. if the file
has a name, otherwise it becomes .FALSE.

nr an integer scalar memory reference which is assigned the value n+1,
where n is the number of the record read or written. It takes the value 1 if
no records have been read or written. If the file is not connected or its
position is indeterminate nr is undefined.

num an integer scalar memory reference or integer array element assigned
the value of the external unit number of the currently connected unit. It
becomes undefined if no unit is connected.

od a logical scalar memory reference which becomes .TRUE. if the file/unit
specified is connected (open) and .FALSE. if the file is not connected
(.FALSE)).

105

106

PAD= pad_char

POSITION= POS_t

READ=rl

READWRITE= rl

RECL= rcll

pad_char is a character expression specifying whether to use blank
padding. Values are YES or NO, yes specifies blank padding is used, no
requires that input records contain all requested data.

char

pos_char is a character expression specifying the file position. Values are
ASIS or REWIND or APPEND. For a connected file, on OPEN ASIS
leaves the position in the current position, REWIND rewinds the file and
APPEND places the current position at the end of the file, immediately
before the end-of-file record.

rl a character reference which takes the value YES if UNFORMATTED is
one of the allowed access methods for file, NO if not, UNKNOWN if it is not
known if UNFORMATTED is included.

rla character scalar memory reference which takes the value YES if
UNFORMATTED is one of the allowed access methods for the file, NO if
not and UNKNOWN if it is not known if UNFORMATTED is included.

rcl is an integer expression defining the record length in a file connected
for direct access. When sequential input/output is specified this is the
maximum record length. This specifier must only be given when a file is
connected for direct access.

SEQUENTIAL~ Seq

seq a character scalar memory reference which takes the value YES if
UNFORMATTED is one of the allowed access methods for the file, NO if
not and UNKNOWN if it is not known if UNFORMATTED is included.

UNFORMATTED= unf

WRITE= rl

unf a character scalar memory reference which takes the value YES if
UNFORMATTED is one of the allowed access methods for the file, NO if
not and UNKNOWN if it is not known if UNFORMATTED is included.

rl a character scalar memory reference which takes the value YES, NO, or
UNKNOWN. Indicates that WRITE is allowed, not allowed, or
indeterminate for the specified file.

Chapter 3

Description

When an INQUIRE by file statement is executed the following specifiers will only be assigned values if
the file name is acceptable: nmd, fn, seq, dir, fmt and unf. num is defined, and acc, fm, rcl, nr and blnk
may become defined only if od is defined as . TRUE..

When an INQUIRE by unit statement is executed the specifiers num, nmd, fn, acc, seq, dir, fm, fmt, unf,
rcl, nr and bink are assigned values provided that the unit exists and a file is connected to that unit.
Should an error condition occur during the execution of an INQUIRE statement all the specifiers except
i0s become undefined.

INTEGER 77

The INTEGER statement establishes the data type of a variable by explicitly attaching the name of a
variable to an integer data type. This overrides the implication of data typing by the initial letter of a
symbolic name.

Syntax
The syntax for INTEGER has two forms, a standard FORTRAN 77 or 90 attributed form, and the PGI
extended form. This section describes both syntax forms.

INTEGER [([KIND = kind-value)] [, attribute-list ::] entity-list

INTEGER permits a KIND specification. Refer to the Fortran 95 Handbook for more syntax details.

attribute-list is the list of attributes for the character variable.
entity-list is the list of defined entities.
Syntax Extension)

INTEGER [*n] [,] name [+*n] [dimensions] [/clist/] ...

n is an optional size specification.

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Description

Integer type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. INTEGER statements must not be labeled. The default size of an INTEGER
variable is 4 bytes. With the -Mnoi4 option, the default size of an INTEGER variable is 2 bytes.

Fortran Statements 107

Note: The data type of a symbol may be explicitly declared only once. It is established by type
declaration statement, IMPLICIT statement or by predefined typing rules. Explicit declaration of a type
overrides any implicit declaration. An IMPLICIT statement overrides predefined typing rules.

Example

INTEGER TIME, SECOND, STORE (5,5)

INTENT 90

The INTENT specification statement (attribute) specifies intended use of a dummy argument. This
statement (attribute) may not be used in a main program's specification statement.

Syntax
INTENT (intent-spec) [:: 1 dummy-arg-list
intent-spec is one of:
IN
ouT
INOUT
dummy-arg-list is the list of dummy arguments with the specified intent.
Description

With intent specified as IN, the subprogram argument must not be redefined by the subprogram.

With intent specified as OUT, the subprogram should use the argument to pass information to the calling
program.

With intent specified as INOUT, the subprogram may use the value passed through the argument, but
should also redefine the argument to pass information to the calling program.

See Also

OPTIONAL

Example

SUBROUTINE IN OUT(R1,I1)
REAL, INTENT (IN)::R1
INTEGER, INTENT(OUT) ::I1

108 Chapter 3

I1=R1
END SUBROUTINE IN_OUT

INTERFACE

The INTERFACE statement block makes an implicit procedure an explicit procedure where the dummy
parameters and procedure type are known to the calling module. This statement is also used to overload

a procedure name.

Syntax
INTERFACE [generic-spec]
[interface-body] . . .
[MODULE PROCEDURE procedure-name-list]. . .
END INTERFACE

where a generic-spec is either:

generic-name

OPERATOR (defined operator)

ASSIGNMENT (=)

and the interface body specified the interface for a function or a subroutine:

function-statement
[specification-part]

END FUNCTION [function name]
subroutine-statement

[specification-part]

END FUNCTION [subroutine name]

See Also

END INTERFACE

Fortran Statements

109

Example

INTERFACE
SUBROUTINE IN_OUT (R1,I1)
REAL, INTENT (IN)::R1
INTEGER, INTENT (OUT)::I1
END SUBROUTINE IN_OUT
END INTEFACE

INTRINSIC 77

An INTRINSIC statement identifies a symbolic name as an intrinsic function and allows it to be used as
an actual argument.
Syntax
INTRINSIC func [,func]
func is the name of an intrinsic function such as SIN, COS, etc.

Description

Do not use any of the following functions in INTRINSIC statements:
. type conversions:

INT, IFIX, IDINT, FLOAT, SNGL, REAL, DBLE, CMPLX, ICHAR, CHAR

. lexical relationships:

LGE, LGT, LLE, LLT

. values:

MAX, MAXO0, AMAX1l, DMAX1l, AMAXO, MAX1l, MIN, MINO, AMIN1, DMIN1,
AMINO, MIN1

When a specific name of an intrinsic function is used as an actual argument in a program unit it must
appear in an INTRINSIC statement in that program unit. If the name used in an INTRINSIC statement
is also the name of a generic intrinsic function, it retains its generic properties. A symbolic name can
appear only once in all the INTRINSIC statements of a program unit and cannot be used in both an
EXTERNAL and INTRINSIC statement in a program unit.

The following example illustrates the use of INTRINSIC and EXTERNAL:

EXTERNAL MYOWN
INTRINSIC SIN, COS

110 Chapter 3

CALL TRIG (ANGLE, SIN, SINE)
CALL TRIG (ANGLE,MYOWN,COTANGENT)

CALL TRIG (ANGLE,COS,SINE)

SUBROUTINE TRIG (X,F,Y)
Y=F (X)

RETURN

END

FUNCTION MYOWN
MYOWN=COS (X) /SIN (X)
RETURN

END

In this example, when TRIG is called with a second argument of SIN or COS the function reference
F (X) references the intrinsic functions SIN and COS; however when TRIG is called with MYOWN as
the second argument F (X) references the user function MYOWN.

LOGICAL 77

The LOGICAL statement establishes the data type of a variable by explicitly attaching the name of a
variable to an integer data type. This overrides the implication of data typing by the initial letter of a
symbolic name.

Syntax

The syntax for LOGICAL has two forms, a standard FORTRAN 77 and 90 attributed form, and the PGI
extended form. This section describes both syntax forms.

LOGICAL [([KIND = kind-value) 1 [, attribute-list ::1 entity-list

LOGICAL permits a KIND specification. Refer to the Fortran 95 Handbook for more syntax details.

attribute-list is the list of attributes for the character variable.

entity-list is the list of defined entities.

Fortran Statements 111

Syntax Extension §

LOGICAL [*n] [,] name [*n] [dimensions] [/clist/]
[, name] [*n] [dimensions] [/clist/]...

n is an optional size specification.

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Description

Logical type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. Type declaration statements must not be labeled. Note: The data type of a
symbol may be explicitly declared only once. It is established by type declaration statement, IMPLICIT
statement or by predefined typing rules. Explicit declaration of a type overrides any implicit
declaration. An IMPLICIT statement overrides predefined typing rules.

The default size of an LOGICAL variable is 4 bytes. With the -Mnoi4 option, the default size of an
LOGICAL variable is 2 bytes.

Example

LOGICAL TIME, SECOND, STORE(5,5)

MAP § 77

A union declaration is initiated by a UNION statement and terminated by an END UNION statement.
Enclosed within these statements are one or more map declarations, initiated and terminated by MAP
and END MAP statements, respectively. Each unique field or group of fields is defined by a separate
map declaration. Field alignment within multiple map declarations is performed as previously defined
in structure declarations.

Syntax

MAP
field declaration
[field declaration]

[field declaration]
END MAP

field_declaration is a structure declaration or RECORD statement contained within a
union declaration, a union declaration contained within a union
declaration, or the declaration of a typed data field within a union.

112 Chapter 3

Description

Data can be initialized in field declaration statements in union declarations. However, it is illegal to
initialize multiple map declarations in a single union.

The size of the shared area for a union declaration is the size of the largest map defined for that union.
The size of a map is the sum of the sizes of the field(s) declared within it plus the space reserved for
alignment purposes.

Manipulating data using union declarations is similar to what happens using EQUIVALENCE
statements. However, union declarations are probably more similar to union declarations for the
language C. The main difference is that the language C requires one to associate a name with each map
(union). Fortran field names must be unique within the same declaration nesting level of maps.

Example
The following is an example of RECORD, STRUCTURE and UNION usage. The size of each element

of the recarr array would be the size of typetag (4 bytes) plus the size of the largest MAP - the
employee map (24 bytes).

STRUCTURE /account/

INTEGER typetag | Tag to determine defined map.
UNION
MAP ! Structure for an employee
CHARACTER*12 ssn ! Social Security Number
REAL*4 salary
CHARACTER*8 empdate ! Employment date
END MAP
MAP ! Structure for a customer
INTEGER*4 acct_cust
REAL*4 credit_amt
CHARACTER*8 due_date
END MAP
MAP ! Structure for a supplier
INTEGER*4 acct_supp
REAL*4 debit_amt
BYTE num_items
BYTE items (12)! Items supplied
END MAP
END UNION

END STRUCTURE

RECORD /account/ recarr (1000)

Fortran Statements 113

MODULE 90

(PGF95 and PGHPF only) The MODULE statement specifies the entry point for a Fortran 90/95
module program unit. A module defines a host environment of scope of the module, and may contain
subprograms that are in the same scoping unit.

Syntax
MODULE [name]
[specification-part]
[CONTAINS [module-subprogram-part]]

END [MODULE [module-name]]

name is optional; if supplied it becomes the name of the program module and
must not clash with any other names used in the program. If it is not
supplied, a default name is used.

specification-part
contains specification statements. See the Fortran 95 Handbook for a
complete description of the valid statements.

module-subprogram-part
contains function and subroutine definitions for the module, preceded by a
single CONTAINS keyword.

Modules can be independently compiled and used within programs using the USE statement. Use of
Fortran 90/95 modules causes the compiler to create a filename.mod file in the current directory (a
.mod file). This file contains all the information the compiler needs concerning interface specifications
and the data types for the routines defined in the module. When a program, routine, or another module
encounters the USE statement, the .mod file is read and "included" in the program, using the scope rules
defined in Fortran 90/95 for USE association. If you are using separate modules, this creates another
step in the program development process. When a module is compiled, both a .mod and a .0 file are
created. The .mod file is used when a USE statement is encountered, and the .0 file is used when the
program is linked.

For example, if modulel.f contains a module with several procedures, and testl.f contains a USE
statement that uses modulel, the compilation would involve the steps.

% pgf95 -c modulel.f
% pgf95 —o0 testl testl.f modulel.o

The search for a .mod file includes the following directories:

114 Chapter 3

e Each -l directory specified on the command-line.

e The directory containing the file that contains the USE statement (the current working
directory.)

e The standard include area.

Using the —I command-line option directories can be added to the search path for .mod files.

Example

MODULE MYOWN
REAL MEAN, TOTAL
INTEGER, ALLOCATABLE, DIMENSION(:):: A
CONTAINS
RECURSIVE INTEGER FUNCTION X(Y)

END FUNCTION X
END MODULE MYOWN

NAMELIST 90

The NAMELIST statement allows for the definition of namelist groups for namelist-directed /0.

Syntax
NAMELIST /group-name/ namelist [[,] /group-name/ namelist 1. ..
group-name is the name of the namelist group.
namelist is the list of variables in the namelist group.

Example

In the following example a named group PERS consists of a name, an account, and a value.
CHARACTER*12 NAME
INTEGER*$ ACCOUNT

REAL*4 VALUE
NAMELIST /PERS/ NAME, ACCOUNT, VALUE

Fortran Statements 115

NULLIFY 90

The NULLIFY statement disassociates a pointer from its target.

Syntax
NULLIFY (pointer-object-list)
Example
NULLIFY (PTR1)
See Also

ALLOCATE, DEALLOCATE

OPEN 77

The OPEN statement connects an existing file to a unit; creates and connects a file to a unit; creates a
file that is preconnected or changes certain specifiers of a connection between a file and a unit.

Syntax
OPEN (list)
list must contain exactly one unit specifier of the form:
[UNIT=] u
where the UNIT= is optional and the external unit specifier U is an integer.

In addition list may contain one of each of the following specifiers in any order, following the unit
number if the optional UNIT specifier keyword is not supplied.

ACCESS=acc acc is a character expression specifying the access method for file
connection as either DIRECT or SEQUENTIAL - the default is
SEQUENTIAL.

ACTION=acc acc is a character expression specifying the permitted access types for
connection. Either READ, WRITE, UNKNOWN or READWRITE are
allowed. the default is UNKNOWN .

BLANK=DbInk bInk is a character expression which takes the value NULL' or 'ZERO":
'NULL' causes all blank characters in numeric formatted input fields to be
ignored with the exception of an all blank field which has a value of zero.
'ZERQ' causes all blanks other than leading blanks to be treated as zeros.

116 Chapter 3

DELIM= del_char

ERR=€rrs

FILE= fin

FORM=fm

IOSTAT= i0S

PAD= pad_char

POSITION= pos_

RECL=rl

STATUS= sta

Fortran Statements

The default is 'NULL.' This specifier must only be used when a file is
connected for formatted input/output.

del_char is a character expression which takes the value '"APOSTROPHE',
'QUOTE' or 'NONE'. These values specify the character delimiter for list-
directed or namelist formatted data transfer statements.

errs an error specifier; takes the form of a statement label of an executable
statement within the program. If an error condition occurs execution
continues with the statement specified by errs.

fin is a character expression whose value is the file name expression, the
name of a file to be connected to the specified unit.

fm is a character expression specifying whether the file is being connected
for 'FORMATTED' or 'UNFORMATTED' input/output.

i0s is an integer scalar; if this is included i0S becomes defined with 0
(zero) if no error condition exists or a positive integer when there is an
error condition. A value of -1 indicates an end-of-file condition with no
error. A value of -2 indicates an end-of-record condition with no error
when using non-advancing I/O.

pad_char is a character expression specifying whether to use blank
padding. Values are YES or NO, yes specifies that blank padding is used
and no requires that input records contain all requested data.

char

pos_char is a character expression specifying the file position. Values are
ASIS or REWIND or APPEND. For a connected file, on OPEN ASIS
leaves the position in the current position, REWIND rewinds the file and
APPEND places the current position at the end of the file, immediately
before the end-of-file record.

rl is an integer expression defining the record length in a file connected for
direct access. When sequential input/output is specified this is the
maximum record length.

sta is a character expression whose value can be: NEW, OLD, SCRATCH or
UNKNOWN or REPLACE. When OLD or NEW is specified a file specifier
must be given. SCRATCH must not be used with a named file. The default
status is UNKNOWN which specifies that the file's existence is unknown,
which limits the error checking when opening the file.. With status OLD,

117

the file must exist or an error is reported. With status NEW, the file is
created, if the file exists, as error is reported. Status SCRATCH specifies
that the file is removed when closed.

Description

The record length, RECL=, must be specified if a file is connected for direct access and optionally one
of each of the other specifiers may be used. RECL is ignored if the access method is sequential.

The unit specified must exist and once connected by an OPEN statement can be referenced in any
program unit of the executable program. If a file is connected to a unit it cannot be connected to a
different unit by the OPEN statement.

If a unit is connected to an existing file, execution of an OPEN statement for that file is allowed. Where
FILE= is not specified the file to be connected is the same as the file currently connected. If the file
specified for connection to the unit does not exist but is the same as a preconnected file, the properties
specified by the OPEN statement become part of the connection. However, if the file specified is not the
same as the preconnected file this has the same effect as the execution of a CLOSE statement without a
STATUS-= specifier immediately before the execution of the OPEN statement. When the file to be
connected is the same as the file already connected only the BLANK= specifier may be different from
the one currently defined.

Example

In the following example a new file, BOOK, is created and connected to unit 12 for direct formatted
input/output with a record length of 98 characters. Numeric values will have blanks ignored and E1
will be assigned some positive value if an error condition exists when the OPEN statement is executed;
execution will then continue with the statement labeled 20. If no error condition pertains, E1 is
assigned the value zero (0) and execution continues with the next statement.

OPEN(12, IOSTAT=El, ERR=20, FILE='BOOK',
+ BLANK='NULL', ACCESS='DIRECT', RECL=98,
+ FORM='FORMATTED', STATUS='NEW')

Environment Variables

For an OPEN statement which does not contain the FILE= specifier, an environment variable may be
used to specify the file to be connected to the unit. If the environment variable FORAdd exists, where
ddd is a 3 digit string whose value is the unit, the environment variable's value is the name of the file to
be opened.

VAX/VMS Fortran Extensions 8

VAX/VMS introduces a number of extensions to the OPEN statement. Many of these relate only to the
VMS file system and are not supported (e.g., KEYED access for indexed files). The following
keywords for the OPEN statement have been added or augmented as shown below. Refer to
Programming in VAX FORTRAN for additional details on these keywords.

118 Chapter 3

ACCESS The value of 'APPEND' will be recognized and implies sequential access
and positioning after the last record of the file. Opening a file with append
access means that each appended record is written at the end of the file.

ASSOCIATEVARIABLE
This new keyword specifies an INTEGER*4 integer scalar memory
reference which is updated to the next sequential record number after each
direct access 1/O operation. Only for direct access mode.

DISPOSE and DISP
These new keywords specify the disposition for the file after it is closed.
'KEEP' or 'SAVE' 1is the default on anything other than
STATUS='SCRATCH' files. 'DELETE' indicates that the file is to be
removed after it is closed. The PRINT and SUBMIT values are not

supported.
NAME This new keyword is a synonym for FILE.
READONLY This new keyword specifies that an existing file can be read but prohibits

writing to that file. The default is read/write.

RECL=len The record length given is interpreted as number of words in a record if the
runtime environment parameter FTNOPT is set to "vaxio". This simplifies
the porting of VAX/VMS programs. The default is that len is given in
number of bytes in a record.

TYPE This keyword is a synonym for STATUS.

OPTIONAL 90

The OPTIONAL specification statement (attribute) specifies dummy arguments that may be omitted or
that are optional.

Syntax

OPTIONAL [::] dummy-arg-list
Examples

OPTIONAL :: VAR4, VAR5

OPTIONAL VAR6, VAR7

Fortran Statements 119

INTEGER, OPTIONAL:: VARS, VAR9
See Also
INTENT

OPTIONS § 77

The OPTIONS statement confirms or overrides certain compiler command-line options.

Syntax
OPTIONS /option [/option ...]

Table 3.2 shows what options are available for the OPTIONS statement.

Table 3.2: OPTIONS Statement

Option Action Taken
CHECK=ALL Enable array bounds checking
CHECK=[NO]JOVERFLOW None (recognized but ignored)
CHECK=[NO]BOUNDS (Disable) Enable array bounds checking
CHECK=[NOJUNDERFLOW None
CHECK=NONE Disable array bounds checking
NOCHECK Disable array bounds checking
[NOJEXTEND_SOURCE (Disable) Enable the -Mextend option
[NO]G_FLOATING None
[NOJF77 (Disable) Enable the —Mstandard option
[NOJI4 (Disable) Enable the —Mi4 option
[NOJRECURSIVE (Disable) Enable the —Mrecursive option
[NOJREENTRANT (Enable) Disable optimizations that may result in code
that is not reentrant.
[NO]STANDARD (Disable) Enable the —Mstandard option

The following restrictions apply to the OPTIONS statement:

e The OPTIONS statement must be the first statement in a program unit; it must precede the
PROGRAM, SUBROUTINE, FUNCTION, and BLOCKDATA statements.

e The options listed in the OPTIONS statement override values from the driver command-line for the
program unit (subprogram) immediately following the OPTIONS statement.

120 Chapter 3

e Any abbreviated version of an option that is long enough to identify the option uniquely is a legal
abbreviation for the option

e Case is not significant, unless the -Mupcase is present on the command line. If it is, each option
must be in lower case.

PARAMETER 77

The PARAMETER statement gives a symbolic name to a constant.

Syntax
PARAMETER (name = expression[,name = expression...])
expression is an arithmetic expression formed from constant or PARAMETER
elements using the arithmetic operators +, -, *, />. The usual
precedence order can be changed by using parentheses. expression may
include a previously defined PARAMETER.
Examples

PARAMETER (PI = 3.142)
PARAMETER (INDEX = 1024)
PARAMETER (INDEX3 = INDEX * 3)

The following VAX/VMS extensions to the PARAMETER statement are fully supported:
e Its list is not bounded with parentheses.

e The form of the constant (rather than the implicit or explicit typing of the symbolic name)
determines the data type of the variable.

The form of the alternative PARAMETER statement is:

PARAMETER p=c [,p=c]...

where p is a symbolic name and C is a constant, symbolic constant, or a compile time constant
expression.

PAUSE

(Obsolescent) The PAUSE statement stops the program's execution. The PAUSE statement is
obsolescent because a WRITE statement may send a message to any device, and a READ statement
may be used to wait for a message from the same device.

Fortran Statements 121

Syntax
PAUSE [character-expression | digits 1]

The PAUSE statement stops the program's execution. The program may be restarted later and execution
will then continue with the statement following the PAUSE statement.

POINTER 90

The POINTER specification statement or attribute declares a scalar variable to be a pointer variable (of
type INTEGER), and another variable to be its target pointer-based variable. The target may be a scalar
or an array of any type.

Syntax
POINTER [::] object-name [(deferred-shape-spec-list)]
[, object-name [(deferred-shape-spec-list) 11
Example
REAL, DIMENSION(:,:), POINTER:: X
POINTER (Cray) § 77

The POINTER statement is an extension to FORTRAN 77. It declares a scalar variable to be a pointer
variable (of type INTEGER), and another variable to be its pointer-based variable.

Syntax
POINTER (pl, v1) [, (p2, v2) ...]

vl and v2 are pointer-based variables. A pointer-based variable can be of any type,
including STRUCTURE. A pointer-based variable can be dimensioned in a
separate type, in a DIMENSION statement, or in the POINTER statement.
The dimension expression may be adjustable, where the rules for
adjustable dummy arrays regarding any variables which appear in the
dimension declarators apply.

pl and p2 are the pointer variables corresponding to vl and v2. A pointer variable
may not be an array. The pointer is an integer variable containing the
address of a pointer-based variable. The storage located by the pointer
variable is defined by the pointer-based variable (for example, array, data
type, etc.). A reference to a pointer-based variable appears in Fortran

122 Chapter 3

statements like a normal variable reference (for example, a local variable, a
COMMON block variable, or a dummy variable). When the based variable
is referenced, the address to which it refers is always taken from its
associated pointer (that is, its pointer variable is dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is defined. The
pointer is defined in one of the following ways:

e By assigning the value of the LOC function.
e By assigning a value defined in terms of another pointer variable.

e By dynamically allocating a memory area for the based variable. If a pointer-based variable is
dynamically allocated, it may also be freed.

Example
REAL XC(10)
COMMON IC, XC
POINTER (P, I)
POINTER (Q, X(5))

= LOC(IC)
I =20 ! IC gets 0
P = LOC(XC)
Q= P + 20 ! same as LOC(XC(6))
X(1) = 0 ! XC(6) gets O
ALLOCATE (X) ! Q locates a dynamically

! allocated memory area

Restrictions

The following restrictions apply to the POINTER statement:

e No storage is allocated when a pointer-based variable is declared.

e Ifapointer-based variable is referenced, its pointer variable is assumed to be defined.

e A pointer-based variable may not appear in the argument list of a SUBROUTINE or FUNCTION
and may not appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or SAVE statements.

e A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION subprogram. If
a pointer-based variable is an adjustable array, it is assumed that the variables in the dimension
declarator(s) are defined with an integer value at the time the SUBROUTINE or FUNCTION is

Fortran Statements 123

called. For a variable which appears in a pointer-based variable's adjustable declarator, modifying
its value during the execution of the SUBROUTINE or FUNCTION does not modify the bounds of
the dimensions of the pointer-based array.

e A pointer-based variable is assumed not to overlap with another pointer-based variable.

PRINT 77

The PRINT statement is a data transfer output statement.

Syntax
PRINT format-specifier [, iolist]
or

PRINT namelist-group
formatspecifier a label of a format statement or a variable containing a format string.

iolist output list must either be one of the items in an input list or any other
expression. However a character expression involving concatenation of an
operand of variable length cannot be included in an output list unless the
operand is the symbolic name of a constant.

namelist-group the name of the namelist group.

Description

When a PRINT statement is executed the following operations are carried out: data is transferred to the

standard output device from the items specified in the output list and format specification.” The data are
transferred between the specified destinations in the order specified by the input/output list. Every item
whose value is to be transferred must be defined.

Non-character Format-specifier 8

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the
compiler accepts it and treats it as if the contents were character. For example, below sum is treated as a
format descriptor:

* If an asterisk (*) is used instead of a format identifier, the list-directed formatting rules apply.

124 Chapter 3

real sum
sum = 4h()
print sum

and is roughly equivalent to

character*4 ch

ch = '"()"'
print ch
See Also
READ, PRINT
PRIVATE 90

The PRIVATE statement specifies entities defined in a module are not accessible outside of the module.
This statement is only valid in a module. The default specification for a module is PUBLIC.

Syntax
PRIVATE [:: [access-id-list]]
Description
Example
MODULE FORMULA
PRIVATE
PUBLIC :: VARA
END MODULE
Type

Non-executable

See Also
PUBLIC, MODULE

Fortran Statements 125

PROGRAM 77

The PROGRAM statement specifies the entry point for the linked Fortran program.

Syntax
PROGRAM [name]
END [PROGRAM [program-name]]
name is optional; if supplied it becomes the name of the program module and
must not clash with any other names used in the program. If it is not
supplied, a default name is used.
Description

The program statement specifies the entry point for the linked Fortran program. An END statement
terminates the program.

The END PROGRAM statement terminates a main program unit that begins with the optional
PROGRAM statement. The program name found in the END PROGRAM must match that in the
PROGRAM statement.

Example
PROGRAM MYOWN
REAL MEAN, TOTAL
CALL TRIG(A,B,C,MEAN)
END
PUBLIC 90

The PUBLIC statement specifies entities defined in a module are accessible outside of the module. This
statement is only valid in a module. The default specification for a module is PUBLIC.

Syntax

PUBLIC [:: [access-id-1list]]

126 Chapter 3

Example

MODULE FORMULA
PRIVATE
PUBLIC :: VARA

END MODULE
Type

Non-executable

See Also
PRIVATE, MODULE

PURE 95

The PURE attribute indicates that a function or subroutine has no side effects. Use of PURE can enable
additional opportunities for optimization, and for the PGHPF compiler indicates that a subroutine or
function can be used in a FORALL statement or construct or within an INDEPENDENT DO loop.

Syntax
PURE [type-specification] FUNCTION
or
type-specification PURE FUNCTION
or
PURE SUBROUTINE
Type

Non-executable

See Also
FUNCTION, SUBROUTINE

Fortran Statements 127

R{=V2\D)

90

The READ statement is the data transfer input statement.

Syntax

READ ([unit=] u, format-specifier [,control-information) [iolist]

READ format-specifier [, iolist]

READ ([unit=] u, [NML=] namelist-group [, control-information])

where the UNIT= is optional and the external unit specifier U is an integer.

In addition control-information is an optional control specification which can be any of the following:
may contain one of each of the following specifiers in any order, following the unit number if the
optional UNIT specifier keyword is not supplied.

128

FMT= format

NML= namelist

ADVANCE= Spec

END=S

EOR=S

ERR=S

IOSTAT=i0S

REC=In

SIZE=n

iolist

format a label of a format statement or a variable containing a format
string.

namelist is a namelist group

spec is a character expression specifying the access method for file
connection as either YES or NO.

S is an executable statement label for the statement used for processing an
end of file condition.

S is an executable statement label for the statement used for processing an
end of record condition.

S is an executable statement label for the statement used for processing an
error condition.

i0s is an integer variable or array element. ios becomes defined with 0 if
no error occurs, and a positive integer when there is an error.

r is a record number to read and must be a positive integer. This is only
used for direct access files.

n is the number of characters read.

(input list) must either be one of the items in an input list or any other
expression.

Chapter 3

Description

When a READ statement is executed, the following operations are carried out:

e data is transferred from the standard input device to the items specified in the input and format
specification. *

e The data are transferred between the specified destinations in the order specified by the
input/output list.

e Every item whose value is to be transferred must be defined.

Example
READ(2,110) I,J,K
110 FORMAT(I2, I4, I3)
Non-character Format-specifier §

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the
compiler accepts it and treats it as if the contents were character. For example, below sum is treated as a
format descriptor:

real sum
sum = 4h()
accept sum

and is roughly equivalent to

character*4 ch
ch = '()"
accept ch

See Also
READ, PRINT

* If an asterisk (*) is used instead of a format identifier, the list-directed formatting rules apply.

Fortran Statements 129

REAL 90

The REAL statement establishes the data type of a variable by explicitly attaching the name of a
variable to a data type. This overrides the implication of data typing by the initial letter of a symbolic
name.

Syntax
The syntax for REAL has two forms, a standard Fortran 90/95 attributed form, and the PGI extended
form. This section describes both syntax forms.

REAL [([KIND = kind-value) 1 [, attribute-list ::] entity-list

REAL permits a KIND specification. Refer to the Fortran 90 Handbook for more syntax details.

attribute-list is the list of attributes for the character variable.
entity-list is the list of defined entities.
Syntax Extension §

REAL [*n] name [*n] [dimensions] [/clist/]1 [, namel [#*n] [dimensions] [/clist/] ...
n is an optional size specification.

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement below for an explanation of array declarators).

clist is a list of constants that initialize the data, as in a DATA statement.

Description

The REAL type declaration statements may be used to dimension arrays explicitly in the same way as
the DIMENSION statement. Type declaration statements must not be labeled.

Note: The data type of a symbol may be explicitly declared only once. It is established by type
declaration statement, IMPLICIT statement or by predefined typing rules. Explicit declaration of a type
overrides any implicit declaration. An IMPLICIT statement overrides predefined typing rules.

The default size of a REAL variable is 4 bytes. With the -Mr8 option, the default size of an REAL
variable is 8 bytes.

Example
REAL KNOTS

130 Chapter 3

RECORD § 77

The RECORD statement defines a user-defined aggregate data item.
Syntax

RECORD /structure name/record namelist
[, /structure name/record namelist]

[, /structure name/record namelist]
END RECORD
structure_name is the name of a previously declared structure.

record_namelist is a list of one or more variable or array names separated by commas.

Description

You create memory storage for a record by specifying a structure name in the RECORD statement. You
define the field values in a record either by defining them in the structure declaration or by assigning
them with executable code.

You can access individual fields in a record by combining the parent record name, a period (.), and the
field name (for example, recordname.fieldname). For records, a scalar reference means a
reference to a name that resolves to a single typed data item (for example, INTEGER), while an
aggregate reference means a reference that resolves to a structured data item.

Scalar field references may appear wherever normal variable or array elements may appear with the
exception of the COMMON, SAVE, NAMELIST, DATA and EQUIVALENCE statements. Aggregate
references may only appear in aggregate assignment statements, unformatted I/O statements, and as
parameters to subprograms.

Records are allowed in COMMON and DIMENSION statements.
Example

STRUCTURE /PERSON/ | Declare a structure to define a person
INTEGER ID
LOGICAL LIVING
CHARACTER*5 FIRST, LAST, MIDDLE
INTEGER AGE
END STRUCTURE
! Define population to be an array where each element is of
! type person. Also define a variable, me, of type person.
RECORD /PERSON/ POPULATION (2), ME

Fortran Statements 131

ME.AGE = 34 ! Assign values for the variable me to
ME.LIVING = .TRUE. ! some of the fields.

ME.FIRST = 'Steve'
ME.ID = 542124822

POPULATION (1) .LAST = 'Jones'

POPULATION (2) = ME
RECURSIVE

Assign the "LAST" field of
element 1 of array population.
Assign all the values of record
"ME" to the record population (2)

90

The RECURSIVE statement indicates whether a function or subroutine may call itself recursively.

Syntax
RECURSIVE [type-specification] FUNCTION
or
type-specification RECURSIVE FUNCTION
or
RECURSIVE SUBROUTINE
Type

Non-executable

See Also
FUNCTION, SUBROUTINE

132

Chapter 3

REDIMENSION § 77

The REDIMENSION statement, a CRAY extension to FORTRAN 77, dynamically defines the bounds
of a deferred-shape array. After a REDIMENSION statement, the bounds of the array become those
supplied in the statement, until another such statement is encountered.

Syntax
REDIMENSION name ([lb:Jubl[, [1lb:]Jub]...)
[,name ([1lb:]ub[, [1b:]Jubl...)]...
Where:

name is the symbolic name of an array.

[Ib:Jub is a dimension declarator specifying the bounds for a dimension (the lower
bound 1b and the upper bound ub). 1b and ub must be integers with ub
greater than Ib. The lower bound Ib is optional; if it is not specified, it is
assumed to be 1. The number of dimension declarations must be the same
as the number of dimensions in the array.

Example
REAL A(:, :)
POINTER (P, A)
P = malloc (12 * 10 * 4)
REDIMENSION A (12, 10)
A(3, 4) = 33.
RETURN 77

The RETURN statement causes a return to the statement following a CALL when used in a subroutine,
and returns to the relevant arithmetic expression when used in a function.
Syntax
RETURN
Alternate RETURN

(Obsolescent) The alternate RETURN statement is obsolescent for HPF and Fortran 90/95. Use the
CASE statement where possible in new or updated code. The alternate RETURN statement takes the
following form:

RETURN expression

Fortran Statements 133

expression expression is converted to integer if necessary (expression may be of type
integer or real). If the value of expression is greater than or equal to 1 and
less than or equal to the number of asterisks in the SUBROUTINE or
subroutine ENTRY statement then the value of expression identifies the nth
asterisk in the actual argument list and control is returned to that statement.

Example

SUBROUTINE FIX (A,B,*,*,C)

40 IF (T) 50, 60, 70
50 RETURN
60 RETURN 1
70 RETURN 2
END

PROGRAM FIXIT
CALL FIX(X, Y, *100, *200, S)

WRITE(*,5) X, S | Come here if (T) < O
STOP

100 WRITE(*, 10) X, Y ! Come here if (T) = 0
STOP

200 WRITE(*,20) Y, S ! Come here if (T) > O

REWIND 77

The REWIND statement positions the file at its beginning. The statement has no effect if the file is
already positioned at the start or if the file is connected but does not exist.
Syntax

REWIND unit

REWIND (unit, list)

unit is an integer value which is the external unit.
list contains the optional specifiers as follows:
UNIT=unit unit is the unit specifier.
ERR=eITs errs is an executable statement label for the statement used for

processing an error condition. If an error condition occurs
execution continues with the statement specified by s.

134 Chapter 3

IOSTAT=i0S i0s is an integer variable or array element. i0s becomes defined
with 0 if no error occurs, and a positive integer when there is an

€rror.
Examples
REWIND 5
REWIND (2, ERR=30)
REWIND (3, IOSTAT=IOERR)
SAVE 77

The SAVE statement retains the definition status of an entity after a RETURN or END statement in a
subroutine or function has been executed.
Syntax
SAVE [V [, v]...]
Vv name of array, variable, or common block (enclosed in slashes)
Description

Using a common-block name, preceded and followed by a slash, ensures that all entities within that
COMMON block are saved. SAVE may be used without a list, in which case all the allowable entities
within the program unit are saved (this has the same effect as using the -Msave command-line option).
Dummy arguments, names of procedures and names of entities within a common block may not be
specified in a SAVE statement. Use of the SAVE statement with local variables ensures the values of
the local variables are retained for the next invocation of the SUBROUTINE or FUNCTION. Within a
main program the SAVE statement is optional and has no effect.

When a RETURN or END is executed within a subroutine or function, all entities become undefined
with the exception of:

. Entities specified by a SAVE statement

. Entities in blank common or named common

. Entities initially defined which have not been changed in any way
Example

PROGRAM SAFE

CALL KEEP

Fortran Statements 135

SUBROUTINE KEEP

COMMON /LIST/ TOP, MIDDLE
INTEGER LOCALl.

SAVE /LIST/, LOCALL

SELECT CASE 90

The SELECT CASE statement begins a CASE construct.

Syntax

[case-name:] SELECT CASE (case-expr)
[CASE selector [name]
block]
[CASE DEFAULT [case-name]
block
END SELECT [case-name]

Example

SELECT CASE (FLAG)

CASE (1, 2, 3)
TYPE=1

CASE (4:6)
TYPE=2

CASE DEFAULT
TYPE=0

END SELECT

SEQUENCE 90

The SEQUENCE statement is a derived type qualifier that specifies the ordering of the storage
associated with the derived type. This statement specifies storage for use with COMMON and
EQUIVALENCE statements (the preferred method for derived type data sharing is using MODULES).

Note, there is also an HPF SEQUENCE directive that specifies whether an array, common block, or
equivalence is sequential or non-sequential. Refer to the PGHPF User’s Guide for more information.

136 Chapter 3

Syntax
TYPE
[SEQUENCE]
type-specification. . .
END TYPE
Example

TYPE RECORD
SEQUENCE
CHARACTER NAME (25)
INTEGER CUST_ NUM
REAL COST

END TYPE

STOP 77

The STOP statement stops the program's execution and precludes any further execution of the program.

Syntax

STOP [character-expression | digits]

STRUCTURE 8§77

The STRUCTURE statement, a DEC extension to FORTRAN 77, defines an aggregate data type.

Syntax

STRUCTURE [/structure name/] [field namelist]
field declaration
[field declaration]

[field declaration]
END STRUCTURE

structure_name is unique and is used both to identify the structure and to allow its use in
subsequent RECORD statements.

Fortran Statements 137

field_namelist is a list of fields having the structure of the associated structure declaration.
A field_namelist is allowed only in nested structure declarations.

field_declaration can consist of any combination of substructure declarations, typed data
declarations, union declarations or unnamed field declarations.

Description

Fields within structures conform to machine-dependent alignment requirements. Alignment of fields
also provides a C-like "struct" building capability and allows convenient inter-language
communications. Note that aligning of structure fields is not supported by VAX/VMS Fortran.

Field names within the same declaration nesting level must be unique, but an inner structure declaration
can include field names used in an outer structure declaration without conflict. Also, because records
use periods to separate fields, it is not legal to use relational operators (for example, .EQ., .XOR.),
logical constants (.TRUE. or .FALSE.), or logical expressions ((AND., .NOT., .OR.) as field names in
structure declarations.

Fields in a structure are aligned as required by hardware and a structure's storage requirements are
therefore machine-dependent. Note that VAX/VMS Fortran does no padding. Because explicit padding
of records is not necessary, the compiler recognizes the %FILL intrinsic, but performs no action in
response to it.

Data initialization can occur for the individual fields.

The UNION and MAP statements are supported.

The following is an example of record and structure usage.

STRUCTURE /account/

INTEGER typetag ! Tag to determine defined map
UNION
MAP ! Structure for an employee
CHARACTER*12 ssn ! Social Security Number
REAL*4 salary
CHARACTER*8 empdate! Employment date
END MAP
MAP ! Structure for a customer
INTEGER*4 acct_cust
REAL*4 credit_amt
CHARACTER*8 due_date
END MAP
MAP ! Structure for a supplier
INTEGER*4 acct_supp
REAL*4 debit_amt
BYTE num_items

138 Chapter 3

BYTE items (12) ! Items supplied
END MAP
END UNION
END STRUCTURE

RECORD /account/ recarr (1000)

SUBROUTINE 77

The SUBROUTINE statement introduces a subprogram unit. The statements that follow should be laid
out in the same order as a PROGRAM module.

Syntax
[RECURSIVE] SUBROUTINE name &
[(argument[,argument...]1)] &
[specification-part]
[execution-part]
Linternal-subspart]
END [SUBROUTINE [name]]

name is the name of the subroutine being declared and must be unique amongst
all the subroutine and function names in the program. name should not
clash with any local, COMMON, PARAMETER or ENTRY names.

argument is a symbolic name, starting with a letter and containing only letters and
digits. The type of argument can be REAL, INTEGER, DOUBLE
PRECISION, CHARACTER, COMPLEX, or BYTE, etc.

specification-part
is the specification of data types for the subroutine.

execution-part contains the subprogram's executable statements.

internal-subs-part
contains subprogram's defined within the subroutine.

Description

A SUBROUTINE must be terminated by an END statement. The statements and names in the
subprogram only apply to the subroutine except for subroutine or function references and the names of
COMMON blocks. Dummy arguments may be specified as * which indicates that the SUBROUTINE
contains alternate returns.

Fortran Statements 139

Recursion is allowed if the —Mrecursive option is used on the command-line and the RECURSIVE
prefix is included in the function definition.

Example
SUBROUTINE DAXTIM (A, X, Y, N, M, ITER, FP, TOH)
INTEGER*4 N, M, ITER
REAL*8 A, X(N,M), Y(N,M), FP, TOH
END SUBROUTINE DAXTIM
See Also

PURE, RECURSIVE

TARGET 90

The TARGET specification statement (attribute) specifies that a data type may be the object of a pointer
variable - that is pointed to by a pointer variable. Likewise, types that do not have the TARGET
attribute cannot be the target of a pointer variable.

Syntax
TARGET [::] object-name [(array-spec)]
[, object-name [(array-spec)]1]...
See Also
ALLOCATABLE, POINTER

THEN 77

The THEN statement is part of a block IF statement and surrounds a series of statements that are
conditionally executed.

Syntax
IF logical expression THEN
statements

140 Chapter 3

ELSE IF logical expression THEN
statements

ELSE

statements

ENDIF

The ELSE IF section is optional and may be repeated any number of times. Other IF blocks may be
nested within the statements section of an IF block.

Example

IF (I.GT.70) THEN
M=1

ELSE IF (I.LT.5) THEN
M=2

ELSE IF (I.LT.16) THEN
M=3

ENDIF

IF (I.LT.15) THEN
M= 4

ELSE
M=5

ENDIF

TYPE 77

The TYPE statement begins a derived type data specification or declares variables of a specified user-
defined type.
Syntax Type Declaration

TYPE (type-name) [, attribute-list ::] entity-list

Syntax Derived Type Definition

TYPE [[access-spec] ::] type-name
[private-sequence-statement]
component-definition-statement

[component-definition-statement]...

Fortran Statements 141

END TYPE [type-name]

FORTRAN 77 Type Statement

TYPE

The TYPE statement has the same syntax and effect as the PRINT statement. Refer to the PRINT entry
for a description of its syntax and a description.

UNION § 77

A UNION declaration, a DEC extension to FORTRAN 77, is a multistatement declaration defining a
data area that can be shared intermittently during program execution by one or more fields or groups of
fields. It declares groups of fields that share a common location within a structure. Each group of fields
within a union declaration is declared by a map declaration, with one or more fields per map
declaration.

Union declarations are used when one wants to use the same area of memory to alternately contain two
or more groups of fields. Whenever one of the fields declared by a union declaration is referenced in a
program, that field and any other fields in its map declaration become defined. Then, when a field in
one of the other map declarations in the union declaration is referenced, the fields in that map
declaration become defined, superseding the fields that were previously defined.

A union declaration is initiated by a UNION statement and terminated by an END UNION statement.
Enclosed within these statements are one or more map declarations, initiated and terminated by MAP
and END MAP statements, respectively. Each unique field or group of fields is defined by a separate
map declaration. The format of a UNION statement is as follows:

Syntax

UNION
map_declaration
[map declaration]

[map declaration]
END UNION

The format of the map_declaration is as follows:

MAP
field declaration
[field declaration]

142 Chapter 3

[field declaration]
END MAP

field_declaration = where field declaration is a structure declaration or RECORD
statement contained within a union declaration, a union declaration
contained within a union declaration, or the declaration of a typed data
field within a union.

Description

Data can be initialized in field declaration statements in union declarations. Note, however, it is illegal
to initialize multiple map declarations in a single union.

The size of the shared area for a union declaration is the size of the largest map defined for that union.
The size of a map is the sum of the sizes of the field(s) declared within it plus the space reserved for
alignment purposes.

Manipulating data using union declarations is similar to what happens using EQUIVALENCE
statements. However, union declarations are probably more similar to union declarations for the
language C. The main difference is that the language C requires one to associate a name with each map
(union). Fortran field names must be unique within the same declaration nesting level of maps.

The following is an example of RECORD, STRUCTURE and UNION usage. The size of each
element of the recarr array would be the size of typetag (4 bytes) plus the size of the largest MAP
- the employee map (24 bytes).

STRUCTURE /account/

INTEGER typetag ! Tag to determine defined map.
UNION
MAP ! Structure for an employee
CHARACTER*12 ssn ! Social Security Number
REAL*4 salary
CHARACTER*8 empdate! Employment date
END MAP
MAP ! Structure for a customer
INTEGER*4 acct_cust
REAL*4 credit_amt
CHARACTER*8 due_date
END MAP
MAP ! Structure for a supplier
INTEGER*4 acct_supp
REAL*4 debit_amt
BYTE num_items
BYTE items (12) ! Ttems supplied

Fortran Statements 143

END MAP
END UNION
END STRUCTURE

RECORD /account/ recarr (1000)

USE 90

The USE statement gives a program unit access to the public entities or to the named entities in the
specified module.
Syntax
USE module-name [, rename-1list]
USE module-name, ONLY: [only-list]
Description
A module-name file has an associated compiled .mod file that is included when the module is used. The

.mod file is searched for in the following directories:

e Each -l directory specified on the command-line.

e The directory containing the file that contains the USE statement (the current working
directory.)
e The standard include area.

Examples

USE MOD1

USE MOD2, TEMP => VAR

USE MOD3, ONLY: RESULTS, SCORES => VAR2
Type

Non-executable

See Also

MODULE

144 Chapter 3

VOLATILE § 77

The VOLATILE statement inhibits all optimizations on the variables, arrays and common blocks that it
identifies.
Syntax
VOLATILE nitem [, nitem ...]
nitem is the name of a variable, an array, or a common block enclosed in slashes.
Description

If nitem names a common block, all members of the block are volatile. The volatile attribute of a
variable is inherited by any direct or indirect equivalences, as shown in the example.

Example
COMMON /COM/ C1, C2
VOLATILE /COM/, DIR ! /COM/ and DIR are volatile
EQUIVALENCE (DIR, X) ! X is volatile
EQUIVALENCE (X, Y) 'Y is volatile

The WHERE statement and the WHERE END WHERE construct permit masked assignments to the
elements of an array (or to a scalar, zero dimensional array).
Syntax
WHERE Statement
WHERE (logical-array-expr) array-variable = array-expr
WHERE Construct
WHERE (logical-array-expr)
array-assignments
[ELSE WHERE
array-assignments]

END WHERE

Fortran Statements 145

Description

This construct allows for conditional assignment to an array based on the result of a logical array
expression. The logical array expression and the array assignments must involve arrays of the same
shape.

Examples
INTEGER SCORE (30)
CHARACTER GRADE (30)
WHERE (SCORE > 60) GRADE = 'P'
WHERE (SCORE > 60)
GRADE = 'P'
ELSE WHERE
GRADE = 'F'
END WHERE
WRITE 90

The WRITE statement is a data transfer output statement.

Syntax
WRITE ([unit=] u, [,control-information) [iolist]
WRITE ([unit=] u, [NML=] namelist-group [, control-information])
where the UNIT= is optional and the external unit specifier U is an integer. This may also be a *

indicating list-directed output.

In addition to the unit specification, control-information are optional control specifications, and may be
any of those listed in the following (there are some limits on the allowed specifications depending on
the type of output, for example, non-advancing, direct and sequential):

146 Chapter 3

ADVANCE=spec spec is a character expression specifying the access method for the write.
YES indicates advancing formatted sequential data transfer. NO indicates
non-advancing formatted sequential data transfer.

ERR=S S is an executable statement label for the statement used for processing an
error condition.

[FMT=]format format a label of a format statement or a variable containing a format
string.

IOSTAT=i0S i0s is an integer variable or array element. ios becomes defined with 0 if
no error occurs, and a positive integer when there is an error.

[NML=] namelist
namelist is a namelist group

REC=In r is a record number to read and must be a positive integer. This is only
used for direct access files.

iolist (output list) must either be one of the items in an input list or any other
expression. However a character expression involving concatenation of an
operand of variable length cannot be included in an output list unless the
operand is the symbolic name of a constant.

Description

When a WRITE statement is executed the following operations are carried out: data is transferred to the
standard output device from the items specified in the output list and format specification.” The data are
transferred between the specified destinations in the order specified by the input/output list. Every item
whose value is to be transferred must be defined.

Example
WRITE (6,90) NPAGE
90 FORMAT ('1lPAGE NUMBER ', I2,16X,'SALES REPORT, Cont.')
Non-character Format-specifier §

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the
compiler accepts it and treats it as if the contents were character. For example, below sum is treated as a
format descriptor:

* If an asterisk (*) is used instead of a format identifier, the list-directed formatting rules apply.

Fortran Statements 147

real sum
sum = 4h()
accept sum

and is roughly equivalent to
character*4 ch

ch = '()
accept ch

See Also
READ, PRINT

148 Chapter 3

4 Fortran Arrays

Fortran arrays are any object with the dimension attribute. In Fortran 90/95, and in HPF, arrays may be
very different from arrays in older versions of Fortran. Arrays can have values assigned as a whole
without specifying operations on individual array elements, and array sections can be accessed. Also,
allocatable arrays that are created dynamically are available as part of the Fortran 90/95 and HPF
standards. Arrays in HPF play a central role in data distribution and data alignment (refer to this chapter
and The High Performance Fortran Handbook for details on working with arrays in HPF). This chapter
describes some of the features of Fortran 90/95 and HPF arrays.

The following example illustrates valid array operations.

REAL(10,10) A,B,C

A=12 IAssign 12 to all elements of A
B=3 !Assign 3 to all elements of B
C=A+B IAdd each element of A to each of B

4.1 Array Types

Fortran supports four types of arrays explicit-shape arrays, assumed-shape arrays, deferred-shape arrays
and assumed-size arrays. Both explicit-shape arrays and deferred shape arrays are valid in a main
program. Assumed shape arrays and assumed size arrays are only valid for arrays used as dummy
arguments. Deferred shape arrays, where the storage for the array is allocated during execution, must be
declared with either the ALLOCATABLE or POINTER attributes.

Every array has properties of type rank, shape and size. The extent of an array’s dimension is the
number of elements in the dimension. The array rank is the number of dimensions in the array, up to a
maximum of seven. The shape is the vector representing the extents for all dimensions. The size is the
product of the extents. For some types of arrays, all of these properties are determined when the array is
declared. For other types of arrays, some of these properties are determined when the array is allocated
or when a procedure using the array is entered. For arrays that are dummy arguments, there are several
special cases.

Allocatable arrays are arrays that are declared but for which no storage is allocated until an allocate
statement is executed when the program is running. Allocatable arrays provide Fortran 90/95 and HPF
programs with dynamic storage. Allocatable arrays are declared with a rank specified with the ":"
character rather than with explicit extents, and they are given the ALLOCATABLE attribute.

Fortran Arrays 149

4.1.1 Explicit Shape Arrays

Explicit shape arrays are those arrays familiar to FORTRAN 77 programmers. Each dimension is
declared with an explicit value. There are two special cases of explicit arrays, in a procedure, an explicit
array whose bounds are passed in from the calling program are called automatic-arrays. As a second
type, in a procedure, where an array is a dummy array and the bounds are passed from the calling
program, is called an adjustable-array.

4.1.2 Assumed Shape Arrays

An assumed shape array is a dummy array whose bounds are determined from the actual array.
Intrinsics called from the called program can determine sizes of the extents in the called program’s
dummy array.

4.1.3 Deferred Shape Arrays

A deferred shape array is an array that is declared, but not with an explicit shape. Upon declaration, the
array's type, its kind, and its rank (number of dimensions) are determined. Deferred shape arrays are of
two varieties, allocatable arrays and array pointers.

4.1.4 Assumed Size Arrays

An assumed size array is a dummy array whose size is determined from the corresponding array in the
calling program. The arrays rank and extents may not be declared the same as the original array, but its
total size (number of elements) is the same as the actual array. This form of array should not need to be
used in new Fortran programs.

4.2 Array Specification

Arrays may be specified in either of two types of data type specification statements, attribute-oriented
specifications or entity-oriented specifications. Arrays may also optionally have data assigned to them
when they are declared. This section covers the basic form of entity-based declarations for the various
types of arrays. Note that all the details of array passing for procedures are not covered in this Chapter
(refer to The Fortran 95 Handbook for complete details on the use of arrays as dummy arguments).

4.2.1 Explicit Shape Arrays

Explicit shape arrays are defined with a specified rank, each dimension must have an upper bound
specified, and a lower bound may be specified. Each bound is explicitly defined with a specification of
the form:

[lower-bound:] upper-bound

An array has a maximum of seven dimensions. The following are valid explicit array declarations:

150 Chapter 4

INTEGER NUM1 (1,2,3) !Three dimensions

INTEGER NUM2 (-12:6,100:1000) ITwo dimensions with
!lower and upper bounds
INTEGER NUM3(0,12,12,12) IArray of size 0

INTEGER NUM3 (M:N,P:Q,L,99) !Array with 4 dimensions

4.2.2 Assumed Shape Arrays
An assumed shape array is always a dummy argument. Assumed shape array has a specification of the
form:

[lower-bound]

The number of colons (:) determines the array’s rank. An assumed shape array cannot be an
ALLOCATABLE or POINTER array.

4.2.3 Deferred Shape Arrays

An deferred shape array is an array pointer or an allocatable array. Assumed shape array has a
specification determines the array's rank and has the following form for each dimension:

For example:

INTEGER, POINTER ::NUM1(:,:,:,:)
INTEGER, ALLOCATABLE: :NUM2 (:)

4.2.4 Assumed Size Arrays
An assumed size array is a dummy argument with an assumed size. The array’s rank and bounds are
specified with a declaration that has the following form:
[explicit-shape-spec-list ,] [lower-bound :] *
For example:
SUBROUTINE YSUM1 (M, B,C)

INTEGER M
REAL, DIMENSION(M,4,5,*) :: B,C

4.3 Array Subscripts and Access

There are a variety of ways to access an array in whole or in part. Arrays can be accessed, used, and
assigned to as whole arrays, as elements, or as sections. Array elements are the basic access method, for
example:

Fortran Arrays 151

INTEGER, DIMENSION(3,11) :: NUMB
NUMB (3,1) =5

This assigns the value 5 to element 3,1 of NUMB
The array NUMB may also be accessed as an entire array:

NUMB=5

This assigns the value 5 to all elements of NUMB.

4.3.1 Array Sections and Subscript Triplets

Another possibility for accessing array elements is the array section. An array section is an array
accessed by a subscript that represents a subset of the entire array's elements and is not an array
element. An array section resulting from applying a subscript list may have a different rank than the
original array. An array section's subscript list consists of subscripts, subscript triplets, and/or vector
subscripts. For example using a subscript triplet and a subscript:

NUMB(:,3) =6

assigns the value 6 to all elements of NUMB with the second dimension of value 3 (NUMB(1,3),
NUMB (2, 3), NUMB (3,3)). This array section uses the array subscript triplet and a subscript to
access three elements of the original array. This array section could also be assigned to a rank one array
with three elements, for example:

INTEGER(3,11) NUMB
INTEGER (3) NUMC

NUMB (:,3) =6
NUMC=NUMB (: , 3)

Note that NUMC is rank 1 and NUMB is rank 2. This array section assignment illustrates how NUMC, the
array section of NUMB has a shape that due to the use of the subscript 3, is of a different rank than the
original array.

The general form for an array's dimension with a vector subscript triplet is:

[subscript] : [subscript] [:stride]

The first subscript is the lower bound for the array section, the second is the upper bound and the third
is the stride. The stride is by default one. If all values except the : are omitted, then all the values for
the specified dimensions are included in the array section. For example, using NUMB above:

NUMB(1:3:2,3)=7

assigns the value 7 to the elements NUMB (1, 3) and NUMB (3, 3).

152 Chapter 4

4.3.2 Array Sections and Vector Subscripts
Vector-valued subscripts specify an array section by supplying a set of values defined in a one

dimensional array (vector) for a dimension or several dimensions of an array section. For example:

INTEGER J(2), I(2)
INTEGER NUMB(3,6)
I=(/1,2/)
J=(/2,3/)
NUMB (J, I)=7

This array section uses the vectors I and J to assign the value 7 to the elements NUMB (2,1),
NUMB (2,2),NUMB(3,1),NUMB(3,2).

4.4 Array Constructors

An array constructor can be used to assign values to an array. Array constructors form one-dimensional
vectors to supply values to a one-dimensional array, or one dimensional vectors and the RESHAPE
function to supply values to arrays with more than one dimension.

Array constructors can use a form of implied DO similar to that in a DATA statement. For example:

INTEGER DIMENSION(4):: K = (/1,2,7,11/)

INTEGER DIMENSION (20):: J = (/(I,I=1,40,2)/)

45 CM Fortran Extensions

45.1 The ARRAY Attribute §

The PGHPF compiler provides several extensions for handling arrays. The compiler handles the CM
Fortran attribute ARRAY. The ARRAY attribute is similar to the DIMENSION attribute. Refer to
Chapter 2, Fortran Statements for more details on the ARRAY statement.

45.2 Array Constructors Extensions 8

The PGHPF compiler supports an extended form of the array constructor specification. In addition to
the (/ ../) specification for array constructors, PGHPF supports the following notation where
[and] begin and end, respectively, an array constructor.

In addition, an array constructor item may be a 'subscript triplet' in the form of an array section where
the values are assigned to the array:

lower-bound : upper-bound [: <stride>]

Fortran Arrays 153

For the values 1 : j : kthearray would be assigned values i, i+k, i+2k, ..., j. Ifk
is not present, stride is assumed to be 1.

For example:

INTEGER, DIMENSION(20):: K = [1:40:2]

154 Chapter 4

5 Input and Output Formatting

Input, output, and format statements provide the means for transferring data to or from files. Data is
transferred as records to or from files. A record is a sequence of data which may be values or characters
and a file is a sequence of such records. A file may be internal, that is, held in memory, or external such
as those held on disk. To access an external file a formal connection must be made between a unit, for
example a disk file, and the required file. An external unit must be identified either by a positive integer
expression, the value of which indicates a unit, or by an asterisk (*) which identifies a standard input or
output device.

This chapter describes the types of input and output available and provides examples of input, output
and format statements. There are four types of input/output used to transfer data to or from files:
unformatted, formatted, list directed, and namelist.

unformatted data is transferred between the item(s) in the input/output list (iolist) and the current
record in the file. Exactly one record may be read or written.

o formatted data is edited to conform to a format specification, and the edited data is transferred
between the item or items in the iolist, and the file. One or more records may be read or written.
Non-advancing formatted data transfers are a variety of formatted I/O where a portion of a data
record is transferred with each input/output statement.

e list directed input/output is an abbreviated form of formatted input/output that does not use a
format specification. Depending on the type of the data item or data items in the iolist, data is
transferred to or from the file, using a default, and not necessarily accurate format specification.

e namelist input/output is a special type of formatted data transfer; data is transferred between a
named group (namelist group) of data items and one or more records in a file.

5.1 File Access Methods

You can access files using one of two methods, sequential access, or direct access (random access).
The access method is determined by the specifiers supplied when the file is opened using the OPEN
statement. Sequential access files are accessed one after the other, and are written in the same manner.
Direct access files are accessed by specifying a record number for input, and by writing to the currently
specified record on output.

Fortran Input and Output Formatting 155

Files may contain one of two types of records, fixed length records or variable length records. To
specify the size of the fixed length records in a file, use the RECL specifier with the OPEN statement.

RECL sets the record length in bytes .!RECL can only be used when access is direct.

A record in a variable length formatted file is terminated with \n. A record in a variable length
unformatted file is preceded and followed by a word indicating the length of the record.

5.1.1 Standard Preconnected Units

Certain input and output units are predefined, depending on the value of compiler options. The PGI
Fortran compilers —Mdefaultunit option tells the compiler to treat "*" as a synonym for standard input
for reading and standard output for writing. When the option is set to —Mnodefaultunit, then the
compiler treats "*" as a synonym for unit 5 on input and unit 6 on output.

5.2 Opening and Closing Files

The OPEN statement establishes a connection to a file. OPEN allows you to do any of the following

. Connect an existing file to a unit.
. Create and connect a file to a unit.
. Create a file that is preconnected.

. Establish the access method and record format for a connection.

OPEN has the form:

OPEN (list)

where list contains a unit specifier of the form:

[UNIT=] u

where U, an integer, is the external unit specifier.

In addition list may contain one of each of the specifiers shown in Table 5-1.

IThe units depend on the value of the FORTRANOPT environment variable. If the value is vaxio, then
the record length is in units of 32-bit words. If FORTRANOPT is not defined, or its value is something
other than vaxio, then the record length is always in units of bytes.

156 Chapter 5

5.2.1 Direct Access Files

If a file is connected for direct access using OPEN with ACCESS='DIRECT", the record length must be
specified using RECL=, and optionally one of each of the other specifiers may be used.

Any file opened for direct access must be via fixed length records.

In the following example a new file, book.dat, is created and connected to unit 12 for direct
formatted input/output with a record length of 98 characters. Numeric values will have blanks ignored
and the variable E1 will be assigned some positive value if an error condition exists when the OPEN
statement is executed; execution will then continue with the statement labeled 20. If no error condition
pertains, E1 is assigned the value 0 and execution continues with the statement following the OPEN
statement.

OPEN (12, IOSTAT=E1l, ERR=20, FILE="book.dat ', BLANK="'NULL',

+ACCESS="'DIRECT',RECL=98, FORM="'FORMATTED', STATUS="'NEW')

5.2.2 Closing a File

Close a unit by specifying the CLOSE statement from within any program unit. If the unit specified
does not exist or has no file connected to it, the CLOSE statement has no effect.

Provided the file is still in existence, it may be reconnected to the same or a different unit after the
execution of a CLOSE statement. An implicit CLOSE is executed when a program stops.

The CLOSE statement terminates the connection of the specified file to a unit.

CLOSE ([UNIT=] u [,IO0OSTAT=ios] [,ERR= errs]
[,STATUS= stal [,DISPOSE= stal] [,DISP= stal)

CLOSE takes the status values IOSTAT, ERR, and STATUS, similar to those described in Table 5-1
OPEN Specifiers. In addition, CLOSE allows the DISPOSE or DISP specifier which can take a status
value sta which is a character string, where case is insignificant, specifying the file status (the same
keywords are used for the DISP and DISPOSE status). Status can be can be KEEP or DELETE. KEEP
cannot be specified for a file whose dispose status is SCRATCH. When KEEP is specified (for a file
that exists) the file continues to exist after the CLOSE statement, conversely DELETE deletes the file
after the CLOSE statement. The default value is KEEP unless the file status is SCRATCH.

Table 5-1: OPEN Specifiers

Specifier Description
ACCESS=acc Where acc is a character string specifying the access method for file con-
nection as DIRECT (random access) or SEQUENTIAL. The default is
SEQUENTIAL.

Fortran Input and Output Formatting 157

Specifier Description

ACTION=act Where act is a character string specifying the allowed actions for the file
and is one of READ, WRITE, or READWRITE.

BLANK=bInk Where blnk is a character string which takes the value NULL or ZERO: NULL
causes all blank characters in numeric formatted input fields to be ignored
with the exception of an all blank field which has a value of zero. ZERO
causes all blanks other than leading blanks to be treated as zeros. The default
is NULL. This specifier must only be used when a file is connected for
formatted input/output.

DEL IM=del Specify the delimiter for character constants written by a list-directed or
namelist-formatted statement. The options are APOSTROPHE, QUOTE, and
NONE.

ERR=errs An error specifier which takes the form of a statement label of an executable

statement in the same program. If an error condition occurs, execution
continues with the statement specified by errs.”

FILE=Fin Where fin is a character string defining the file name to be connected to the
specified unit.

FORM=*m Where fm is a character string specifying whether the file is being connected
for FORMATTED or UNFORMATTED output respectively. The default is
FORMATTED.

I0STAT=10s Input/output status specifier where i0s is an integer scalar memory reference.

If this is included in list, i0os becomes defined with 0 if no error exists or a

positive integer when there is an error condition.?

PAD=padding Specifies whether or not to use blank padding for input items. The padding
values are YES and NO. The value NO requires that the input record and the
input list format specification match.

POSITION=pos Specifies the position of an opened file. ASIS indicates the file position
remains unchanged. REWIND indicates the file is to be rewound, and
APPEND indicates the file is to positioned just before an end-of-file record,
or at its terminal point.

RECL=rl Where rl is an integer which defines the record length in a file connected for
direct access and is the number of characters when formatted input/output is
specified. This specifier must only be given when a file is connected for direct
access.

2 IfIOSTAT and ERR are not present, the program terminates if an error occurs.

158 Chapter 5

Specifier Description

STATUS=sta The file status where sta is a character expression: it can be NEW, OLD,
SCRATCH, REPLACE or UNKNOWN. When OLD or NEW is specified a file
specifier must be given. SCRATCH must not be used with a named file. The
default is UNKNOWN.

A unit may be the subject of a CLOSE statement from within any module. If the unit specified does not
exist or has no file connected to it, the use of the CLOSE statement has no effect. Provided the file is
still in existence it may be reconnected to the same or a different unit after the execution of a CLOSE
statement. Note that an implicit CLOSE is executed when a program stops.

In the following example the file on UNIT 6 is closed and deleted.

CLOSE (UNIT=6, STATUS='DELETE"')

5.3 Data Transfer Statements

Once a unit is connected, either using a preconnection, or by executing an OPEN statement, data
transfer statements may be used. The available data transfer statements include: READ, WRITE, and
PRINT. The general form for these data transfer statements is shown in Chapter 3. Refer to Chapter 3,
Fortran Statements, for details on the READ and WRITE and PRINT statements and their valid I/O
control specifiers.

5.4 Unformatted Data Transfer

Unformatted data transfer allows data to be transferred between the current record and the items
specified in an input/output list. Use OPEN to open a file for unformatted output:

OPEN (2, FILE='new.dat', FORM='UNFORMATTED')
The unit specified must be an external unit.
After data is transferred, the file is positioned after the last record read or written, if there is no error
condition or end-of-file condition set. Unformatted data transfer cannot be carried out if the file is
connected for formatted input/output.

The following example shows an unformatted input statement:

READ (2, ERR=50) A, B

On output to a file connected for direct access, the output list must not specify more values than can fit
into a record. If the values specified do not fill the record the rest of the record is undefined.

Fortran Input and Output Formatting 159

On input, the following conditions must pertain; the file must be positioned so that the record read is
either:

e An unformatted record or an endfile record.

e The number of values required by the input list in the input statement must be less than or equal to
the number of values in the record being read. The type of each value in the record must agree with
that of the corresponding entity in the input list. However one complex value may correspond to
two real list entities or vice versa. If the input list item is of type CHARACTER, its length must be
the same as that of the character value

¢ In the event of an error condition, the position of the file is indeterminate.

5.5 Formatted Data Transfer

During formatted data transfer, data is edited to conform to a format specification, and the edited data is
transferred between the items specified in the input or output statement’s iolist and the file; the current
record is read or written and, possibly, additional records. On input, the file must be positioned so that
the record read is either a formatted record or an endfile record. Formatted data transfer is prohibited if
the file is connected for unformatted input/output.

For variable length record formatted input, each newline character is interpreted as a record separator.
On output, the I/O system writes a newline at the end of each record. If a program writes a newline
itself, the single record containing the newline will appear as two records when read or backspaced
over. The maximum allowed length of a record in a variable length record formatted file is 2000
characters.

5.5.1 Implied DO List Input Output List
An implied DO list takes the form

(iolist,do-var=varl,var2,var3)

where the items in iolist are either items permissible in an input/output list or another implied DO list.
The value do-var is an INTEGER, REAL or DOUBLE PRECISION variable and varl, var2 and var3
are arithmetic expressions of type INTEGER, REAL or DOUBLE PRECISION. Generally, do-var,
varl, var2 and var3 are of type INTEGER. Should iolist occur in an input statement, the do-var cannot
be used as an item in iolist. If var3 and the preceding comma are omitted, the increment takes the value
1. The list items are specified once for each iteration of the DO loop with the DO-variable being
substituted as appropriate.

REAL C(6),D(6)
DATA 0XO, (C(I),I=7,9),TEMP, (D(J),J=1,2)/4*0.0,3*10.0/

In the above example OXO, C (7),C(8) and C(9) aresetto 0.0 with TEMP, D (1) and D (2) being
setto 10. 0. In the next example:

160 Chapter 5

READ *,A,B, (R(I),I=1,4),S

has the same effect as

READ *,A,B,R(1),R(2),R(3),R(4),S

5.5.2 Format Specifications

Format requirements may be given either in an explicit FORMAT statement or alternatively, as fields
within an input/output statement (as values in character variables, arrays or other character expressions
within the input/output statement).

When a format identifier in a formatted input/output statement is a character array name or other
character expression, the leftmost characters must be defined with character data that constitute a format
specification when the statement is executed. A character format specification is enclosed in
parentheses. Blanks may precede the left parenthesis. Character data may follow the right-hand
parenthesis and has no effect on the format specification. When a character array name is used as a
format identifier, the length of the format specification can exceed the length of the first element of the
array; a character array format specification is considered to be an ordered concatenation of all the array
elements. When a character array element is used as a format identifier the length must not exceed that
of the element used.

The FORMAT statement has the form:

FORMAT (list-of-format-requirements)

The list of format requirements can be any of the following, separated by commas:

. Repeatable editor commands which may or may not be preceded by an integer constant
which defines the number of repeats.

. Non-repeatable editor commands.

. A format specification list enclosed in parentheses, optionally preceded by an integer
constant which defines the number of repeats.

Each action of format control depends on a FORMAT specified edit code and the next item in the
input/output list used. If an input/output list contains at least one item, there must be at least one
repeatable edit code in the format specification. An empty format specification FORMAT() can only be
used if no list items are specified. In such a case, one input record is skipped or an output record
containing no characters is written. Unless the edit code or the format list is preceded by a repeat
specification, a format specification is interpreted from left to right. When a repeat specification is used,
the appropriate item is repeated the required number of times.

Each repeatable edit code has a corresponding item in the iolist; however when a list item is of type
complex two edit codes of F, E, D or G are required. The edit codes P, X, T, TL, TR, S, SP, SS, H, BN,

Fortran Input and Output Formatting 161

BZ, /, : and apostrophe act directly on the record and have no corresponding item in the input/output
list.

The file is positioned after the last character read or written when the edit codes I, F, E, D, G, L, A, H or
apostrophe are processed. If the specified unit is a printer then the first character of the record is used to
control the vertical spacing as shown in Table 5-2:

Table 5-2: Format Character Controls for a Printer

Character Vertical Spacing
Blank One line
0 Two lines
1 To first line on next page
+ No advance

A Format Control — Character Data

The A specifier transfers characters. The A can optionally be followed by a field width w. When w is not
specified, the width is determined by the size of the data item.

On output, if | is the length of the character item and w is the field width, then the following rules apply:
e Ifw>I, w-—IDblanks before the character.
e Ifw<I, leftmost W characters.

On input, if | is the length of the character I/O item and W is the field width, then the following rules
apply:

e Ifw> I, rightmost | characters from the input filed.
o Ifw<|, leftmost W characters from the input filed and followed by | — w blanks.

You can also use the A format specifier to process data types other than CHARACTER. For types other
than CHARACTER, the number of characters supplied for input/output will equal the size in bytes of
the data allocated to the data type. For example, an INTEGER*4 value is represented with 4 characters
and a LOGICAL*2 is represented with 2 characters.

162 Chapter 5

The following shows a simple example that reads two CHARACTER arrays from the file data.src:

CHARACTER STR1*8, STR2*12

OPEN (2, FILE='data.src')

READ (2, 10) STR1, STR2
10 FORMAT (A8, Al2)

B Format Control — Binary Data
The B field descriptor transfers binary values and can be used with any integer data type. The edit
descriptor has the form:
Bw[.m]
where W specifies the field width and m indicates minimum field width on output.
On input, the external field to be input must contain (unsigned) binary characters only (0 or 1). An all

blank field is treated as a value of zero. If the value of the external field exceeds the range of the
corresponding list element, an error occurs.

On output, the B field descriptor transfers the binary valuesof the corresponding I/O list element, right-
justified, to an external field that is w characters long. If the value to be transmitted does not fill the
field, leading spaces are inserted; if the value is too large for the field, the entire field is filled with
asterisks. If m is present, the external field consists of at least m digits, and is zero-filled on the left if
necessary. Note that if m is zero, and the internal representation is zero, the external field is blank-filled.

D Format Control — Real Double Precision Data with Exponent

The D specifier transfers real values for double precision data with a representation for an exponent.
The form of the D specifier is:

Dw.d

where W is the field width and d the number of digits in the fractional part.

For input, the same conditions apply as for the F specifier described later in this chapter.

For output, the scale factor k controls the decimal normalization. The scale factor k is the current scale
factor specified by the most recent P format control; if one hasn't been specified, the default is zero (0).
If -d < k <= 0, the output file contains leading zeros and d-|k| significant digits after the decimal point. If
0 < k < d+2, there are exactly |k| significant digits to the left of the decimal point and d-k+1 significant

digits to the right of the decimal point. Other values of K are not allowed.

For example:

Fortran Input and Output Formatting 163

DOUBLE PRECISION VALL
VAL1 = 141.8835
WRITE(*, 20) VALl

20 FORMAT (D10.4)

produces the following:

0.1418D+03

E Format Control — Real Single Precision Data with Exponent
The E specifier transfers real values for single precision data with an exponent. The E format specifier
has two basic forms:
Ew.d
Ew.dEe
w is the field width, d the number of digits in the fractional part and e the number of digits to be printed

in the exponent part.

For input the same conditions apply as for F editing. For output the scale factor controls the decimal
normalization as in D above.

EN Format Control
The EN specifier transfers real values using engineering notation.
ENw.d
ENw.dEe
w is the field width, d the number of digits in the fractional part and e the number of digits to be printed

in the exponent part.

On output, the number is in engineering notation where the exponent is divisible by 3 and the absolute
value of the significand is 1000 > |significand | >1. This format is the same as the E format descriptor,
except for restrictions on the size of the exponent and the significand.

ES Format Control
The ES specifier transfers real values in scientific notation. The ES format specifier has two basic
forms:

ESw.d

ESw.dEe

w is the field width, d the number of digits in the fractional part and e the number of digits to be printed
in the exponent part.

164 Chapter 5

For output, the scale factor controls the decimal normalization as in D above.

On output, the number is presented in scientific notation, with the absolute value of the significand is
10> | significand | > 1.
F Format Control - Real Single Precision Data

The F specifier transfers real values. The form of the F specifier is:

Fw.d
w is the field width and d is the number of digits in the fractional part.

On input, if the field does not contain a decimal digit or an exponent, righthand d digits, with leading
zeros, are interpreted as being the fractional part.

On output, a leading zero is only produced to the left of the decimal point if the value is less than one.

G Format Control

The G format specifier provides generalized editing of real data. The G format has two basic forms:

Gw.d
Gw.dEe

The specifier transfers real values; it acts like the F format control on input and depending on the
value’s magnitude, like E or F on output. The magnitude of the data determines the output format. For
details on the actual format used, based on the magnitude, refer to Section 13.5.9.2.3 G Editing in the
ANSI FORTRAN Standard.

I Format Control — Integer Data

The I format specifier transfers integer values. The I format specifier has two basic forms:

Iw
Iw.m

where W is the field width and m is the minimum filed width on output, including leading zeros. If
present, m must not exceed width w.

On input, the external field to be input must contain (unsigned) decimal characters only. An all blank
field is treated as a value of zero. If the value of the external field exceeds the range of the
corresponding list element, an error occurs.

On output, the I format descriptor transfers the decimal values of the corresponding I/O list element,
right-justified, to an external field that is W characters long. If the value to be transmitted does not fill
the field, leading spaces are inserted; if the value is too large for the field, the entire field is filled with

Fortran Input and Output Formatting 165

asterisks. If m is present, the external field consists of at least m digits, and is zero-filled on the left if
necessary. Note that if m is zero, and the internal representation is zero, the external field is blank-filled.
L Format Control — Logical Data

Lw

The L format control transfers logical data of field width w. On input, the list item will become defined
with a logical value; the field consists of optional blanks, followed by an optional decimal point
followed by T or F. Also, the values .TRUE. or .FALSE. may appear in the input field

The output field consists of w-1 blanks followed by T or F as appropriate.

Quote Format Control

Quote editing prints a character constant. The format specifier writes the characters enclosed between
the quotes and cannot be used on input. The field width is that of the characters contained within quotes
(you can also use apostrophes to enclose the character constant).

To write an apostrophe (or quote), use two consecutive apostrophes (or quotes).
For example:

WRITE (*, 101)
101 FORMAT ('Print an apostrophe '' and end.')

Produces:

Print an apostrophe ' and end.

Similarly, you can use quotes, for example:

WRITE (*, 102)
102 FORMAT ("Print a line with a "" and end.")

Produces:
Print a line with a " and end.

BN Format Control — Blank Control

The BN and BZ formats control blank spacing. BN causes all embedded blanks except leading blanks in
numeric input to be ignored, which has the effect of right justifying the remainder of the field. Note that
a field of all blanks has the value zero. Only input statements and I, F, E, D and G editing are affected.

BZ causes all blanks except leading blanks in numeric input to be replaced by zeros. Only input
statements and I, F, E, D and G editing are affected.

166 Chapter 5

H Format Control — Hollerith Control
The H format control writes the n characters following the H in the format specification and cannot be
used on input.

The basic form of this format specification is:

nHclcn. ..

where N is the number of characters to print and c1 through cn are the characters to print.

O Format Control Octal Values

The O and Z field descriptors transfer octal or hexadecimal values and can be used with an integer data
type. They have the form:

ow[.m] and Zw[.m]

where W specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) octal or hexadecimal characters only.
An all blank field is treated as a value of zero. If the value of the external field exceeds the range of the
corresponding list element, an error occurs.

On output, the O and Z field descriptors transfer the octal and hexadecimal values, respectively, of the
corresponding I/O list element, right-justified, to an external field that is w characters long. If the value
to be transmitted does not fill the field, leading spaces are inserted; if the value is too large for the field,
the entire field is filled with asterisks. If m is present, the external field consists of at least m digits, and
is zero-filled on the left if necessary. Note that if m is zero, and the internal representation is zero, the
external field is blank-filled.

P Format Specifier — Scale Control
kP

The P format specifier is the scale factor format which is applied as follows.

. With F, E, D and G editing on input and F editing on output, the external number equals
the internal number multiplied by 10**k . If there is an exponent in the field on input,
editing with F, E, D and G the scale factor has no effect.

. On output with E and D editing, the basic real constant part of the number is multiplied
by 10**k and the exponent reduced by k ; and with G editing the effect of the scale
factor is suspended unless the size of the datum to be edited is outside the range
permitted for F editing. If E editing is required, the scale factor has the same effect as
with E output editing.

Fortran Input and Output Formatting 167

The following is an example using a scale factor.

DIMENSION A(6)
DO 10 I = 1,6

10 A(I) = 25.
TYPE 100,A
100 FORMAT (' ',F8.2,2PF8.2,F8.2)

produces:

25.00 2500.00 2500.00 2500.00 2500.00 2500.00

Note that the effect of the scale factor continues until another scale factor is used.

Q Format Control - Quantity

The Q edit descriptor calculates the number of characters remaining in the input record and stores that
value in the next I/O list item. On output, the Q descriptor skips the next I/O item.

S Format Control — Sign Control

The S format specifier restores the default processing for writing a plus; the default is SS processing.

SP forces the processor to write a plus in any position where an optional plus is found in numeric
output fields, this only affects output statements.

SS stops the processor from writing a plus in any position where an optional plus is found in numeric
output fields, this only affects output statements.

T, TL and X Format Controls — Spaces and Tab Controls

The T specifier controls which portion of a record in an iolist value is read from or written to a file. The
general form is as follows:

Tn

this specifies that the nth value is to be written to or from a record.
The TL form specifies the relative position to the left of the data to be read or written.

TLn

This specifies that the nth character to the left of the current position is to be written to or from the
record. If the current position is less than or equal to n, the transmission will begin at position one of the
record.

The TR form specifies the relative position to the right of the data to be read or written.

168 Chapter 5

TRn

Specifies that the nth character to the right of the current position is to be written to or from the record.
The X control specifies a number of characters to skip forward.

nx
Specifies that the next character to be written to or from is n characters forward from the current
position.

The following example uses the X format specifier.

NPAGE = 19
WRITE (6, 90) NPAGE
90 FORMAT ('1PAGE NUMBER ,I2, 16X, 'SALES REPORT, Cont.')

produces:

PAGE NUMBER 19 SALES REPORT, Cont.
The following example shows use of the T format specifier.
PRINT 25
25 FORMAT (T41,'COLUMN 2',T21,'COLUMN 1')

produces:

COLUMN 1 COLUMN 2

Z Format Control Hexadecimal Values
The O and Z field descriptors transfer octal or hexadecimal values and can be used with any integer
data type. They have the form:
ow[.m] and ZzZw[.m]
where W specifies the field width and m indicates minimum field width on output.
On input, the external field to be input must contain (unsigned) octal or hexadecimal characters only.

An all blank field is treated as a value of zero. If the value of the external field exceeds the range of the
corresponding list element, an error occurs.

On output, the O and Z field descriptors transfer the octal and hexadecimal values, respectively, of the

corresponding I/O list element, right-justified, to an external field that is W characters long. If the value
to be transmitted does not fill the field, leading spaces are inserted; if the value is too large for the field,
the entire field is filled with asterisks. If m is present, the external field consists of at least m digits, and

Fortran Input and Output Formatting 169

is zero-filled on the left if necessary. Note that if m is zero, and the internal representation is zero, the
external field is blank-filled.

Slash Format Control / — End of Record

The slash (/) control indicates the end of data transfer on the current record.

On input from a file connected for sequential access, the rest of the current record is skipped and the file
positioned at the start of the next record.

On output a new record is created which becomes the last and current record. For an internal file
connected for direct access, the record is filled with blank characters. If a direct access file, the record
number is increased by one and the file is positioned at the start of the record.

Multiple slashes are permitted, thus multiple records are skipped.

The : Format Specifier — Format Termination

The (:) control terminates format control if there are no more items in the input/output list. It has no
effect if there are any items left in the list.

$ Format Control
The $ field descriptor allows the programmer to control carriage control conventions on output. It is
ignored on input. For example, on terminal output, it can be used for prompting.

The form of the $ field descriptor is:

5

5.5.3 Variable Format Expressions ,<expr>

Variable format expressions are supported. They provide a means for substituting run-time expressions
for the field width, other parameters for the field and edit descriptors in a FORMAT statement (except
for the H field descriptor and repeat counts).

Variable format expressions are enclosed in "<" and ">" and are evaluated each time they are
encountered in the scan of a format. If the value of a variable used in the expression changes during the
execution of the I/O statement, the new value is used the next time the format item containing the
expression is processed.

5.6 Non-advancing Input and Output

Non-advancing input/output is character-oriented and applies to sequential access formatted external
files. The file position is after the last character read or written and not automatically advanced to the
next record.

170 Chapter 5

For non-advancing input/output, use the ADVANCE=NO' specifier. Two other specifiers apply to non-
advancing, EOR which applies when end of record is detected and SIZE which returns the number of
characters read.

5.7 List-directed formatting

List-directed formatting is an abbreviated form of input/output that does not require the use of a format
specification. The type of the data is used to determine how a value is read/written. On output, it will
not always be accurate enough for certain ranges of values. The characters in a list-directed record
constitute a sequence of values which cannot contain embedded blanks except those permitted within a
character string. To use list-directed input/output formatting, specify a * for the list of format
requirements. For example, the following example uses list-directed output:

READ(1, *) VAL1l, VAL2

5.7.1 List-directed input

The form of the value being input must be acceptable for the type of item in the iolist. Blanks must not
be used as zeros nor be embedded in constants except in a character constant or within a type complex
form contained in parentheses.

Table 5-3: List Directed Input Values

Input List Type Form

Integer A numeric input field.

Real A numeric input field suitable for F editing with no fractional
part unless a decimal point is used.

Double precision Same as for real.

Complex An ordered pair of numbers contained within parentheses as
shown (real part, imaginary part).

Logical A logical field without any slashes or commas.

Character A non-empty character string within apostrophes. A character
constant can be continued on as many records as required.
Blanks, slashes and commas can be used.

A null value has no effect on the definition status of the corresponding iolist item. A null value cannot
represent just one part of a complex constant but may represent the entire complex constant. A slash
encountered as a value separator stops the execution of that input statement after the assignment of the
previous value. If there are further items in the list, they are treated as if they are null values.

Fortran Input and Output Formatting 171

Commas may be used to separate the input values. If there are consecutive commas, or if the first non-
blank character of a record is a comma, the input value is a null value. Input values may also be
repeated.

In the following example of list-directed formatting, assume that
A= -1.5

K= 125

and all other variables are undefined. When the statement below reads in the list from the input file:

READ * I, J, X, Y, Z, A, C, K

where the file contains the following record:

10,-14,25.2,-76,313,,29/

The variables are assigned the following values by the list-directed input/output mechanism:

I=10
J=-14
X=25.2
Y=-76.0
Z=313.0
A=-1.5
C=29
K=125.

Note that the value for A does not change because the input record is null (consecutive commas). No
input is read for K, so it assumes null and K retains its previous value (the / terminates the input).

5.7.2 List-directed output

List directed input/output is an abbreviated form of formatted input/output that does not require the use
of a format specification. Depending on the type of the data item or data items in the iolist, data is
transferred to or from the file, using a default, and not necessarily accurate format specification. The
data type of each item appearing in the iolist is formatted according to the rules in Table 5-4.

172 Chapter 5

Table 5-4: Default List Directed Output Formatting

Data Type Default Formatting
BYTE 15
INTEGER*2 17
INTEGER*4 I12
INTEGER*8 124
LOGICAL*1 Is (L23)
LOGICAL*2 L2
LOGICAL*4 L2
LOGICAL*8 L2
REAL*4 G15.7e2
REAL*8 G25.16e3
COMPLEX* 8 (G15.7e2, G15.7e2)
COMPLEX*16 (G25.16e3, G25.16e3)
CHAR *n An

The length of a record is less than 80 characters; if the output of an item would cause the length to
exceed 80 characters, a new record is created.

Notes
1. New records may begin as necessary.
2. Logical output constants are T for true and F for false.

3. Complex constants are contained within parentheses with the real and imaginary parts
separated by a comma.

4. Character constants are not delimited by apostrophes and have each internal apostrophe
(if any are present) represented externally by one apostrophe

3 This format is applied when the option —Munixlogical is selected when compiling.

Fortran Input and Output Formatting 173

5. Each output record begins with a blank character to provide carriage control when the
record is printed.

6 A typeless value output with list-directed I/O is output in hexadecimal form by default.
There is no other octal or hexadecimal capability with list-directed 1/O.

5.7.3 Commas in External Field

Use of the comma in an external field eliminates the need to "count spaces" to have data match format
edit descriptors. The use of a comma to terminate an input field and thus avoid padding the field is fully
supported.

5.8 Namelist Groups

The NAMELIST statement allows for the definition of namelist groups. A namelist group allows for a
special type of formatted input/output, where data is transferred between a named group of data items
defined in a NAMELIST statement and one or more records in a file.

The general form of a namelist statement is:

NAMELIST /group-name/ namelist [[,] /group-name/ namelist] ...

where:
group-name is the name of the namelist group.
namelist is the list of variables in the namelist group.

5.8.1 Namelist Input

Namelist input is accomplished using a READ statement by specifying a namelist group as the input
item. The following statement shows the format:

READ ([unit=] u, [NML=] namelist-group [, control-information])

One or more records are processed which define the input for items in the namelist group.
The records are logically viewed as follows:

$group -name item=value [,item=value] $ [END]

The following rules describe these input records:

1. The start or end delimiter ($) may be an &.

2. The start delimiter must begin in column 2 of a record.

174 Chapter 5

3 The group-name begins immediately after the start delimiter.

4. The spaces or tabs may not appear within the group-name, within any item, or within
any constants.

5. The value may be constants as are allowed for list directed input, or they may be a list of
constants separated by commas (,) . A list of items is used to assign consecutive values
to consecutive elements of an array.

6 Spaces or tabs may precede the item, the = and the constants.
7 Array items may be subscripted.

8. Character items may be substringed.

5.8.2 Namelist Output

Namelist output is accomplished using a READ statement by specifying a namelist group as the output
item. The following statement shows the format:

WRITE ([unit=] u, [NML=] namelist-group [, control-information])

The records output are logically viewed as follows:

$group -name
item = value
$ [END]

The following rules describe these output records:

1. One record is output per value.
2. Multiple values are separated by (,) .

3. Values are formatted according to the rules of the list-directed write. Exception:
character items are delimited by an apostrophe.

4 Anapostrophe (') or a quote (") in the value is represented by two consecutive
apostrophes or quotes.

Fortran Input and Output Formatting 175

6 Fortran Intrinsics

This chapter lists the FORTRAN 77 and Fortran 90/95 intrinsics and subroutines, intrinsics
defined in the HPF Language Specification, and CM Fortran intrinsics. Color-coding is used to
highlight the different Fortran versions. The colors used are as follows:

e FORTRAN 77 is shown in black
e Fortran 90/95 is shown in blue
e HPF is shown in red

e CM Fortran is shown in green

6.1 FORTRAN 77 and Fortran 90/95 Intrinsics by Category

The tables in this section contain the FORTRAN 77 and Fortran 90/95 intrinsics supported by the
PGF77 and PGF95 compilers. Intrinsics are categorized by functionality and alphabetized by
generic name within each table. All FORTRAN 77 intrinsics are supported and are detailed in the
ANSI Fortran manual listed in the section "Related Publications," in the Preface.

To simplify the tables in this section, two groups of intrinsic types have been given the following
abbreviated group names:

NUMERIC INTEGER, REAL, COMPLEX

NONCHAR LOGICAL, INTEGER, REAL, COMPLEX

Fortran Intrinsics 177

Table 6.1; Numeric Functions

Generic Purpose Number Specific Argument Type Result Type
Name of Args Name
ABS Absolute Value 1 NUMERIC NUMERIC
1 IIABS INTEGER*2 INTEGER*2
1 JIABS INTEGER*4 INTEGER*4
1 KIABS INTEGER*8 INTEGER*8
1 ABS REAL*4 REAL*4
1 DABS REAL*8 REAL*8
1 CABS COMPLEX*8 COMPLEX*8
1 CDABS COMPLEX*16 COMPLEX*16
AIMAG Imaginary Part 1 AIMAG COMPLEX*8 REAL*4
of Complex 1 DIMAG COMPLEX*16 REAL*8
Number
AINT Truncation 1 AINT REAL*4 REAL*4
1 DINT REAL*8 REAL*8
ANINT Nearest Whole 1 ANINT REAL*4 REAL*4
Number 1 DNINT REAL*8 REAL*8
CEILING | Next Whole 1 REAL INTEGER
Number 2 REAL, INTEGER INTEGER
CMPLX | Convert to 1 NUMERIC COMPLEX*8
COMPLEX*8 2 INTEGER, INTEGER COMPLEX*8
2 REAL, REAL COMPLEX*8
CONJG Complex 1 CONJG COMPLEX*8 COMPLEX*8
Conjugate 1 DCONJG | COMPLEX*16 COMPLEX*16
DBLE Convert to 1 NUMERIC REAL*8
REAL*8 1 DFLOTI | INTEGER*2 REAL*8
1 DFLOAT | INTEGER*4 REAL*8
1 DFLOTJ INTEGER*4 REAL*8
1 DFLOTK | INTEGER*8 REAL*8
1 DREAL COMPLEX*16 REAL*8
DCMPLX | Convert to 1 NUMERIC COMPLEX*16
COMPLEX*16 2 INTEGER, INTEGER COMPLEX*16
2 REAL, REAL COMPLEX*16

178

Chapter 6

Generic Purpose Number Specific Argument Type Result Type
Name of Args Name
DIM Positive 2 IIDIM INTEGER*2, INTEGER*2
Difference 2 JIDIM INTEGER*2 INTEGER*4
2 KIDIM ig%ﬁggg:ﬁ INTEGER*8
: bIM INTEGER*8 REAL™
2 5
DDIM INTEGER*8 REAL*8
REAL*4, REAL*4
REAL*8, REAL*S
FLOOR Previous integer 1 REAL INTEGER
2 REAL, INTEGER INTEGER
IINT Truncation 1 NUMERIC INTEGER*2
1 IINT REAL*4 INTEGER*2
1 IFIX REAL*4 INTEGER*2
1 [IDINT REAL*8 INTEGER*2
ININT Nearest Integer 1 ININT REAL*4 INTEGER*2
[a+.5 * sign(a)] 1 IIDNNT REAL*8 INTEGER*2
INT Truncation 1 NUMERIC INTEGER*4
1 JIFIX REAL*4 INTEGER*4
1 IDINT REAL*8 INTEGER*4
INTS Truncation 1 REAL*4 INTEGER*8
1 KIFIX REAL*4 INTEGER*8
IZEXT Zero-Extend 1 LOGICAL*1 INTEGER*2
Fémctlon. 1 LOGICAL*2 INTEGER*2
(Conversion) 1 INTEGER*2 INTEGER*2
JINT Truncation 1 NUMERIC INTEGER*4
1 JINT REAL*4 INTEGER*4
1 JIDINT REAL*8 INTEGER*4
JNINT Nearest Integer 1 REAL INTEGER*4
[a+.5* sign(a)] 1 JIDNNT REAL*8 INTEGER*4
KNINT Nearest Integer 1 REAL INTEGER*8
[a+.5 * sign(a)] 1 KIDNNT | REAL*8 INTEGER*8
Fortran Intrinsics 179

Generic Purpose Number Specific Argument Type Result Type
Name of Args Name
MAX Maximum n>1 IMAXO0 INTEGER*2 INTEGER*2
n>1 IMAX1 REAL*4 INTEGER*2
n>1 AIMAXO0 INTEGER*2 REAL*4
n>1 JIMAXO0 INTEGER*4 INTEGER*4
n>1 INTEGER*8 INTEGER*8
n>1 JMAX1 REAL*4 INTEGER*4
n>1 KMAX1 REAL*4 INTEGER*8
n>1 AJMAXO0 INTEGER*4 REAL*4
n>1 AKMAXO0 INTEGER*8 REAL*4
n>1 MAXO0 INTEGER*4 INTEGER*4
n>1 AMAX1 REAL*4 REAL*4
n>1 DMAX1 REAL*8 REAL*8
MIN Minimum n>1 IMINO INTEGER*2 INTEGER*2
n>1 IMIN1 REAL*4 INTEGER*2
n>1 AIMINO INTEGER*2 REAL*4
n>1 JMINO INTEGER*4 INTEGER*4
n>1 INTEGER*8 INTEGER*8
n>1 JMIN1 REAL*4 INTEGER*4
n>1 KMIN1 REAL*4 INTEGER*8
n>1 AJMINO INTEGER*4 REAL*4
n>1 MINO INTEGER*4 INTEGER*4
n>1 AMINI1 REAL*4 REAL*4
n>1 AKNINO INTEGER*8 REAL*4
n>1 DMINI1 REAL*8 REAL*8
MOD Remainder 2 IMOD INTEGER*2, INTEGER*2 | INTEGER*2
2 IMOD INTEGER*4, INTEGER*4 | INTEGER*4
2 KMOD INTEGER*8, INTEGER*8 | INTEGER*S
2 AMOD REAL*4, REAL*4 REAL*4
2 DMOD REAL*8, REAL*4 REAL*8
MODULO | Fortran 90/95 2 INTEGER*2, INTEGER*2 INTEGER*2
Modulo 2 INTEGER*4, INTEGER*4 | INTEGER*4
2 INTEGER*8, INTEGER*8 | INTEGER*§
2 REAL*4, REAL*4 REAL*4
2 REAL*8, REAL*4 REAL*8

180

Chapter 6

Generic Purpose Number Specific Argument Type Result Type
Name of Args Name
NINT Nearest Integer 1 REAL INTEGER*4
[a+.5 * sign(a)] 1 IDNINT REAL*8 INTEGER*4
REAL Convert to 1 NUMERIC REAL*4
REAL*4 1 FLOATI INTEGER*2 REAL*4
1 FLOAT INTEGER*2 REAL*4
1 REAL INTEGER*4 REAL*4
1 FLOATJ INTEGER*4 REAL*4
1 FLOATK INTEGER*8 REAL*4
1 SNGL REAL*8 REAL*4
SIGN Transfer of Sign 2 IISIGN INTEGER*2 INTEGER*2
2 JISIGN INTEGER*4 INTEGER*4
2 KISIGN INTEGER*8 INTEGER*8
2 SIGN REAL*4 REAL*4
2 DSIGN REAL*8 REAL*8
ZEXT Zero-Extend 1 JZEXT LOGICAL*1 INTEGER*4
Fgmtlon_ 1 LOGICAL*2 INTEGER*4
(Conversion) 1 LOGICAL*4 INTEGER*4
1 INTEGER*2 INTEGER*4
1 INTEGER*4 INTEGER*4
Table 6.2: Mathematical Functions
Generic Purpose Number Specific Argument Type Result Type
Name of Args Name
ACOS ArcCosine 1 ACOS REAL*4 REAL*4
1 DACOS REAL*8 REAL*8
ACOSD ArcCosine (degree) 1 ACOSD REAL*4 REAL*4
1 DACOSD REAL*8 REAL*8
ASIN ArcSine 1 ASIN REAL*4 REAL*4
1 DASIN REAL*8 REAL*8
ASIND ArcSine (degree) 1 ASIND REAL*4 REAL*4
1 DASIND REAL*8 REAL*8
ATAN ArcTangent 1 ATAN REAL*4 REAL*4
1 DATAN REAL*8 REAL*8

Fortran Intrinsics

Generic Purpose Number Specific Argument Type Result Type
Name of Args Name
ATAN2 ArcTangent 2 ATAN2 REAL*4, REAL*4 | REAL*4
2 DATAN2 REAL*8, REAL*8 | REAL*8
ATAN2D ArcTangent (degree) 2 ATAN2D REAL*4, REAL*4 | REAL*4
2 DATAN2D | REAL*8, REAL*8 | REAL*8
ATAND ArcTangent (degree) 1 ATAND REAL*4 REAL*4
1 DATAND | REAL*8 REAL*8
COoS Cosine 1 Cos REAL*4 REAL*4
1 DCOS REAL*8 REAL*8
1 CCOS COMPLEX*8 COMPLEX*8
1 CDCOS COMPLEX*16 COMPLEX*16
COSD Cosine (degree) 1 COSD REAL*4 REAL*4
1 DCOSD REAL*8 REAL*8
COSH Hyperbolic Cosine 1 COSH REAL*4 REAL*4
1 DCOSH REAL*8 REAL*8
DPROD Product 2 REAL*4, REAL*4 | REAL*8
EXP Exponential 1 EXP REAL*4 REAL*4
1 DEXP REAL*8 REAL*8
1 CEXP COMPLEX*8 COMPLEX*8
1 CDEXP COMPLEX*16 COMPLEX*16
LOG Natural Logarithm 1 ALOG REAL*4 REAL*4
1 DLOG REAL*8 REAL*8
1 CLOG COMPLEX*8 COMPLEX*8
1 CDLOG COMPLEX*16 COMPLEX*16
LOG10 Common Logarithm 1 ALOGI0 REAL*4 REAL*4
1 DLOG10 REAL*8 REAL*8
SIN Sine 1 SIN REAL*4 REAL*4
1 DSIN REAL*8 REAL*8
1 CSIN COMPLEX*8 COMPLEX*8
1 CDSIN COMPLEX*16 COMPLEX*16
SIND Sine (degree) 1 SIND REAL*4 REAL*4
1 DSIND REAL*8 REAL*8

182

Chapter 6

Generic Purpose Number Specific Argument Type Result Type
Name of Args Name
SINH Hyperbolic Sine 1 SINH REAL*4 REAL*4
1 DSINH REAL*8 REAL*8
SQRT Square Root 1 SQRT REAL*4 REAL*4
1 DSQRT REAL*8 REAL*8
1 CSQRT COMPLEX*8 COMPLEX*8
1 CDSQRT COMPLEX*16 COMPLEX*16
TAN Tangent 1 TAN REAL*4 REAL*4
1 DTAN REAL*8 REAL*8
TAND Tangent (degree) 1 TAND REAL*4 REAL*4
1 DTAND REAL*8 REAL*8
TANH Hyperbelic Tangent 1 TANH REAL*4 REAL*4
1 DTANH REAL*8 REAL*8

Table 6.3: Real Manipulation Functions

Generic Name Purpose Number Argument Type Result Type
of Args

EXPONENT Exponent part 1 REAL INTEGER

FRACTION Fractional part 1 REAL INTEGER

NEAREST Nearest different 2 REAL, REAL REAL
machine representable
number

RRSPACING Reciprocal of relative 1 REAL REAL
spacing

SCALE Value of exponent part 2 REAL, INTEGER REAL
changed by a specified
value

SET_EXPONENT | Value of exponent part 2 REAL, INTEGER REAL
set to a specified value

SPACING Spacing near argument 1 REAL REAL

Fortran Intrinsics 183

Table 6.4: Bit Manipulation Functions

Generic Purpose Num. | Specific Argument Type Result Type
Name Args Name
AND Logical 2 any4, any* typeless
AND
BIT _SIZE | Precision 1 INTEGER INTEGER
(in bits)
BTEST Bit Test 2 INTEGER, INTEGER LOGICAL
2 BITEST INTEGER*2, INTEGER*2 LOGICAL*2
2 BITEST | INTEGER*4, INTEGER*4 LOGICAL*4
2 KBTEST | INTEGER*8, INTEGER*8 LOGCIAL*8
COMPL Logical 1 any? typeless
Complement
EQV Logical 2 any?, any? typeless
Exclusive
Nor
TIAND Logical 2 INTEGER, INTEGER INTEGER
AND 2 | IAND | INTEGER*2, INTEGER*2 INTEGER*2
2 JIAND INTEGER*4, INTEGER*4 INTEGER*4
2 KIAND INTEGER*8, INTEGER*8 INTEGER*8
IBCLR Bit Clear 2 INTEGER, INTEGER INTEGER
2 IIBCLR INTEGER*2, INTEGER*2 INTEGER*2
2 JIBCLR INTEGER*4, INTEGER*4 INTEGER*4
2 KIBCLR | INTEGER*8, INTEGER*8 INTEGER*8
IBITS Bit 3 INTEGER, INTEGER, INTEGER INTEGER
Extraction 3 1IBITS INTEGER*2, INTEGER*2, INTEGER*2 | INTEGER*2
3 JIBITS INTEGER*4, INTEGER*4, INTEGER *4 INTEGER*4
3 KIBITS | INTEGER*8, INTEGER*8, INTEGER*8 | INTEGER*S

4 Arguments to the intrinsics AND, COMPL, EQV, OR, and NEQV may be of any type except for
CHARACTER and COMPLEX.

184 Chapter 6

Generic Purpose Num. | Specific Argument Type Result Type
Name Args Name
IBSET Bit Set 2 INTEGER, INTEGER INTEGER
2 IIBSET | INTEGER*2, INTEGER*2 INTEGER*2
2 JIBSET | INTEGER*4, INTEGER*4 INTEGER*4
2 KIBSET | INTEGER*8, INTEGER*8 INTEGER*8
IEOR Logical 2 INTEGER, INTEGER INTEGER
XOR 2 | IEOR | INTEGER*2, INTEGER*2 INTEGER*2
IOR Logical OR 2 INTEGER, INTEGER INTEGER
2 [IOR INTEGER*2, INTEGER*2 INTEGER*2
2 JIOR INTEGER*4, INTEGER*4 INTEGER*4
2 KIOR INTEGER*8, INTEGER*8 INTEGER*8
ISHFT Logical 2 INTEGER, INTEGER INTEGER
Shift 2 [ISHFT | INTEGER*2, INTEGER*2 INTEGER*2
2 JISHFT | INTEGER*4, INTEGER*4 INTEGER*4
2 KISHFT | INTEGER*8, INTEGER*8 INTEGER*8
ISHFTC | Circular 3 INTEGER, INTEGER INTEGER
Shift 3 ISHFTC | INTEGER*2, INTEGER*2, INTEGER*2 | INTEGER*2
3 JISHFTC | INTEGER*4, INTEGER*4, INTEGER*4 | INTEGER*4
3 KISHFTC | INTEGER*8, INTEGER*S, INTEGER*8 | INTEGER*S
LSHIFT Logical 2 INTEGER, INTEGER INTEGER
Left Shift
NEQV Logical 2 any?, any* typeless
Exclusive
OR
NOT Logical 1 INTEGER INTEGER
Complement 1 INOT INTEGER*2 INTEGER*2
1 JNOT INTEGER*4 INTEGER*4
1 KNOT INTEGER*8 INTEGER*8

Fortran Intrinsics

185

Generic Purpose Num. | Specific Argument Type Result Type
Name Args Name
OR Logical OR 2 any?, any* typeless
RSHIFT Logical 2 INTEGER, INTEGER INTEGER
Right Shift
SHIFT Logical 2 any5’ INTEGER typeless
Shift
XOR Logical 2 INTEGER, INTEGER INTEGER
g}({cluswe JIEOR INTEGER*4, INTEGER*4 INTEGER*4

Table 6.5: Fortran 90/95 Bit Manipulation Subroutine

Generic Purpose Arguments
Name

MVBITS | Copies bit sequence INTEGER(IN), INTEGER(IN), INTEGER(IN),
INTEGER(INOUT), INTEGER(IN)

5 The first argument to the SHIFT intrinsic may be of any type except for CHARACTER and
COMPLEX.

186 Chapter 6

Table 6.6: Elemental Character and Logical Functions

The functions in the following table are specific to Fortran 90/95 unless otherwise specified.

Generic Purpose Num. Argument Type Result Type
Name Args

ACHAR Return character in 1 INTEGER CHARACTER
specified ASCII
collating position.

ADJUSTL Left adjust string 1 CHARACTER CHARACTER

ADJUSTR Right adjust string 1 CHARACTER CHARACTER

CHAR (f77) | Return character 1 LOGICAL*1 CHARACTER
with specified 1 | INTEGER CHARACTER
ASCII value.

IACHAR Return position of 1 CHARACTER INTEGER
character in ASCII
collating sequence.

ICHAR Return position of 1 CHARACTER INTEGER
character in the
character set’s
collating sequence.

INDEX Return starting CHARACTER, CHARACTER INTEGER
position of CHARACTER, CHARACTER, LOGICAL | INTEGER
substring within
first string.

LEN_TRIM Return length of 1 CHARACTER INTEGER
string minus
trailing blanks.

LGE Lexical 2 CHARACTER, CHARACTER LOGICAL
comparison

LGT Lexical 2 CHARACTER, CHARACTER LOGICAL
comparison

LLE Lexical 2 CHARACTER, CHARACTER LOGICAL
comparison

LLT Lexical 2 CHARACTER, CHARACTER LOGICAL
comparison

LOGICAL Logical conversion 1 LOGICAL LOGICAL

2 LOGICAL, INTEGER LOGICAL

Fortran Intrinsics 187

SCAN Scan string for 2 CHARACTER, CHARACTER INTEGER
characters in set 3 CHARACTER, CHARACTER, LOGICAL | INTEGER
VERIFY Determine if string 2 CHARACTER, CHARACTER INTEGER
contains all 3 CHARACTER, CHARACTER, LOGICAL | INTEGER
characters in set
Table 6.7: Fortran 90/95 Vector/Matrix Functions
Generic Name Purpose Number Argument Type Result Type
of Args
DOT _PRODUCT | Perform dot 2 NONCHAR*K, NONCHAR*K [NONCHAR*K
product on two
vectors
MATMUL Perform matrix 2 NONCHAR*K, NONCHAR*K [NONCHAR*K
multiply on two
matrices
Table 6.8: Fortran 90/95 Array Reduction Functions
Generic Purpose Number Argument Type Result Type
Name of Args
ALL Determine if all array 1 LOGICAL LOGICAL
values are true 2 LOGICAL, INTEGER LOGICAL
ANY Determine if any 1 LOGICAL LOGICAL
array value is true 2 LOGICAL, INTEGER LOGICAL
COUNT Count true values in 1 LOGICAL INTEGER
array 2 LOGICAL, INTEGER INTEGER
MAXLOC Determine position of 1 INTEGER INTEGER
array elementl with 2 INTEGER, LOGICAL INTEGER
fmaximum vaiue 2 INTEGER, INTEGER INTEGER
3 INTEGER, INTEGER, LOGICAL INTEGER
1 REAL INTEGER
2 REAL, LOGICAL INTEGER
2 REAL, INTEGER INTEGER
3 REAL, INTEGER, LOGICAL INTEGER

188

Chapter 6

Generic Purpose Number Argument Type Result Type
Name of Args
MAXVAL Determine maximum 1 INTEGER INTEGER
value of array 2 INTEGER, LOGICAL INTEGER
clements 2 INTEGER, INTEGER INTEGER
3 INTEGER, INTEGER, LOGICAL INTEGER
1 REAL REAL
2 REAL, LOGICAL REAL
2 REAL, INTEGER REAL
3 REAL, INTEGER, LOGICAL REAL
MINLOC Determine position of 1 INTEGER INTEGER
array element with 2 INTEGER, LOGICAL INTEGER
minimum value 2 INTEGER, INTEGER INTEGER
3 INTEGER, INTEGER, LOGICAL INTEGER
1 REAL INTEGER
2 REAL, LOGICAL INTEGER
2 REAL, INTEGER INTEGER
3 REAL, INTEGER, LOGICAL INTEGER
MINVAL Determine minimum 1 INTEGER INTEGER
value of array 2 INTEGER, LOGICAL INTEGER
clements 2 INTEGER, INTEGER INTEGER
3 INTEGER, INTEGER, LOGICAL INTEGER
1 REAL REAL
2 REAL, LOGICAL REAL
2 REAL, INTEGER REAL
3 REAL, INTEGER, LOGICAL REAL
PRODUCT Calculate the product 1 NUMERIC NUMERIC
of the elements of an 2 NUMERIC, LOGICAL NUMERIC
array 2 NUMERIC, INTEGER NUMERIC
3 NUMERIC, INTEGER, LOGICAL NUMERIC
SUM Calculate the sum of 1 NUMERIC NUMERIC
the elements of an 2 NUMERIC, LOGICAL NUMERIC
array 2 NUMERIC, INTEGER NUMERIC
3 NUMERIC, INTEGER, LOGICAL NUMERIC

Fortran Intrinsics

189

Table 6.9: Fortran 90/95 String Construction Functions

Generic Purpose Number of Argument Type Result Type
Name Args
REPEAT Concatenate copies of a 2 CHARACTER, INTEGER CHARACTER
string
TRIM Remove trailing blanks 1 CHARACTER CHARACTER
from a string

Table 6.10: Fortran 90/95 Array Construction/Manipulation Functions

Generic Name Purpose Number Argument Type Result
of Args Type
CSHIFT Perform circular 2 ARRAY, INTEGER ARRAY?®
shift on arra
y 3 ARRAY, INTEGER, INTEGER ARRAYS
EOSHIFT Perform end-off 2 ARRAY, INTEGER ARRAY?®
shift on array 3 ARRAY, INTEGER, any® ARRAYS
3
ARRAY, INTEGER, INTEGER ARRAYS
4 ARRAY, INTEGER, any®, INTEGER ARRAYS
MERGE Merge two 3 any, any®, LOGICAL any®
arguments based
on logical mask
PACK Pack array into 2 ARRAY, LOGICAL ARRAY?®
rank-one array 3 ARRAY, LOGICAL, VECTOR® ARRAY®
RESHAPE Change the 2 ARRAY, INTEGER ARRAY®
:llfapye ofan 3 ARRAY, INTEGER, ARRAY® ARRAYS
3
) ARRAY, INTEGER, INTEGER ARRAYS
6
ARRAY, INTEGER, ARRAY®, INTEGER ARRAYS
SPREAD Replicates an 3 any, INTEGER, INTEGER ARRAY®
array by adding
a dimension

6 Must be of the same type as the first argument.

190

Chapter 6

Generic Name Purpose Number Argument Type Result
of Args Type
TRANSPOSE Transpose an 1 ARRAY ARRAY?®
array of rank
two
UNPACK Unpack a rank- 3 VECTOR, LOGICAL, ARRAY® ARRAY®
one array into an
array of multiple
dimensions
Table 6.11: Fortran 90/95 General Inquiry Functions
Generic Name Purpose Number of Argument Type Result
Args Type
ASSOCIATED | Determine association status 1 POINTER LOGICAL
2 POINTER, TARGET LOGICAL
KIND Determine argument’s kind 1 any intrinsic type INTEGER
PRESENT Determine presence of 1 any LOGICAL
optional argument
Table 6.12: Fortran 90/95 Numeric Inquiry Functions
Generic Name Purpose Number Argument Type Result
of Args Type
DIGITS Determine number of 1 INTEGER INTEGER
significant digits 1 REAL INTEGER
EPSILON Smallest representable 1 REAL REAL
number
HUGE Largest representable 1 INTEGER INTEGER
number 1 REAL REAL
MAXEXPONENT Value of maximum 1 REAL INTEGER
exponent
MINEXPONENT Value of minimum 1 REAL INTEGER
exponent
PRECISION Decimal precision 1 REAL INTEGER
1 COMPLEX INTEGER

Fortran Intrinsics

191

Generic Name Purpose Number Argument Type Result
of Args Type
RADIX Base of model 1 INTEGER INTEGER
1 REAL INTEGER
RANGE Decimal exponent range 1 INTEGER INTEGER
1 REAL INTEGER
1 COMPLEX INTEGER
SELECTED_INT_KIND Kind type parameter in 1 INTEGER INTEGER
range
SELECTED_REAL KIND | Kind type parameter in 1 INTEGER INTEGER
range 2 INTEGER, INTEGER INTEGER
TINY Smallest representable 1 REAL REAL
positive number
Table 6.13: Fortran 90/95 Array Inquiry Functions
Generic Name Purpose Number Argument Type Result
of Args Type
ALLOCATED Determine if array is allocated 1 ARRAY LOGICAL
LBOUND Determine lower bounds 1 ARRAY INTEGER
2 ARRAY, INTEGER INTEGER
SHAPE Determine shape 1 any INTEGER
SIZE Determine number of elements 1 ARRAY INTEGER
2 ARRAY, INTEGER INTEGER
UBOUND Determine upper bounds 1 ARRAY INTEGER
2 ARRAY, INTEGER INTEGER
Table 6.14: Fortran 90/95 String Inquiry Function
Generic Name Purpose Number Argument Type Result Type
of Args
LEN Length of string CHARACTER INTEGER
192 Chapter 6

Table 6.15: Fortran 90/95 Subroutines

Generic Name Purpose Number of Argument Type
Args
CPU_TIME Returns processor time 1 REAL (OUT)
DATE_AND_TIME Returns date and time 4 (optional) | DATE (CHARACTER, OUT)

TIME (CHARACTER, OUT)
ZONE (CHARACTER, OUT)
VALUES (INTEGER, OUT)

RANDOM NUMBER

Generate pseudo-
random numbers

REAL (OUT)

RANDOM_SEED

random number
generator

Set or query pseudo-

—_ = = O

SIZE (INTEGER, OUT)
PUT (INTEGER ARRAY, IN)
GET (INTEGER ARRAY, OUT)

SYSTEM_CLOCK

Query real time clock

3 (optional)

COUNT (INTEGER, OUT)
COUNT RATE (INTEGER, OUT)
COUNT MAX (INTEGER, OUT)

Table 6.16: Fortran 90/95 Transfer Function

Generic Name Purpose Number Argument Type Result Type
of Args
TRANSFER Change type but maintain 2 any, any any’
bit representation 3 any, any, INTEGER
Table 6.17: Miscellaneous Functions
Generic Purpose Lang | Number | Argument Type Result Type
Name of Args
LOC Return address of argument F77 1 NUMERIC INTEGER
NULL Assign disassociated status F95 0 POINTER
1 POINTER POINTER

7 Must be of the same type as the second argument.

Fortran Intrinsics

193

6.2 FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions

This section contains descriptions of each FORTRAN 77 and Fortran 90/95 intrinsic supported by
the PGF77, PGF95 and PGHPF compilers. Intrinsics and subroutines are listed alphabetically.

ABS 77

Determine the absolute value of the supplied argument.

Synopsis
ABS (A)
Argument

The argument A must be of type integer, real, or complex.

Return Value

The return type for integer is integer, for real is real, and for complex is real.

ACHAR 90

Return the character in the ASCII collating position specified by the argument.

Synopsis
ACHAR (I)
Argument

The argument I must be of type integer.

Return Value

A single character.

ACOS 77

Return the arccosine of the specified value.

Synopsis

ACOS (X)

194 Chapter 6

Arguments

The argument X must be a real value.

Return Value

The real value representing the arccosine in radians.

ACOSD 77

Return the arccosine (in degrees) of the specified value.

Synopsis
ACOSD (X)
Arguments

The argument X must be a real value.

Return Value

The real value representing the arccosine in degrees.

ADJUSTL 90

Adjust string to the left, removing all leading blanks and inserting trailing blanks.

Synopsis
ADJUSTL (STR)
Arguments

The argument STR is the string to be adjusted.

Return Value

String of same length and kind as the argument with leading blanks removed and the same number
of trailing blanks added.

ADJUSTR 90

Adjust string to the right, removing all trailing blanks and inserting leading blanks.

Fortran Intrinsics 195

Synopsis
ADJUSTR (STR)

Arguments

The argument STR is the string to be adjusted.

Return Value

String of same length and kind as the argument with trailing blanks removed and the same number
of leading blanks added.

AIMAG 77

Determine the value of the imaginary part of a complex number.

Synopsis
AIMAG (Z)
Arguments

The argument Z must be complex.

Return Value

A real value representing the imaginary part of the supplied argument.

AINT 77

Truncate the supplied value to a whole number.

Synopsis
AINT (A [,KIND])
Arguments

The argument A is of type real. The optional KIND argument is an integer kind.

Return Value

A real value that is equal to the largest integer that is not greater than the supplied argument. If the
KIND argument is present, the result is of that kind.

196 Chapter 6

ALL 90

Determine if all the values in the supplied argument are logical true.

Synopsis
ALL (MASK [,DIM])
Arguments
The argument MASK is an array of type LOGICAL. The optional argument DIM specifies the
dimension of the array MASK to check.
Return Value
If no DIM argument is present, the return value is a logical scalar that is true only if all values of

MASK are true.

If the DIM argument is present and if MASK has rank one, then the return value is the same as
ALL(MASK).

If the DIM argument is present and MASK has rank greater than one, then the return value is an
array that has rank n-1, where n is the rank of MASK. The return value is defined recursively as the
value of ALL for each extent of the dimension DIM (refer to the Fortran 95 Handbook for a more
detailed explanation).

ALLOCATED 90

Determine if the supplied allocatable array is currently allocated.

Synopsis
ALLOCATED (ARRAY)
Argument

The argument ARRAY is an allocatable array.

Return Value

Returns a logical scalar indicating whether the array is allocated.

Fortran Intrinsics 197

AND §77

Performs a logical AND on corresponding bits of the arguments.

Synopsis
AND (M, N)
Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

The return value is typeless.

ANINT 77

Return the nearest whole number to the supplied argument.

Synopsis
ANINT (A [,KIND])

Arguments

The argument A is a real number. The optional argument KIND is a kind parameter.

Return Value

The result is a real. The value is AINT (A+0.5) if Ais > 0 and AINT (A-0.5) ifAis < 0. If
KIND is present, the result is of type KIND.

ANY 90
Determine if any value in the supplied argument MASK is true.

Synopsis

ANY (MASK [,DIM])

198 Chapter 6

Arguments

The argument MASK is an array of type LOGICAL. The optional argument DIM specifies the
dimension of the array MASK to check.

Return Value

If no DIM argument is present, the return value is a logical scalar that is true if any element of
MASK is true.

If the DIM argument is present and if MASK has rank one, then the return value is the same as
ANY (MASK) .

If the DIM argument is present and MASK has rank greater than one, then the return value is an
array that has rank n-1, where n is the rank of MASK. The return value is defined recursively as the
value of ANY for each extent of the dimension DIM (refer to The Fortran 95 Handbook for a more
detailed explanation)

ASIN 77

Return the arcsine of the specified value.

Synopsis
ASIN (X)
Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

The real value representing the arcsine in radians.

ASIND 77

Return the arcsine (in degrees) of the specified value.

Synopsis
ASIND (X)

Argument

The argument X must be of type real and have absolute value <= 1.

Fortran Intrinsics 199

Return Value

The real value representing the arcsine in degrees.

ASSOCIATED 90

Determines the association status of the supplied argument or determines if the supplied pointer is
associated with the supplied target.
Synopsis

ASSOCIATED (POINTER [, TARGET])

Arguments

The POINTER argument is a pointer of any type. The optional argument TARGET is a pointer or a
target. If it is a pointer it must not be undefined.

Return Value

If TARGET is not supplied the function returns logical true if POINTER is associated with a target
and false otherwise.

If TARGET is present and is a target, then the function returns true if POINTER is associated with
TARGET and false otherwise.

If TARGET is present and is a pointer, then the function returns true if POINTER and TARGET are
associated with the same target and false otherwise.

ATAN 77

Return the arctangent of the specified value.

Synopsis
ATAN (X)
Argument

The argument X must be of type real.

Return Value

The real value representing the arctangent in radians.

200 Chapter 6

ATAN?2 77

Return the arctangent of the specified value.

Synopsis
ATAN2 (Y, X)
Arguments

The arguments X and Y must be of type real.

Return Value

A real number that is the arctangent for pairs of reals, X and Y, expressed in radians. The result is
the principal value of the nonzero complex number (X, Y).

ATAN2D 77

Return the arctangent (in degrees) of the specified value.

Synopsis
ATAN2D (Y, X)
Arguments

The arguments X and Y must be of type real.

Return Value

A real number that is the arctangent for pairs of reals, X and Y, expressed in degrees. The result is
the principal value of the nonzero complex number (X, Y).

ATAND 77

Return the arctangent (in degrees) of the specified value.

Synopsis
ATAND (X)
Argument

The argument X must be of type real.

Fortran Intrinsics 201

Return Value

The real value representing the arctangent in degrees.

BIT_SIZE 90

Return the number of bits (the precision) of the integer argument. This function uses the standard
Fortran 90/95 bit model defined in The Fortran 95 Handbook.
Synopsis
BIT SIZE(I)
Argument

The argument I must be of type integer.

Return Value

Returns an integer.

=== 77

Tests the binary value of a bit in a specified position of an integer argument. This function uses the
standard Fortran 90/95 bit model defined in The Fortran 95 Handbook.

Synopsis
BTEST (I, POS)
Arguments

The argument I must be of type integer. The argument POS must be an integer with a value less
than or equal to the value BIT SIZE (I).

Return Value

Returns a logical value representing whether the bit in position POS is true or false (0 or 1).

CEILING 90

Return the least integer greater than or equal to the supplied real argument.

Synopsis

CEILING (A [,KIND])

202 Chapter 6

Argument

The argument A is a real value. The optional argument KIND is a kind parameter and was added to
CEILING in Fortran 95.

Return Value

The return value is an integer. If KIND is present, the result is of type KIND.

CHAR 77

Returns the character in the specified collating sequence.

Synopsis
CHAR(I [,KIND])
Arguments
The argument I is of type integer, specifying the character position to return. The argument KIND
is optional.
Return Value

A character.

CMPLX 77

Convert the supplied argument or arguments to complex type.

Synopsis
CMPLX (X [,Y][,KIND])
Arguments

The argument X is of type integer, real, or complex. The optional argument Y is of type integer or
real. If X is complex, Y must not be present. The optional argument KIND is the kind for the return
value.

Return Value

Returns a complex number with the value specified by the arguments converted to a real part and a
complex part. If the KIND parameter is not supplied, the KIND is the same as the KIND for the
default complex.

Fortran Intrinsics 203

COMPL §77

Performs a logical complement on the argument.

Synopsis
COMPL (M)

Arguments

The argument M may be of any type except for character and complex.

Return Value

The return value is typeless.

CONJG 77

Return the conjugate of the supplied complex number.

Synopsis
CONJG (Z)

Argument

The argument Z is a complex number.

Return Value

The return value is the same type and kind as Z.

COS 77

Return the cosine of the specified value.

Synopsis
COS (X)
Argument

The argument X must be of type real or complex.

204 Chapter 6

Return Value

A real value of the same kind as the argument. The return value for a real argument is in radians,
or if complex, the real part is a value in radians.

COSD 77

Return the cosine (in degrees) of the specified value.

Synopsis
COSD (X)
Argument

The argument X must be of type real or complex.

Return Value

A real value of the same kind as the argument. The return value for a real argument is in degrees,
or if complex, the real part is a value in degrees.

COSH 77

Return the hyperbolic cosine of the specified value.

Synopsis
COSH (X)
Argument

The argument X must be of type real.

Return Value

A real value.

COUNT 90

Return the number of true elements in the supplied logical argument (array), along the specified
dimension if the optional argument is present.

Synopsis

COUNT (MASK [,DIM])

Fortran Intrinsics 205

Arguments

The argument MASK is an array of type LOGICAL. The optional argument DIM specifies the
dimension of the array MASK to count.

Return Value

If no DIM argument is present, the return value is an integer that is the count of true values in

MASK.

If the DIM argument is present and if MASK has rank one, then the return value is the same as
COUNT(MASK).

If the DIM argument is present and MASK has rank greater than one, then the return value is an
array that has rank n-1, where n is the rank of MASK. The return value is defined recursively as
the value of COUNT for each extent of the dimension DIM (refer to The Fortran 95 Handbook for
a more detailed explanation).

CPU_TIME 95

This is a non-elemental intrinsic subroutine that returns the processor time. For a more detailed
explanation, refer to Fortran 95 Explained.
Synopsis
call cpu_time (TIME)
Arguments
The argument TIME is a scalar real that is assigned a processor-dependent approximation of
processor time.
Return Value

The returned value in seconds, or a processor-dependent value if there is no clock.

206 Chapter 6

CSHIFT 90

Perform a circular shift on the specified array.

Synopsis

CSHIFT (ARRAY, SHIFT [,DIM])
Arguments
The argument ARRAY is the array to shift. It may be an array of any type. The argument SHIFT is
an integer or an array of integers with rank n-1 where n is the rank of ARRAY. The optional
argument DIM is an integer representing the dimension to shift.

Return Value

The shifted array with the same size and shape as the argument ARRAY.

DATE_AND_TIME 90

This is a subroutine that returns the date and time.

Synopsis
DATE_AND TIME ([DATE] [,TIME] [,ZONE] [,VALUES])
Arguments

All of the arguments are optional. The DATE argument is of type default character. It must be at
least 8 characters long. The argument returns the value CCYYMMDD where CC is the century, YY is
the year, MM is the month, and DD is the day.

The argument TIME is of type default character. It must be at least 10 characters long. It has the
form hhmmss . sss, where hh is the hour, mm is the minute, and ss . sss is the seconds and
milliseconds.

The argument ZONE is of type default character. It must be at least 5 characters long. It has the
form +- hhmm where hh and mm are the hours and minutes that the local time zone differs from

universal time (UTC).

The argument VALUES must be an array of type default integer. It has the following eight values:

VALUES (1) holds the year
VALUES (2) holds the month
VALUES (3) holds the day of the month

Fortran Intrinsics 207

VALUES (4) holds the time difference with respect to UTC

VALUES (5) holds the hour of the day

VALUES (6) holds the minutes of the hour

VALUES (7) holds the seconds of the minute

VALUES (8) holds the milliseconds of the second, in the range 0 to 999

Return Value

As this is a subroutine, the values are returned in the arguments.

DBLE 77

Convert to double precision real.

Synopsis
DBLE (A)
Argument

The argument A must be of type integer, real, or complex.

Return Value

If & is of type integer or real, the return value is the value converted to a double precision real. If A
is of type complex, the return value is the double precision value of the real part of the complex
argument.

DCMPLX 77

Convert the supplied argument or arguments to double complex type.

Synopsis
DCMPLX (X [,Y])
Arguments
The argument X is of type integer, real, or complex. The optional argument Y is of type integer or
real. If X is complex, Y must not be present.
Return Value

Returns a double complex number with the value specified by the arguments converted to a real
part and a complex part.

208 Chapter 6

DIGITS 90

Returns the number of significant digits in the model representing the argument.

Synopsis
DIGITS (X)

Argument

The argument X is of type integer or real.

Return Value

An integer value representing the number of digits in the model representing the specified kind.

DIM 77

This intrinsic returns the difference X-Y if the value is positive, otherwise it returns 0.

Synopsis
DIM(X, Y)
Arguments

X must be of type integer or real. Y must be of the same type and kind as X.

Return Value

The result is the same type and kind as X with the value X-Y if X>Y, otherwise zero.

DOT_PRODUCT 90

Perform a dot product on two vectors (arrays).

Synopsis
DOT_PRODUCT (VECTOR_A, VECTOR B)
Arguments

VECTOR_A must be an array of rank one of type numeric (integer, real, complex) or logical.
VECTOR_B must be numeric if VECTOR_A is numeric, or logical if VECTOR_A is logical. It must
have the same rank and size as ARRAY A.

Fortran Intrinsics 209

Return Value

The dot product. For VECTOR_A of integer or real, the value is

SUM (VECTOR_A * VECTOR_B). For complex, the value is

SUM(CONJG (VECTOR_A) * VECTOR_B) . For logical, the value is
ANY(VECTOR_A .AND. VECTOR B).

DPROD 90

Double precision real product.

Synopsis
DPROD (X, Y)
Arguments

Both arguments X and Y must be of type default real.

Return Value

The return value is a double precision real that is the product of X and Y.

EOSHIFT 90

Perform an end-off shift on the specified array.

Synopsis
EOSHIFT (ARRAY, SHIFT [,BOUNDARY] [,DIM])
Arguments

The argument ARRAY is the array to shift. It may be an array of any type. The argument SHIFT is
an integer or an array of integers with rank n-1 where n is the rank of ARRAY. The optional
argument BOUNDARY is of the same type as the array, it may be scalar or of rank n-1 where n is
the rank of ARRAY. The optional argument BOUNDARY is the value to fill in the shifted out
positions. By default it has the following values for integer 0, for real 0.0, for complex (0.0,0.0),
for logical false, for character the default is blank characters.

The optional argument DIM represents the dimension of ARRAY to shift.

Return Value

The shifted array with the same size and shape as the argument ARRAY.

210 Chapter 6

EPSILON 90

Return the smallest number representable in the kind of the supplied argument.

Synopsis
EPSILON (X)

Argument

The argument X must be of type real.

Return Value

A very small number in the specified real kind.

EQV § 77
Performs a logical exclusive NOR on the arguments.

Synopsis
COMPL (M, N)
Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

The return value is typeless.

EXP 77

Exponential function.

Synopsis
EXP (X)
Argument
The argument X must be of type real or complex.
Return Value

The value returned is of the same type as the argument. It has the value X .

Fortran Intrinsics 211

EXPONENT 90

Return the exponent part of a real number.

Synopsis
EXPONENT (X)
Argument

The argument X is a real number.

Return Value

The return value is an integer which has the value of the exponent part of the value of X. If the
exponent is zero, the function returns zero. If the exponent is too large to be defined as an integer,
the result is undefined.

FLOOR 90

Return the greatest integer less than or equal to the supplied real argument.

Synopsis
FLOOR (A [,KIND])
Argument

The argument A is a real value. The optional argument KIND is a kind parameter and was added to
FLOOR in Fortran 95.

Return Value

The return value is an integer. If KIND is present, the result is of type KIND.

FRACTION 90

Return the fractional part of a real number.

Synopsis

FRACTION (X)

212 Chapter 6

Argument

The argument X is a real number.

Return Value

The return value is an integer which has the value of the fractional part of the value of X. If the
fraction value is zero, the function returns zero.

HUGE 90

Return the largest number representable in the kind of the supplied argument.

Synopsis
HUGE (X)
Argument

The argument X must be of type integer or real.

Return Value

A value of the same type as the argument with the maximum value possible.

IACHAR 90

Returns the position of the character in the ASCII collating sequence.

Synopsis
IACHAR (C)
Argument

The argument C must be of type character.

Return Value

An integer representing the character position.

VAND) 77

Perform a bit-by-bit logical AND on the arguments.

Fortran Intrinsics 213

Synopsis
IAND (I, J)
Arguments

The arguments I and J must be of type integer of the same kind.

Return Value

The return value is an integer value representing a bit-by-bit logical AND of the bits in the two
integer arguments.

IBCLR 77

Clears one bit to zero.

Synopsis
IBCLR(I, POS)
Arguments

I is an integer. POS is a nonnegative integer less than BIT SIZE(I).

Return Value

The return value is of the same type as I with a value that is the same as I except the bit in
position POS is set to 0.

IBITS 77

Extracts a sequence of bits.

Synopsis
IBITS(I, POS, LEN)
Arguments

T is an integer. POS is a nonnegative integer and POS + LEN must be less than or equal to
BIT SIZE(I).LENis of type integer and is nonnegative.

Return Value

The return value is of the same type as I with a value that is the sequence of LEN bits in T
beginning at position POS, right-adjusted and with all other bits set to zero.

214 Chapter 6

IBSET 77

Set one bit to one.

Synopsis
IBSET (I, POS)

Arguments

I is an integer. POS is a nonnegative integer less than BIT SIZE(I).

Return Value

The return value is of the same type as I with a value that is the same as I except the bit in
position POS is set to 1.

ICHAR 90

Returns the position of a character in the character set's collating sequence.

Synopsis
ICHAR (C)
Argument

The argument C must be of type character and length one.

Return Value

An integer representing the character position.
IEOR 77
Perform a bit-by-bit logical exclusive OR on the arguments.

Synopsis

IEOR (I, J)

Fortran Intrinsics 215

Argument

The arguments I and J must be of type integer of the same kind.

Return Value

The return value is an integer value representing a bit-by-bit logical exclusive OR of the bits in the
two integer arguments.

IINT §77

Converts a value to a short integer type.

Synopsis
IINT (A)
Arguments

The argument A is of type integer, real, or complex.

Return Value

The return value is the short integer value of the supplied argument. For a real number, if the
absolute value of the real is less than 1, the return value is 0. If the absolute value is greater than 1,
the result is the largest short integer that does not exceed the real value. If argument is a complex
number, the return value is the result of applying the real conversion to the real part of the
complex number.

INDEX 90

Returns the starting position of a substring within a string.

Synopsis
INDEX (STRING, SUBSTRING [,BACK])
Arguments

The argument STRING must be of type character string. The argument SUBSTRING must be of
type character string with the same kind as STRING. The optional argument BACK must be of type
logical.

216 Chapter 6

Return Value

The function returns an integer. If BACK is absent or false, the result is the starting point of the
first matching SUBSTRING within STRING. Zero is returned if no match is found. 1 is returned if
the SUBSTRING has zero length.

If BACK is present with the value true, the result is the last matching substring in string, or zero if
no match is found.

ININT §77

Returns the nearest short integer to the real argument.

Synopsis
ININT (&)
Arguments

The argument A must be a real.

Return Value

The result is a short integer with value (A + .5 * SIGN(A)).

INT 77

Converts a value to integer type.

Synopsis
INT (A [,KIND])
Arguments

The argument A is of type integer, real, or complex. The optional argument KIND must be a scalar
integer that is a valid kind for the specified type. The KIND argument is not allowed by pgf77.

Return Value

The return value is the integer value of the supplied argument. For a real number, if the absolute
value of the real is less than 1, the return value is 0. If the absolute value is greater than 1, the
result is the largest integer that does not exceed the real value. If argument is a complex number,
the return value is the result of applying the real conversion to the real part of the complex
number.

Fortran Intrinsics 217

INT8 §77

Converts a real value to a long integer type.

Synopsis
INTS (A)

Arguments

The argument A is of type real.

Return Value

The return value is the long integer value of the supplied argument.

IOR 77

Perform a bit-by-bit logical OR on the arguments.

Synopsis
IOR(I, J)
Argument

The arguments I and J must be of type integer of the same kind.

Return Value

The return value is an integer value representing a bit-by-bit logical OR of the bits in the two
integer arguments.

ISHFT 77

Perform a logical shift.

Synopsis
ISHFT (I, SHIFT)
Arguments

I and SHIFT are integer values. The absolute value of SHIFT must be less than or equal to
BIT SIZE(I).

218 Chapter 6

Return Value

The return value is of the same type and kind as the argument I. It is the value of the argument I
logically shifted by SHIFT bits. If SHIFT is positive, the shift is to the left. If SHIFT is negative,
the shift is to the right. Zeroes are shifted in at the ends and the bits shifted out are lost.

ISHFTC 77

Perform a circular shift of the rightmost bits.

Synopsis
ISHIFTC(I, SHIFT [,SIZE])

Arguments

I and SHIFT are integer values. The absolute value of SHIFT must be less than or equal to the
optional argument SIZE. If present, SIZE must not exceed the value BIT SIZE(I);if SIZE is
not present, the function acts as if it were present with the value BIT SIZE(I) .

Return Value

The result is the value of the sub-group of STZE bits shifted by SHIFT positions within the sub-
group, all other bits remain the same and remain in the same position. If the STIZE argument is not
present, the circular shift is over the complete group of bits and all of the bits are shifted by
SHIFT positions. If SHIFT is positive, the shift is to the left. If SHIFT is negative, the shift is to
the right.

IZEXT 877
Zero-extend the argument.
Synopsis
IZEXT (A)
Arguments

The argument A is of type logical or integer.

Return Value

The return value is a zero-extended short integer of the argument.

Fortran Intrinsics 219

JINT §77

Converts a value to an integer type.

Synopsis
JINT (A)
Arguments

The argument A is of type integer, real, or complex.

Return Value

The return value is the integer value of the supplied argument. For a real number, if the absolute
value of the real is less than 1, the return value is 0. If the absolute value is greater than 1, the
result is the largest integer that does not exceed the real value. If argument is a complex number,
the return value is the result of applying the real conversion to the real part of the complex
number.

JNINT 8§77

Returns the nearest integer to the real argument.

Synopsis
JNINT (A)

Arguments

The argument A must be a real.

Return Value

The result is an integer with value (A + .5 * SIGN(A)).

KIND 90

Returns the kind of the supplied argument.

Synopsis
KIND (X)
Argument

The argument X is of any intrinsic type.

220 Chapter 6

Return Value

The result is an integer representing the kind type parameter of X.

KNINT §77

Returns the nearest integer to the real argument.

Synopsis
KNINT (A)
Arguments

The argument A must be a real.

Return Value

The result is a long integer with value (A + .5 * SIGN(A)).

LBOUND 90

Returns the lower bounds of an array, or the lower bound for the specified dimension.

Synopsis
LBOUND (ARRAY [,DIM])
Arguments

The argument ARRAY is an array of any type. The optional argument DIM is a scalar that has the
value of a valid dimension of the array (valid dimensions are between the values 1 and n where n
is the rank of the array).

Return Value

The return value is an integer, or an array of rank one and size n, where n is the rank of the
argument ARRAY. For the function with a DIM argument, the return value is the value of the lower
bound in the specified dimension. For the function with no DIM supplied, the return value is an
array with all the lower bounds of ARRAY.

Fortran Intrinsics 221

LEN 90

Returns the length of the supplied string.

Synopsis
LEN (STRING)

Argument

The argument STRING is a character string or an array.

Return Value

The return value is an integer that represents the length of the scalar string supplied, or the length
of an element of STRING if STRING is an array.

LEN_TRIM 90

Returns the length of the supplied string minus the number of trailing blanks.

Synopsis
LEN TRIM(STRING)
Arguments

The argument STRING is a character string.

Return Value
The return value is an integer that represents the length of the scalar string minus the number of
trailing blanks, if any.

LGE 90

Test the supplied strings to see if the first string STRING A is lexically greater than or equal to
the second string STRING_B. A string is lexically greater than another string if the first string
follows the second string alphabetically.
Synopsis

LGE (STRING_A, STRING B)
Argument

The arguments STRING A and STRING B are of type default character.

222 Chapter 6

Return Value

The function returns a logical value. If the strings are not of the same length, the shorter string is
padded with blanks on the right.

LGT 90

Test the supplied strings to see if the first string STRING_A is lexically greater than the second
string STRING_B. A string is lexically greater than another string if the first string follows the
second string alphabetically.

Synopsis
LGT (STRING A, STRING B)

Argument

The arguments STRING A and STRING_B are of type default character.

Return Value

The function returns a logical value. If the strings are not of the same length, the shorter string is
padded with blanks on the right.

LLE 90

Test the supplied strings to see if the first string STRING_A is lexically less than or equal to the
second string STRING_B. A string is lexically less than another string if the first string precedes
the second string alphabetically.

Synopsis
LLE (STRING A, STRING B)

Argument

The arguments STRING A and STRING_B are of type default character.

Return Value

The function returns a logical value. If the strings are not of the same length, the shorter string is
padded with blanks on the right.

Fortran Intrinsics 223

LLT 90

Test the supplied strings to see if the first string STRING_A is lexically less than the second
string, STRING_B. A string is lexically less than another string if the first string precedes the
second string alphabetically.
Synopsis

LLT (STRING A, STRING B)
Argument

The arguments STRING A and STRING_B are of type default character.

Return Value

The function returns a logical value. If the strings are not of the same length, the shorter string is
padded with blanks on the right.

LOC 17
Return the 32-bit address of a data item.

Synopsis
LOC (X)
Argument

The argument X is of type integer, real or complex.

Return Value

The return value is an integer representing the address of the argument.

LOG 77

Function returns the natural logarithm.

Synopsis

LOG (X)

224 Chapter 6

Argument
The argument X is of type real or complex. If X is real, it must be greater than 0. If X is complex, it

must not be equal to zero.

Return Value

The return value is the natural log (base €) of X.

LOG10 77

Function returns the common logarithm.

Synopsis
LOG10 (X)
Argument

The argument X is of type real and must be greater than 0.

Return Value

The return value is the common log (base 10) of X.

LOGICAL 90

Convert a logical value to the specified logical kind.

Synopsis
LOGICAL(L [,KIND])
Arguments
The argument L is the logical value to convert. The optional argument KIND must be a scalar
integer that is a valid kind for the specified type.
Return Value

Returns a logical value equal to the logical value L. If KIND is specified, the kind type parameter
of the return value is that of KIND, otherwise it is default logical.

Fortran Intrinsics 225

LSHIFT 8§77

Perform a logical shift to the left.

Synopsis
LSHIFT (I, SHIFT)
Arguments

I and SHIFT are integer values.

Return Value

The return value is of the same type and kind as the argument I. It is the value of the argument T
logically shifted left by SHIFT bits.

MATMUL 90

Perform a matrix multiply of numeric or logical matrices.

Synopsis
MATMUL (MATRIX A, MATRIX B)

Arguments

The argument MATRIX A must be numeric (integer, real, or complex) or logical, and have a rank
of one or two. The argument MATRIX B must be numeric (integer, real, or complex) or logical,
and have a rank of one or two. f MATRIX A has rank one, then MATRIX B must have rank 2. If
MATRIX B has rank one, then MATRIX A must have rank 2. The size of the first dimension of
MATRIX B must equal the size of the last dimension of MATRIX A.

Return Value

A matrix representing the value of the matrix multiplied arguments. There are three possible result
shapes: MATRIX A(n,m) and MATRIX B (m, k) gives aresult (n, k) matrix. MATRIX A (m)
and MATRIX B (m, k) givesaresult (k), MATRIX A(n,m) and MATRIX B (m) givesa
result (n) .

226 Chapter 6

MAX 77

Return the maximum value of the supplied arguments.

Synopsis
MAX(Al, A2 [,A3,...])
Arguments
Any arguments after the first two are optional. The arguments must all have the same kind and
they must be integer or real.
Return Value

The return value is the same as the type and kind of the arguments. It has the value of the largest
argument.

MAXEXPONENT 90

Returns the value of the maximum exponent for the type and the kind supplied.

Synopsis
MAXEXPONENT (X)

Argument

The argument X must be a scalar or an array of type real.

Return Value

The return value is an integer. It contains the value of the largest exponent in the specified kind.

MAXLOC 90

Determine the first position in the specified array that has the maximum value of the values in the
array. The test elements may be limited by a dimension argument or by a logical mask argument.
Synopsis

MAXLOC (ARRAY [,DIM] [,MASK])
Arguments

The argument ARRAY must be an array of type integer or real. The optional argument DIM, added
in Fortran 95, is of type integer. The optional argument MASK must be of type logical and must

Fortran Intrinsics 227

have the same shape as ARRAY. If only two arguments are supplied, the type of the second
argument is used to determine if it represents DIM or MASK.

Return Value

The return value is an integer array of rank 1with size equal to the number of dimensions in
ARRAY. The return values represent the positions of the first element in each dimension that is the
maximum value of that dimension.

If the MASK parameter is present, the return value is the position of the first value that has the
maximum value of values in ARRAY, and that also has a true value in the corresponding MASK
array.

When the DIM argument is supplied, the return value is an array that has a value of MAXLOC
applied recursively along the DIM dimensions of the array.

MAXVAL 90

Return the maximum value of the elements of the argument array. The test elements may be
limited by a dimension argument or by a logical mask argument.

Synopsis
MAXVAL (ARRAY [,DIM] [,MASK])

Arguments

The argument ARRAY must be an array of type integer or real. The optional argument DIM is a
scalar that has the value of a valid dimension of the array (valid dimensions are between the values
1 and n where n is the rank of the array). The optional argument MASK must be of type logical and
must have the same shape as ARRAY. Fortran 95 has extended MAXVAL such that if only two
arguments are supplied, the type of the second argument is used to determine if it represents DIM
or MASK.

Return Value
The return value is a scalar if no DIM argument is present, or has a rank of n-1 and has a shape
specified by all of the dimensions except the DIM argument dimension.

The return value is the value of the largest element of the array if no optional parameters are
supplied. If only the MASK parameter is supplied with the array, then the return value is the value
that is the maximum of the true elements of MASK.

When the DIM argument is supplied, the return value is an array that has a value of MAXVAL
applied recursively along the DIM dimensions of the array.

228 Chapter 6

MERGE 90

This function merges two arguments based on the value of a logical mask.

Synopsis
MERGE (TSOURCE, FSOURCE, MASK)

Arguments

TSOURCE is the source that is merged if the mask is true. FSOURCE is the source that is merged if
the mask is false. TSOURCE and FSOURCE must be of the same type and must have the same type
parameters (if they are arrays they must be conformable). MASK must be of type logical.

Return Value

The result has the same type and type parameters as the source arrays.

MIN 77

Return the minimum value of the supplied arguments.

Synopsis
MIN (A1, A2 [,A3,...])
Arguments

Any arguments after the first two are optional. The arguments must all have the same kind and
they must be integer or real.

Return Value

The return value is the same as the type and kind of the arguments. It has the value of the smallest
argument.

MINEXPONENT 90

Returns the value of the minimum exponent for the type and the kind supplied.

Synopsis

MINEXPONENT (X)

Fortran Intrinsics 229

Argument

The argument X has type real and may be a scalar or an array.

Return Value

The return value is an integer. It contains the value of the smallest exponent in the specified kind.

MINLOC 90

Return the position of the element with the minimum value of the elements of the argument array.
The test elements may be limited by a dimension argument or by a logical mask argument.
Synopsis

MINLOC (ARRAY [,DIM] [,MASK])
Arguments

The argument ARRAY must be an array of type integer or real. The optional argument DIM, added
in Fortran 95, is of type integer. The optional argument MASK must be of type logical and must
have the same shape as ARRAY. If only two arguments are supplied, the type of the second
argument is used to determine if it represents DIM or MASK.

Return Value

The return value is an integer array of rank 1 and has a size equal to the number of dimensions in
ARRAY. The return value is the position of the first element that is the minimum value of the array.

If the MASK parameter is present, the return value is the position of the first value that has the
minimum value of values in ARRAY, and that also has a true value in the corresponding MASK
array.

When the DIM argument is supplied, the return value is an array that has a value of MINLOC
applied recursively along the DIM dimensions of the array.

MINVAL 90

Return the minimum value of the elements of the argument array. The test elements may be
limited by a dimension argument or by a logical mask argument.

Synopsis

MINVAL (ARRAY [,DIM] [,MASK])

230 Chapter 6

Arguments

The argument ARRAY must be an array of type integer or real. The optional argument DIM is a
scalar that has the value of a valid dimension of the array (valid dimensions are between the values
1 and n where n is the rank of the array). The optional argument MASK must be of type logical and
must have the same shape as ARRAY. Fortran 95 has extended MINVAL such that if only two
arguments are supplied, the type of the second argument is used to determine if it represents DIM
or MASK.

Return Value

The return value is a scalar if no DIM argument is present, or has a rank of n-1 and has a shape
specified by all of the dimensions except the DIM argument dimension.

The return value is the value of the largest element of the array if no optional parameters are
supplied. If only the MASK parameter is supplied with the array, then the return value is the value
that is the minimum of the true elements of MASK.

When the DIM argument is supplied, the return value is an array that has a value of MINVAL
applied recursively along the DIM dimensions of the array.

MOD 77

Find the remainder.

Synopsis
MOD (A, P)
Arguments

The argument A must be an integer or a real. The argument P must be of the same type and kind as
A.

Return Value

The return value is the same type as the argument A and has the value (A - INT(A/P) * P).

MODULO 90

Return the modulo value of the arguments.

Synopsis

MODULO (A, P)

Fortran Intrinsics 231

Arguments

The argument A must be an integer or a real. The argument P must be of the same type and kind as
A.

Return Value

The return value is the same type as the argument A. If A and P are of type real, the result is (A —
FLOOR(A/P) * P). If A and P are of type integer, the result is (A — FLOOR(A+P) * P) where +
represents ordinary mathematical division.

MVBITS 90

Copies a bit sequence from a source data object to a destination data object.

Synopsis

MVBITS (FROM, FROMPOS, LEN, TO, TOPOS)
Arguments
All arguments have type integer. The arguments FROMPOS, LEN , and TOPOS must be
nonnegative. The TO argument must be a variable of type integer and have the same kind type
parameter as the FROM argument.
Return Value

MVBITS is a subroutine and has no return value; instead, the TO argument is modified. LEN bits
starting at FROMPOS in FROM are copied to TO at TOPOS. All other bits of TO remain unchanged.

NEAREST 90

Returns the nearest different machine representable number in a given direction.

Synopsis
NEAREST (X, S)
Arguments

The argument X is a real number. The argument S is a real number and not equal to zero.

Return Value

The return value is of the same type as X. It contains the value that is the closest possible different
machine representable number from X in the direction given by the sign of S.

232 Chapter 6

NEQV § 77
Performs a logical exclusive OR on the arguments.

Synopsis
COMPL (M, N)
Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

The return value is typeless.

NN 77

Returns the nearest integer to the real argument.

Synopsis
NINT (A [,KIND])
Arguments
The argument A must be a real. The optional argument KIND specifies the kind of the result
integer.
Return Value

The result is an integer. If A > 0, NINT (A) has the value is INT (A+0.5) . If A is less than or
equal to 0, NINT (A) has the value INT (A-0.5).

NOT 77

Perform a bit-by-bit logical complement on the argument.

Synopsis
NOT (I)
Argument

The argument I must be of type integer.

Fortran Intrinsics 233

Return Value

The return value is an integer value representing a bit-by-bit logical complement of the bits in the
argument.

NULL 95

Fortran 95 added this transformational function. NULL gives the disassociated status to pointer
entities. For a more detailed explanation, refer to Fortran 95 Explained.

Synopsis
NULL ([PTR])

Arguments

The optional argument PTR is a pointer of any type and may have any association status including
undefined.

Return Value

The return value is a disassociated pointer.

OR 8§77

Performs a logical OR on each bit of the arguments.

Synopsis
OR (M, N)
Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

The return value is typeless.

PACK 90

Pack an array of any number of dimensions into an array of rank one.

Synopsis

PACK (ARRAY, MASK [,VECTOR])

234 Chapter 6

Arguments

The ARRAY argument is the array to be packed and may be of any type. The MASK argument is of
type logical and must be conformable with ARRAY. The optional argument VECTOR is of the same
type as ARRAY and has rank one.

Return Value

The return value is the packed array limited by the logical values in the array MASK. If VECTOR is
present its values are part of the result array only for those elements that have an element order
greater than the number of true elements in MASK. For further details, refer to the Fortran 95
Handbook.

PRECISION 90

Return the decimal precision of the real or complex argument.

Synopsis
PRECISION (X)

Argument

The argument X must be a real or complex number.

Return Value

The return value is an integer representing the decimal precision of the argument.

PRESENT 90

Determine if an optional argument is present.

Synopsis
PRESENT (A)

Argument

The argument A must be an optional argument in the procedure in which the intrinsic is called.

Return Value

A logical scalar. True if A is present and false otherwise.

Fortran Intrinsics 235

PRODUCT 90

Returns the product of the elements of the supplied array.

Synopsis
PRODUCT (ARRAY [,DIM] [,MASK])
Arguments

The ARRAY argument is an array of integer, real or complex type. The optional DIM argument is a
valid dimension (valid dimensions are between the values 1 and n where n is the rank of the array).
The optional MASK argument is of type logical and conformable with the supplied array. Fortran
95 has extended PRODUCT such that if only two arguments are supplied, the type of the second
argument is used to determine if it represents DIM or MASK.

Return Value

The return value is the product of the elements of ARRAY. If the optional DIM argument is
present, the product is for the specified dimension. If the optional MASK argument is present, the
result is subject to the logical mask supplied.

RADIX 90

Return the base of the model representing numbers of the type and kind of the argument.

Synopsis
RADIX (X)
Argument

The argument X is of type integer or real.

Return Value

The return value is an integer with the value of the radix (base) of the number system model of the
argument.

236 Chapter 6

RANDOM_NUMBER 90

Returns one pseudorandom number or an array of pseudo-random numbers from the uniform
distribution over the range 0 <x < 1.

Synopsis
RANDOM NUMBER (HARVEST)
Argument

The argument HARVEST must of type real. It is set to contain the resulting pseudorandom number
or array of pseudorandom numbers from the uniform distribution.

Return Value

RANDOM_NUMBER is a subroutine.

Description

The random number intrinsic generates a 46 bit lagged fibonacci pseudo-random sequence with a
short lag of 5 and a long lag of 17. For a given seed, including the default seed, the sequence
generated is independent of the platform and number of processors. Due to limitations of some
platforms' default integer type, the seed vector is of size 34. Only the least significant 23 bits of
each element of the seed array are used, thus a seed array returned or used is portable between

platforms. For non-degenerate seed arrays, the period of this generator is (217 -1)* 2435 If all the
odd elements of the seed array are even, the period will be shorter.

For the PGHPF compiler, the best performance on distributed arrays is for block distributions. The
higher the order of the first distributed dimension, the better the performance will be.

RANDOM_SEED 90

Restarts or queries the pseudorandom number generator for RANDOM NUMBER.

Synopsis
RANDOM SEED([SIZE] [,PUT] [,GET])
Arguments

The arguments SIZE, PUT and GET are optional. There must be one or no arguments. Multiple
arguments are not allowed. SIZE is an integer value representing the number of integers that the
processor uses to hold the value of the seed. PUT is an integer array of rank one and is used to set
the seed. GET is an integer array of rank one and is used to get the value of the seed.

Fortran Intrinsics 237

Return Value

RANDOM_SEED is a subroutine.

RANGE 90

Return the decimal exponent range for the type of number supplied as an argument.

Synopsis
RANGE (X)
Argument

The argument X must be of type integer, real, or complex.

Return Value

The result is an integer.

REAL 77

Convert the argument to real.

Synopsis
REAL (A [,KIND])
Arguments
The argument A must be of type integer, real, or complex. The optional argument KIND specifies
the kind type of the result.
Return Value

The result is a real number. For a complex argument, the imaginary part is ignored.

238 Chapter 6

REPEAT 90

Concatenate copies of a string.

Synopsis
REPEAT (STRING, NCOPIES)
Arguments

The argument STRING must be a scalar of type character. The argument NCOPIES is an integer.

Return Value

The return value is a character string that is NCOPIES times as long as STRING. It is the
concatenation of STRING NCOPIES times.

RESHAPE 90

Reconstructs an array with the specified shape using the elements of the source array.

Synopsis
RESHAPE (SOURCE, SHAPE [,PAD] [,ORDER])
Arguments

The argument SOURCE is an array of any type. The argument SHAPE is of type integer and has
rank one. It must not have more than 7 elements and no values can be negative. The optional
argument PAD must be the same size and type as SOURCE. The optional argument ORDER must be
of type integer and must have the same shape as SHAPE.

Return Value

The return value is an array of shape SHAPE, with the same type as SOURCE. Array elements are
filled into the new array in array element order.

RRSPACING 90

Return the reciprocal of the relative spacing of model numbers near the argument value.

Synopsis

RRSPACING (X)

Fortran Intrinsics 239

Argument

The argument X is of type real.

Return Value

Returns a value of the same type as X.

RSHIFT 8§77

Perform a logical shift to the right.

Synopsis
RSHIFT (I, SHIFT)

Arguments

T and SHIFT are integer values.

Return Value

The return value is of the same type and kind as the argument I. It is the value of the argument T
logically shifted right by SHIFT bits.

SCALE 90

Return the value X * bl where b is the base of the number system in use for X.

Synopsis
SCALE (X, I)
Arguments

The argument X is of type real. The argument I is an integer.

Return Value

The result is a real value of the same type as the argument X.

SCAN 90

Search the supplied string for a character in a set of characters.

240 Chapter 6

Synopsis

SCAN (STRING, SET [,BACK])
Arguments
The argument STRING is of type character and is the string to search. The argument SET is of
type character and has the same kind type parameter as STRING. The optional argument BACK is
of type logical.
Return Value

The result value is an integer specifying the position in STRING of a character from SET. If the
optional parameter BACK is not present, or is present and false, the result is the position of the
first character found. If BACK is present and true, the return value is that of the last character in
STRING matching one in SET.

SELECTED INT_KIND 90

Returns a value that is the kind type parameter that will represent a number in the specified range,
where the range is determined by the formula -10R <n < 10R, where n is an integer and R is the

argument.
Synopsis
SELECTED INT KIND (R)

Argument

The argument R must be of type integer.

Return Value

The return value is an integer. If the value R is invalid, the return value is -1.

SELECTED REAL_KIND 90

Returns a value that is the kind type parameter that will represent a number in the specified range,
where the range is determined with decimal precision P and a decimal exponent range of at least
R.

Synopsis

SELECTED REAL KIND([P] [,R])

Fortran Intrinsics 241

Arguments

The arguments are both optional, but at least one of the optional arguments must be present. The
argument P must be of type integer and specifies a precision. The argument R must be of type
integer and specifies a range.

Return Value

The return value is an integer.

SET_EXPONENT 90

Returns the model number whose fractional part is the fractional part of the model representation
of X and whose exponent part is I .
Synopsis

SET_EXPONENT (X, I)

Arguments

The argument X is of type real. The argument I is of type integer.

Return Value

The result has the type of the argument X.

SHAPE 90

Returns the shape of the supplied argument.

Synopsis
SHAPE (SOURCE)
Arguments

The argument SOURCE is a scalar or an array of any type.

Return Value

The result is an array whose size is equal to the rank of SOURCE and whose values represent the
shape of SOURCE.

242 Chapter 6

SHIFT 8§77

Perform a logical shift.

Synopsis
RSHIFT (I, SHIFT)
Arguments
The argument I may be of any type except character or complex. The argument SHIFT is of type
integer.
Return Value

The return value is typeless. If SHIFT is positive, the result is I logically shifted left by SHIFT
bits. If SHIFT is negative, the result is I logically shifted right by SHIFT bits.

SIGN 77

Return the absolute value of A times the sign of B.

Synopsis
SIGN (A, B)
Arguments

The argument A is an integer or real number. The argument B must be of the same type as A.

Return Value

The result is the value of the absolute value of A times the sign of B and has the same type as A. If
B is zero, its sign is taken as positive. Fortran 95 allows for a distinction to be made between
positive and negative real zeroes. In this case, if B is a real zero, its sign is positive if it is a
positive real zero or if the processor cannot distinguish between positive and negative real zeroes.

SIN 77
Return the value of the sine of the argument.

Synopsis

SIN(X)

Fortran Intrinsics 243

Argument

The argument X must be of type real or complex.

Return Value

The return value has the same type as X and is expressed in radians.

SIND 77

Return the value in degrees of the sine of the argument.

Synopsis
SIND (X)
Argument

The argument X must be of type real or complex.

Return Value

The return value has the same type as X and is expressed in degrees.

SINH 77

Return the hyperbolic sine of the argument.

Synopsis
SINH (X)
Argument

The argument X must be of type real.

Return Value

The return value has the same type as X.

SIZE 90

Returns either the total number of elements in the array or the number of elements along a
specified dimension.

244 Chapter 6

Synopsis

SIZE (ARRAY [,DIM])
Arguments
The argument ARRAY is an array of any type. The optional DIM argument must be a valid
dimension (valid dimensions are between the values 1 and n where n is the rank of the array).
Return Value

The result value is an integer. If DIM is absent, the function returns the total number of elements
in the array. If DIM is present, the function returns the extent of the array in the specified
dimension.

SPACING 90

Returns the spacing of model numbers near the argument.

Synopsis
SPACING (X)

Arguments

The argument X is of type real.

Return Value

The return value has the same type and kind as X.

SPREAD 90

Replicates an array by adding a new dimension.

Synopsis
SPREAD (SOURCE, DIM, NCOPIES)
Arguments

The argument SOURCE may be of any type with rank less than 7. The DIM argument is a scalar
integer representing a valid dimension (valid dimensions are between the values 1 and n where n is
the rank of the array). The argument NCOPIES must be scalar and of type integer.

Fortran Intrinsics 245

Return Value

The return value is an array of the same type as the SOURCE, with rank n+1 where n is the rank of
SOURCE.

SORT 77

Return the square root of the argument.

Synopsis
SQRT (X)
Arguments

The argument X must be a real or complex number.

Return Value

The result is of the same type as the argument.

SUM 90

Returns the sum of the elements of the supplied array.

Synopsis
SUM (ARRAY [,DIM] [,MASK])
Arguments

The ARRAY argument is an array of integer, real or complex type. The optional DIM argument is a
valid dimension (valid dimensions are between the values 1 and n where n is the rank of the array).
The optional MASK argument is of type logical and conformable with the supplied array. Fortran
95 has extended SUM such that if only two arguments are supplied, the type of the second
argument is used to determine if it represents DIM or MASK.

Return Value

The return value is the sum of the elements of the argument ARRAY. If the optional DIM argument
is present, the sum is for the specified dimension. If the optional MASK argument is present, the
result is subject to the logical mask supplied.

246 Chapter 6

SYSTEM_CLOCK 90

Returns information about the real time clock.

Synopsis
SYSTEM CLOCK ([COUNT] [,COUNT RATE] [,COUNT_MAX])

Arguments

The optional argument COUNT is a scalar integer that provides the current count of the system
clock when the subroutine is called. The optional argument COUNT RATE is a scalar integer that
provides the number of clock ticks per second. The optional argument COUNT MAX is a scalar
integer that provides the value of the maximum count possible.

The number of tics per second is always 1000. This routine is implemented on most systems using
gettimeofday (2); some implementations use dclock (3).

Return Value

The arguments of this subroutine are modified during the call; there is no return value.

TAN 77

Return the tangent of the specified value.

Synopsis
TAN (X)
Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

A real value of the same KIND as the argument.

TAND 77
Return the tangent of the specified value.

Synopsis

TAND (X)

Fortran Intrinsics 247

Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

A real value of the same KIND as the argument.

TANH 77

Return the hyperbolic tangent of the specified value.

Synopsis
TANH (X)
Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

A real value of the same KIND as the argument.

TINY 90

Return the smallest positive number representable in the kind of the supplied argument.

Synopsis
TINY (X)
Argument

The argument X must be of type real.

Return Value

The return value is the smallest positive number in the number system and has the same type as the
argument X.

TRANSFER 90

Return a value that has the same bit representation as the source but with a different type.

248 Chapter 6

Synopsis
TRANSFER (SOURCE, MOLD [,SIZE])
Arguments
The arguments SOURCE and MOLD may be scalars or arrays of any type. The optional argument
SIZE must be a scalar and of type integer.
Return Value

The return value has the type of the MOLD argument. If SIZE is present, the result is a rank-one
array of size SIZE. If SIZE is not present, the result is a scalar if MOLD is a scalar and a rank-one
array if MOLD is an array. Refer to The Fortran 95 Handbook for more details on the TRANSFER
intrinsic.

TRANSPOSE 90

Transpose an array of rank two.

Synopsis
TRANSPOSE (MATRIX)

Arguments

The argument MATRIX is a two-dimensional array of any type.

Return Value

The result is a transformed matrix with the same type as MATRIX and dimensions (m,n) where
matrix MATRIX has dimensions (n,m).

TRIM 90

Remove the trailing blanks from a string.

Synopsis
TRIM (STRING)

Arguments

The argument STRING is the string to be adjusted and must be a scalar.

Fortran Intrinsics 249

Return Value

The return value is the same as the argument but with the trailing blanks removed. The size of the
returned string is the size of the argument STRING minus the number of trailing blanks in
STRING.

UBOUND 90

Returns the upper bounds of an array or the upper bound for the specified dimension.

Synopsis
UBOUND (ARRAY [,DIM])
Arguments

The argument ARRAY is an array of any type. The optional argument DIM is a scalar that has the
value of a valid dimension of the array (valid dimensions are between the values 1 and n where n
is the rank of the array).

Return Value

The return value is an integer or an array of rank one and size n, where n is the rank of the
argument ARRAY. If DIM is not supplied, the return value is an array with all the upper bounds for
ARRAY. If DIM is provided, the return value is the value of the upper bound in the specified
dimension.

UNPACK 90

Unpack an array of rank one dimension into an array of any number of dimensions.

Synopsis
UNPACK (VECTOR, MASK, FIELD)
Arguments

The VECTOR argument is an array of any type and of rank one. It must have as many elements as
there are true elements in MASK. The MASK argument is of type logical array. The FIELD
argument must be the same type as VECTOR and must be conformable with MASK.

Return Value

The result array has the same type as VECTOR and the shape of MASK. For further details and
information on the FIELD argument, refer to The Fortran 95 Handbook.

250 Chapter 6

VERIFY 90

Verify that a character string contains all characters from a set of characters.

Synopsis
VERIFY (STRING, SET [,BACK])
Arguments
The arguments STRING and SET are of type character. The optional argument BACK is of type
logical.
Return Value

The return value is an integer. The function returns the position of the first (or last) character that
is not in the set. BACK is a logical that determines if the first or last character position is returned.
If BACK is present and true, the position of the right-most character is returned. If BACK is not
present or present and false, the position of the left-most character is returned.

XOR 8§77

Performs a logical exclusive OR on each bit of the arguments.

Synopsis
XOR (M, N)
Arguments

The arguments M and N must be of integer type.

Return Value

The return value is an integer type.

ZEXT 8§77
Zero-extend the argument.
Synopsis
ZEXT (B)
Arguments

The argument A is of type logical or integer.

Fortran Intrinsics 251

Return Value

The return value is an integer.

6.3

Supported HPF Intrinsics

The following table lists the HPF intrinsics and Library procedures supported by the PGHPF
compiler. Refer to the man pages supplied with the PGHPF software for further details on these
intrinsics and procedures. Refer to Chapter 9 of this manual for the HPF_L IBRARY_LOCAL
routines.

Table 6.8: HPF Intrinsics and Library Procedures

Intrinsic

Class

252

ALL_PREFIX
ALL_SCATTER
ALL_SUFFIX
ANY_PREFIX
ANY_SCATTER
ANY_SUFFIX
COPY_PREFIX
COPY_SCATTER
COPY_SUFFIX
COUNT_PREFIX
COUNT_SCATTER
COUNT_SUFFIX
GRADE_DOWN
GRADE_UP
HPF_ALIGNMENT
HPF_DISTRIBUTION
HPF_TEMPLATE
TALL
TALL_PREFIX
IALL_SCATTER
TALL_SUFFIX
TANY

Transformational function
Transformational function
Transformational function
Transformational function
Transformational function
Transformational function
Transformational function
Transformational function
Transformational function
Transformational function
Transformational function
Transformational function
Transformational function

Transformational function

Mapping inquiry subroutine
Mapping inquiry subroutine
Mapping inquiry subroutine

Transformational function
Transformational function
Transformational function
Transformational function

Transformational function

Chapter 6

Intrinsic

Class

TANY_PREFIX
IANY_SCATTER
TANY_SUFFIX
ILEN

IPARITY
IPARITY_PREFIX
IPARITY_SCATTER
IPARITY_SUFFIX
LEADZ

MAXLOC
MAXVAL_PREFIX
MAXVAL_SCATTER
MAXVAL_SUFFIX
MINLOC
MINVAL_PREFIX
MINVAL_SCATTER
MINVAL_SUFFIX

NUMBER_OF _PROCESSORS

PARITY
PARITY_PREFIX
PARITY_SCATTER
PARITY_SUFFIX
POPCNT

POPPAR
PROCESSORS_SHAPE
PRODUCT_PREFIX
PRODUCT_SCATTER
PRODUCT_SUFFIX
SUM_PREFIX
SUM_SCATTER

Fortran Intrinsics

Transformational function
Transformational function
Transformational function
Elemental Intrinsic

Transformational function
Transformational function
Transformational function
Transformational function

Elemental function

Transformational function Intrinsic

Transformational function
Transformational function

Transformational function

Transformational function Intrinsic

Transformational function
Transformational function
Transformational function
System Inquiry function Intrinsic
Transformational function
Transformational function
Transformational function
Transformational function
Elemental function

Elemental function

System Inquiry function Intrinsic
Transformational function
Transformational function
Transformational function
Transformational function

Transformational function

253

Intrinsic Class
SUM_SUFFIX Transformational function

6.4 CM Fortran Intrinsics 8

This section provides information on CM Fortran intrinsics. The PGHPF compiler option —-Mcmf
provides limited support for CM Fortran compatibility (Thinking Machines Corporation version of
Fortran). This includes support for the intrinsics DOTPRODUCT, DLBOUND, DUBOUND, and
DSHAPE which have calling sequences identical to their Fortran 90/95 counterparts. It also
includes support for the CM Fortran method of using square brackets in the definition of array
constructors and the use of the ARRAY keyword in place of the Fortran 90/95 standard
DIMENSION keyword.

There are three CM Fortran intrinsics which have names identical to their Fortran 90/95
counterparts but whose calling sequences differ. These are CSHIFT, EOSHIFT, and RESHAPE; their
descriptions follow.

If PGHPF is invoked with the compiler switch -Mcmf these three intrinsics will be interpreted
using the CM Fortran convention rather than the standard Fortran 90/95 convention. There are 6
additional non-standard intrinsics in CM Fortran: PROJECT, LASTLOC, FIRSTLOC, RANK,
DIAGONAL, and REPLICATE. These non-standard intrinsics are not supported by PGHPF.
Other features of CM Fortran that are not supported are the layout directives and the utility
routines.

CSHIFT 8

Perform a circular shift on the specified array.

Synopsis
CSHIFT (ARRAY, DIM, SHIFT)
Arguments

The argument ARRAY is the array to shift. It may be an array of any type. The argument DIM is an
integer representing the dimension to shift. The argument SHIFT is an integer or an array of
integers with rank n-1 where n is the rank of ARRAY.

Return Value

The shifted array with the same size and shape as the argument ARRAY.

254 Chapter 6

EOSHIFT 8

Perform an end-off shift on the specified array.

Synopsis
CSHIFT (ARRAY, DIM, SHIFT, BOUNDARY)
Arguments

The argument ARRAY is the array to shift. It may be an array of any type. The argument DIM is an
integer representing the dimension to shift. The argument SHIFT is an integer or an array of
integers with rank n-1 where n is the rank of ARRAY. The optional argument BOUNDARY is of the
same type as the array, it may be scalar or of rank n-1 where n is the rank of ARRAY. BOUNDARY
is the value to fill in the shifted out positions. By default it has the following values for integer, 0,
for real, 0.0, for complex, (0.0,0.0), for logical false, for character the default is blank characters.

Return Value

The shifted array with the same size and shape as the argument ARRAY.

RESHAPE 8

Reconstructs an array with the specified shape using the elements of the source array.

Synopsis
RESHAPE (SHAPE, SOURCE [,PAD] [,ORDER])
Arguments

The argument SHAPE is of type integer, rank one. It must not have more than 7 elements and no
values can be negative. The argument SOURCE is an array of any type. The optional argument
PAD must be the same size and type as SOURCE. The optional argument ORDER must be of type
integer and must have the same shape as SHAPE.

Return Value

The return value is an array of shape SHAPE, with the same type as SOURCE. Array elements are
filled into the new array in array element order.

Fortran Intrinsics 255

7 3F Functions and VAX Subroutines

This chapter describes FORTRAN 77 3F functions and VAX/VMS system subroutines and built-in
functions supported by the PGI Fortran compilers.

7.1 3F Routines

This section describes the functions and subroutines in the Fortran run-time library which are known as
3F routines on many systems. These routines provide an interface from Fortran programs to the system
in the same manner as the C library does for C programs. These functions and subroutines are
automatically loaded from the PGI 's Fortran run-time library if referenced by a Fortran program.

The implementation of many of the routines uses functions which reside in the C library. If a C library
does not contain the necessary functions, undefined symbol errors will occur at link-time. For example,
if PGI’s C library is the C library available on the system, the following 3F routines exist in the Fortran
run-time library but use of these routines will result in errors at link-time:

besjo dbesyn

besj1 derf

besjn derfc

besy0 erf

besyl erfc

besyn getlog

dbesjO hostnm

dbesjl Istat

dbesjn putenv

dbesy0 symlnk

dbesyl ttynam

e The routines mclock and times depend on the existence of the C function times().

3F Functions and VAX Subroutines 257

e The routines dtime and etime are only available in a SYSVR4 environment. These routines are
not available in all environments simply because there is no standard mechanism to resolve
the resolution of the value returned by the times() function.

e There are several 3F routines (for example, fputc and fgetc) which perform I/O on a logical
unit. These routines bypass normal Fortran I/O. If normal Fortran I/O is also performed on a
logical unit which ears in any of these routines, the results are unpredictable.

Terminate abruptly and write memory image to core file.
Synopsis

subroutine abort ()

Description

abort cleans up the 1/O buffers and then aborts, producing a core file in the current directory.

access

Determine access mode or existence of a file.

Synopsis
integer function access(fil, mode)
character* (*) fil
character* (*) mode

Description

The access function if the file, whose name is fil , for accessibility or existence as determined by mode.

The mode argument may include, in any order and in any combination, one or more of:

r test for read permission
w test for write permission
X test for execute permission

258 Chapter 7

(blank) test for existence

An error code is returned if either the mode argument is illegal or if the file cannot be accessed in all of
the specified modes. Zero is returned if the specified access is successful.

alarm

Execute a subroutine after a specified time.

Synopsis
integer function alarm(time, proc)
integer time
external proc

Description

This routine establishes subroutine proc to be called after time seconds. If time is 0, the alarm is turned
off and no routine will be called. The return value of alarm is the time remaining on the last alarm.

Bessel functions

These functions calculate Bessel functions of the first and second kinds for real and double precision
arguments and integer orders.

besjo besjl
besjn besy0
besyl besyn

dbesjo dbesjl

dbesijn dbesy0

dbesyl dbesyn
Synopsis

real function besjo0 (x)
real x

real function besjl (x)
real x

3F Functions and VAX Subroutines 259

real function besjn(n, x)
integer n
real x

real function besy0 (x)
real x

real function besyl (x)
real x

real function besyn(n, x)
integer n
real x

double precision function dbesjo (x)
double precision x

double precision function dbesjl (x)
double precision x

double precision function dbesjn(n, x)
integer n
double precision x

double precision function dbesy0 (x)
double precision x

double precision function dbesyl (x)
double precision x

double precision function dbesyn(n, x)
integer n
double precision x

Change default directory.
Synopsis

integer function chdir (path)
character* (*) path

Description

Change the default directory for creating and locating files to path. Zero is returned if successful;
otherwise, an error code is returned.

260 Chapter 7

chmod

Change mode of a file.
Synopsis
integer function chmod(nam, mode)

character* (*) nam
integer mode

Description

Change the file system mode of file nam If successful, a value of 0 is returned; otherwise, an error code
is returned.

ctime

Return the system time.
Synopsis

character* (*) function ctime (stime)
integer stime

Description

ctime converts a system time in stime to its ASCII form and returns the converted form. Neither newline
nor NULL are included.

ate

‘

Return the date.
Synopsis

character* (*) function date (buf)

Description

Returns the ASCII representation of the current date. The form returned is dd-mmm-yy.

3F Functions and VAX Subroutines 261

error functions

The functions erf and derf return the error function of x. erfc and derfc return 1.0-erf(x) and 1.0-derf(x),
respectively.

Synopsis

real function erf (x)
real x

real function erfc (x)
real x

double precision function derf (x)
double precision x

double precision function derfc (x)
double precision x

Get the elapsed time.

Synopsis
real function etime (tarray)
real function dtime (tarray)
real tarray(2)

Description

etime returns the total processor run-time in seconds for the calling process.

dtime (delta time) returns the processor time since the previous call to dtime. The first time it is called, it
returns the processor time since the start of execution.

Both functions place values in the argument tarray : user time in the first element and system time in
the second element. The return value is the sum of these two times.

262 Chapter 7

exit
Terminate program with status.
Synopsis

subroutine exit (s)
integer s

Description

exit flushes and closes all of the program's files, and returns the value of s to the parent process.

fdate

Return date and time in ASCII form.
Synopsis

character* (*) function fdate()

Description

fdate returns the current date and time as a character string. Neither newline nor NULL will be included.

fgetc -

Get character from a logical unit.

Synopsis
integer function fgetc(lu, ch)
integer 1lu
character* (*) ch

Description

Returns the next character in ch from the file connected to the logical unit lu, bypassing normal Fortran
I/O statements. If successful, the return value is zero; -1 indicates that an end-of-file was detected. Any
other value is an error code.

3F Functions and VAX Subroutines 263

flush

Flush a logical unit.
Synopsis

subroutine flush(lu)
integer 1lu

Description

flush flushes the contents of the buffer associated with logical unit lu.

1{0] 7

Fork a process.
Synopsis

integer function fork()

Description

fork creates a copy of the calling process. The value returned to the parent process will be the process id
of the copy. The value returned to the child process (the copy) will be zero. If the returned value is
negative, an error occurred and the value is the negation of the system error code.

fputc _

Write a character to a logical unit.

Synopsis
integer function fputc(lu, ch)
integer 1lu
character* (*) ch

Description

264 Chapter 7

A character ch is written to the file connected to logical unit lu bypassing normal Fortran 1/O. If
successful, a value of zero is returned; otherwise, an error code is returned.

ree

‘

Free memory.
Synopsis

subroutine free (p)
int p

Description

Free a pointer to a block of memory located by malloc; the value of the argument, p , is the pointer to
the block of memory.

Position file at offset.

Synopsis
integer function fseek(lu, offset, from)
integer lu
integer offset
integer from
Description

fseek repositions a file connected to logical unit lu. offset is an offset in bytes relative to the position
specified by from :

0 beginning of the file
1 current position
2 end of the file

If successful, the value returned by fseek will be zero; otherwise, it's a system error code.

3F Functions and VAX Subroutines 265

ftell

Determine file position.
Synopsis

integer function ftell (1lu)
integer 1lu

Description
ftell returns the current position of the file connected to the logical unit lu. The value returned is an

offset, in units of bytes, from the beginning of the file. If the value returned is negative, it is the
negation of the system error code.

gerror

Return system error message.
Synopsis

character* (*) function gerror ()

Description

Return the system error message of the last detected system error.

getarg

Get the n th command line argument.

Synopsis
subroutine getarg(n, arg)
integer n
character* (*) arg
Description

Return the n th command line argument in arg, where the 0 th argument is the command name.

266 Chapter 7

largc
Index of the last command line argument.
Synopsis

integer function iargc()

Description

Return the index of the last command line argument, which is also the number of arguments after the
command name.

etc

Get character from unit 5.
Synopsis

integer function getc(ch)
character* (*) ch
Description
Returns the next character in ch from the file connected to the logical unit 5, bypassing normal Fortran

I/O statements. If successful, the return value is zero; -1 indicates that an end-of-file was detected. Any
other value is an error code.

getcwd

Get pathname of current working directory.
Synopsis

integer function getcwd(dir)
character* (*) dir

Description

3F Functions and VAX Subroutines 267

The pathname of the current working directory is returned in dir. If successful, the return value is zero;
otherwise, an error code is returned.

getenv

Get value of environment variable.

Synopsis
subroutine getenv(en, ev)
character* (*) en
character* (*) ev
Description

getenv checks for the existence of the environment variable en. If it does not exist or if its value is not
present, ev is filled with blanks. Otherwise, the value, a string, of en is returned in ev.

Get group id.
Synopsis

integer function getgid()

Description

Return the group id of the user of the process.

Get user's login name.
Synopsis

character* (*) function getlog/()

Description

getlog returns the user's login name or blanks if the process is running detached from a terminal.

268 Chapter 7

getpid
Get process id.
Synopsis

integer function getpid()

Description

Return the process id of the current process.

Get user id.
Synopsis

integer function getuid()
Description

Return the user id of the user of the process.

gmtime

Return system time.

Synopsis
subroutine gmtime (stime, tarray)
integer stime
integer tarray(9)

Description

Dissect the UNIX time, stime , into month, day, etc., for GMT and return in tarray.

3F Functions and VAX Subroutines 269

hostnm

Get name of current host.
Synopsis

integer function hostnm(nm)
character* (*) nm

Description

hostnm returns the name of the current host in nm. If successful, a value of zero is returned; otherwise
an error occurred.

idate

Return date in numerical form.
Synopsis

subroutine idate(im, id, iy)
integer im, id, iy

Description

Returns the current date in the variables im , id , and iy , which indicate the month, day, and year,
respectively. The month is in the range 1-12; only the last 2 digits of the year are returned.

ierrno
Get error number.
Synopsis

integer function ierrno()

Description

Return the number of the last detected system error.

270 Chapter 7

joinit
Initialize I/0
Synopsis

subroutine ioinit (cctl, bzro, apnd, prefix, vrbose)

integer cctl

integer bzro

integer apnd
character* (*) prefix
integer vrbose

Description

Currently, no action is performed.

isatty
Is logical unit a tty.
Synopsis

logical function isatty(1lu)
integer lu

Description

Returns . TRUE. if logical unit lu is connected to a terminal; otherwise, .FALSE. is returned.

itime
Return time in numerical form.
Synopsis

subroutine itime (iarray)
integer iarray(3)

3F Functions and VAX Subroutines 271

Description

Return in current time in the array iarray. The order is hour, minute, and second.

kill

Send signal to a process.

Synopsis
integer function kill (pid, sig)
integer pid
integer sig

Description

Send signal number Sig to the process whose process id is pid. If successful, the value zero is returned;
otherwise, an error code is returned.

link

Make link

Synopsis
integer function link(nl, n2)
character* (*) nl
character* (*) n2

Description

Create a link n2 to an existing file nl. If successful, zero is returned; otherwise, an error code is
returned.

Inblnk

Return index of last non-blank.

Synopsis
272 Chapter 7

integer function lnblnk(al)
character* (*) al

Description

Return the index of the last non-blank character in string al.

loc
Address of an object.
Synopsis

integer function loc(a)
integer a

Description

Return the value which is the address of a.

Itime

Return system time.

Synopsis
subroutine ltime(stime, tarray)
integer stime
integer tarray(9)

Description

Dissect the UNIX time, stime , into month, day, etc., for the local time zone and return in tarray.

malloc

Allocate memory.
Synopsis

3F Functions and VAX Subroutines 273

integer function malloc (n)
integer n

Description

Allocate a block of n bytes of memory and return the pointer to the block of memory.

mclock

Get elapsed time.
Synopsis

integer function mclock()

Description

mclock returns the sum of the user's cpu time and the user and system times of all child processes. The
return value is in units of clock ticks per second.

Move bits.
Synopsis
subroutine mvbits(src, pos, len, dest, posd)
integer src
integer pos
integer len
integer dest
integer posd
Description

len bits are moved beginning at position pos of argument Src to position posd of argument dest.

274 Chapter 7

outstr

Print a character string.
Synopsis

integer function outstr (ch)
character* (*) ch

Description

Output the character string to logical unit 6 bypassing normal Fortran I/O. If successful, a value of zero
is returned; otherwise, an error occurred.

perror
Print error message.
Synopsis

subroutine perror (str)
character* (*) str

Description

Write the message indicated by Str to logical unit 0 and the message for the last detected system error.

putc
Write a character to logical unit 6.
Synopsis

integer function putc(ch)
character* (*) ch

Description

A character ch is written to the file connected to logical unit 6 bypassing normal Fortran 1/O. If
successful, a value of zero is returned; otherwise, an error code is returned.

3F Functions and VAX Subroutines 275

Change or add environment variable.
Synopsis

integer function putenv(str)
character* (*) str

Description

str contains a character string of the form name=value. This function makes the value of the
environment variable name equal to value.

If successful, zero is returned.

Quick sort.
Synopsis
subroutine gsort (array, len, isize, compar)
dimension array (*)
integer len
integer isize
external compar
integer compar
Description

gsort sorts the elements of the one dimensional array, array. len is the number of elements in the array
and isize is the size of an element. compar is the name of an integer function that determines the sorting
order. This function is called with 2 arguments (argl and arg2) which are elements of array. The
function returns:

negative if argl is considered to precede arg2
Zero if argl is equivalent to arg2
positive if argl is considered to follow arg2

276 Chapter 7

rand, irand, srand

Random number generator.

Synopsis
double precision function rand()
integer function irand()
subroutine srand (iseed)
integer iseed

Description

The functions rand and irand generates successive pseudo-random integers or double precision
numbers. srand uses its argument, iseed , to re-initialize the seed for successive invocations of rand and
irand.

irand returns a positive integer in the range 0 through 2147483647.

rand returns a value in the range 0 through 1.0.

random, irandm, drandm

Return the next random number value. If the argument, flag , is nonzero, the random number generator
is restarted before the next random number is generated. Integer values will range from 0 thru
2147483647, floating point values will range from 0.0 thru 1.0.

Synopsis

real function random(flag)

integer flag

integer function irandm(flag)
integer flag

double precision function drandm(flag)
integer flag

3F Functions and VAX Subroutines 277

range

Range functions.

Synopsis
real function flmin ()
real function flmax ()
real function ffrac()
double precision function dflmin()
double precision function dflmax()
double precision function dffrac()
integer function inmax()
Description
fmin minimum single precision value
flmax maximum single precision value
ffrac smallest positive single precision value
dflmin minimum double precision value
dflmax maximum double precision value
dffrac smallest positive double precision value
inmax maximum integer

rename

Rename a file.
Synopsis

integer function rename (from, to)
character* (*) from
character* (*) to

278 Chapter 7

Description

Rename the existing file from where the new name is to. If successful, zero is returned; otherwise, the
return value is an error code.

rindex

Return index of substring.

Synopsis
integer function rindex(al, a2)
character* (*) al
character* (*) a2

Description

Return the index of the last occurrence of string a2 in string al.

secnds, dsecnds

Return elapsed time.

Synopsis
real function secnds (x)
real x
double precision function dsecnds (x)
double precision x
Description

Returns the elapsed time in units of seconds since midnight, minus the value of X.

3F Functions and VAX Subroutines 279

signal

Signal facility.

Synopsis
integer function signal (signum, proc, flag)
integer signum
external proc
integer flag
Description

signal allows the calling process to choose how the receipt of a specific signal is handled; signum is the
signal and proc is the choice. If flag is negative, proc is a Fortran subprogram and is established as the
signal handler for the signal. Otherwise, proc is ignored and the value of flag is passed to the system as
the signal action definition. In particular, this how previously saved signal actions can be restored.
There are two special cases of flag : 0 means use the default action and 1 means ignore this signal.

The return value is the previous action. If this is a value greater than one, then it is the address of a

routine that was to have been called. The return value can be used in subsequent calls to signal to
restore a previous action. A negative returned value indicates a system error.

sleep
Suspend execution for a period of time.
Synopsis

subroutine sleep(itime)
integer itime

Description

Suspends the process for t seconds.

stat, Istat, fstat

Get file status.

280 Chapter 7

Synopsis

integer function stat (nm, statb)
character* (*) nm
integer statb(*)

integer function lstat (nm, statb)
character* (*) nm
integer statb(¥)

integer function fstat (lu, statb)
integer 1lu
integer statb (*)

Description
Return the file status of the file in the array statb. If successful, zero is returned; otherwise, the value of
-1 is returned. stat obtains information about the file whose name is nm ; if the file is a symbolic link,

information is obtained about the file the link references. Istat is similar to stat except Istat returns
information about the link. fstat obtains information about the file which is connected to logical unit lu.

stime

Set time.

Synopsis
integer function stime (tp)
integer tp

Description

Set the system time and date. tp is the value of the time measured in seconds from 00:00:00 GMT
January 1, 1970.

symlnk

Make symbolic link.

3F Functions and VAX Subroutines 281

Synopsis

integer function symlnk(nl, n2)
character* (*) nl

character* (*) n2

Description

Create a symbolic link n2 to an existing file nl. If successful, zero is returned; otherwise, an error code
is returned.

Issue a shell command.
Synopsis

integer function system(str)
character* (*) str

Description

system causes the string, str , to be given to the shell as input. The current process waits until the shell
has completed and returns the exit status of the shell.

time

Return system time.
Synopsis

integer function time ()

Description

Return the time since 00:00:00 GMT, January 1, 1970, measured in seconds.

282 Chapter 7

times

Get process and child process time
Synopsis

integer function times (buff)
integer buff (*)

Description

Returns the time-accounting information for the current process and for any terminated child processes
of the current process in the array buff. If successful, zero is returned; otherwise, the negation of the
error code is returned.

ttynam

Get name of a terminal
Synopsis

character* (*) ttynam(lu)
integer 1lu

Description

Returns a blank padded path name of the terminal device connected to the logical unit lu. The lu is not
connected to a terminal, blanks are returned.

unlink

Remove a file.
Synopsis

integer function unlink (£il)
character* (*) fil

Description

3F Functions and VAX Subroutines 283

Removes the file specified by the pathname fil. If successful, zero is returned; otherwise, an error code
is returned.

Wait for process to terminate.
Synopsis

integer function wait (st)
integer st

Description
wait causes its caller to be suspended until a signal is received or one its child processes terminates. If

any child has terminated since the last wait , return is immediate. If there are no child processes, return
is immediate with an error code.

If the return value is positive, it is the process id of the child and st is its termination status. If the return
value is negative, it is the negation of an error code.

7.2 VAX System Subroutines
This section discusses the VAX/VMS system subroutines and built-in functions supported by pgf77.

7.2.1 Built-In Functions

The built-in functions perform inter-language utilities for argument passing and location calculations.
The following built-in functions are available:

%L OC(arg)

Compute the address of the argument arg.

%REF(a)

Pass the argument a by reference.

284 Chapter 7

%VAL(a)

Pass the argument as a 32-bit immediate value (64-bit if a is double precision.) A value of 64-bits is
also possible if supported for integer and logical values.

7.2.2 VAX/VMS System Subroutines

This section describes VAX/VMX system subroutines:

DATE

The DATE subroutine returns a nine-byte string containing the ASCII representation of the current date.
It has the form:
CALL DATE (buf)

where buf is a nine-byte variable, array, array element, or character substring. The date is returned as a
nine-byte ASCII character string of the form:

dd-mmm-yy
Where:
dd Is the two-digit day of the month
mmm Is the three-character abbreviation of the month
yy Is the last two digits of the year

EXIT

The EXIT subroutine causes program termination, closes all open files, and returns control to the
operating system. It has the form:

CALL EXIT[(exit_ status)]

where:

exit_status is an optional integer argument used to specify the image exit value.

3F Functions and VAX Subroutines 285

GETARG

The GETARG subroutine returns the Nth command line argument in character variable ARG. For N
equal to zero, the name of the program is returned.

SUBROUTINE GETARG (N, ARG)
INTEGER*4 N
CHARACTER* (*) ARG

IARGC

The TARGC subroutine returns the number of command line arguments following the program name.

INTEGER*4 FUNCTION IARGC/()

IDATE

The IDATE subroutine returns three integer values representing the current month, day, and year. It has
the form:

CALL IDATE (IMONTH, IDAY, IYEAR)

If the current date were October 9, 2004, the values of the integer variables upon return would be:

IMONTH = 10
IDAY = 9
IYEAR = 04

MVBITS

The MVBITS subroutine transfers a bit field from one storage location (source) to a field in a second
storage location (destination). MVBITS transfers a3 bits from positions a2 through (a2 + a3 - 1) of the
source, SIc, to positions a5 through (a5 + a3 - 1) of the destination, dest. Other bits of the destination
location remain unchanged. The values of (a2 + a3) and (a5 + a3) must be less than or equal to 32 (if
the source or destination is INTEGER¥*8, less than or equal to 64). It has the form:

CALL MVBITS (src, a2, a3, dest, ab5)

286 Chapter 7

Where:

src is an integer variable or array element that represents the source location.

a2 is an integer expression that identifies the first position in the field
transferred from src.

a3 is an integer expression that identifies the length of the field transferred
from src.

dest is an integer variable or array element that represents the destination
location.

a5 is an integer expression that identifies the starting position within a4, for

the bits being transferred.

RAN

The RAN subroutine returns the next number from a sequence of pseudo-random numbers of uniform
distribution over the range 0 to 1. The result is a floating point number that is uniformly distributed in
the range between 0.0 and 1.0 exclusive. It has the form:

y = RAN (i)
where y is set equal to the value associated by the function with the seed argument i. The argument i
must be an INTEGER*4 variable or INTEGER*4 array element.

The argument i should initially be set to a large, odd integer value. The RAN function stores a value in
the argument that it later uses to calculate the next random number.

There are no restrictions on the seed, although it should be initialized with different values on separate
runs in order to obtain different random numbers. The seed is updated automatically, and RAN uses the
following algorithm to update the seed passed as the parameter:

SEED = 6969 * SEED + 1 ! MOD 2*%32
The value of SEED is a 32-bit number whose high-order 24 bits are converted to floating point and

returned as the result.

If the command-line option to treat all REAL declarations as DOUBLE PRECISION declarations is in
effect, RAN returns a DOUBLE PRECISION value.

3F Functions and VAX Subroutines 287

SECNDS

The SECNDS subroutine provides system time of day, or elapsed time, as a floating point value in
seconds. It has the form:

y = SECNDS (x)
where (REAL or DOUBLE PRECISION) y is set equal to the time in seconds since midnight, minus the
user supplied value of the (REAL or DOUBLE PRECISION) x. Elapsed time computations can be
performed with the following sequence of calls.

X = SECNDS(0.0)

! Code to be timed

DELTA = SECNDS (X)

The accuracy of this call is the same as the resolution of the system clock.

TIME

The TIME subroutine returns the current system time as an ASCII string. It has the form:

CALL TIME (buf)

where buf is an eight-byte variable, array, array element, or character substring. The TIME call returns
the time as an eight-byte ASCII character string of the form:

hh:mm:ss

For example:

16:45:23

Note that a 24-hour clock is used.

288 Chapter 7

8 OpenMP Directives for Fortran

The PGF77 and PGF95 Fortran compilers support the OpenMP Fortran Application Program Interface.
The OpenMP shared-memory parallel programming model is defined by a collection of compiler
directives, library routines, and environment variables that can be used to specify shared-memory
parallelism in Fortran programs. The directives include a parallel region construct for writing coarse
grain SPMD programs, work-sharing constructs which specify that DO loop iterations should be split
among the available threads of execution, and synchronization constructs. The data environment is
controlled using clauses on the directives or with additional directives. Run-time library routines are
provided to query the parallel runtime environment, for example to determine how many threads are
participating in execution of a parallel region. Finally, environment variables are provided to control the
execution behavior of parallel programs. For more information on OpenMP, see
http://www.openmp.org.

For an introduction to how to execute programs that use multiple processors along with some pointers
to example code, see Section 1.4 “Parallel Programming Using PGI Compilers” in the PGl Users
Guide.

8.1 Parallelization Directives

Parallelization directives are comments in a program that are interpreted by the PGI Fortran compilers
when the option -mp is specified on the command line. The form of a parallelization directive is:

sentinel directive name [clauses]

With the exception of the SGI-compatible DOACROSS directive, the sentinel must be 'OMP, COMP, or
*$OMP, must start in column 1 (one), and must appear as a single word without embedded white space.
The sentinel marking a DOACROSS directive is C$. Standard Fortran syntax restrictions (line length, case
insensitivity, etc.) apply to the directive line. Initial directive lines must have a space or zero in column
six and continuation directive lines must have a character other than space or zero in column six.
Continuation lines for CBDOACROSS directives are specified using the C$& sentinel.

The order in which clauses appear in the parallelization directives is not significant. Commas separate
clauses within the directives, but commas are not allowed between the directive name and the first
clause. Clauses on directives may be repeated as needed subject to the restrictions listed in the
description of each clause.

The compiler option -mp enables recognition of the parallelization directives. The use of this option
also implies:

OpenMP Directive for Fortran 289

http://www.openmp.org/

—Mreentrant local variables are placed on the stack and optimizations that may result in non-
reentrant code are disabled (e.g., -Mnoframe);

~Miomutex critical sections are generated around Fortran I/O statements.

Many of the directives are presented in pairs and must be used in pairs. In the examples given with each
section, the routines omp_get_num_threads() and omp_get_thread_num() are used, refer to the
Run-time Library Routines section for more information. They return the number of threads currently in
the team executing the parallel region and the thread number within the team, respectively.

8.2 PARALLEL ... END PARALLEL

The OpenMP PARALLEL END PARALLEL directive is supported using the following syntax.

Syntax:
ISOMP PARALLEL [Clauses]
< Fortran code executed in body of parallel region >
I'SOMP END PARALLEL

Clauses:

PRIVATE (1ist)

SHARED (1list)

DEFAULT (PRIVATE | SHARED | NONE)
FIRSTPRIVATE (list)

REDUCTION ([{operator | intrinsic}:] list)
COPYIN (list)

IF (scalar logical expression)

This directive pair declares a region of parallel execution. It directs the compiler to create an executable
in which the statements between PARALLEL and END PARALLEL are executed by multiple lightweight
threads. The code that lies between PARALLEL and END PARALLEL is called a parallel region.

The OpenMP parallelization directives support a fork/join execution model in which a single thread
executes all statements until a parallel region is encountered. At the entrance to the parallel region, a
system-dependent number of symmetric parallel threads begin executing all statements in the parallel
region redundantly. These threads share work by means of work-sharing constructs such as parallel DO
loops in the following example. The number of threads in the team is controlled by the
OMP_NUM_THREADS environment variable. If OMP_NUM_THREADS is not defined, the program will
execute parallel regions using only one processor. Branching into or out of a parallel region is not
supported.

All other shared-memory parallelization directives must occur within the scope of a parallel region.

Nested PARALLEL ... END PARALLEL directive pairs are not supported and are ignored. The END
PARALLEL directive denotes the end of the parallel region, and is an implicit barrier. When all threads

290 Chapter 8

have completed execution of the parallel region, a single thread resumes execution of the statements
that follow.

Note: By default, there is no work distribution in a parallel region. Each active thread
executes the entire region redundantly until it encounters a directive that specifies work
distribution. For work distribution, see the DO, PARALLEL DO, or DOACROSS directives.

PROGRAM WHICH PROCESSOR AM I
INTEGER A(0:1)
INTEGER omp_get thread num

A(0) = -1

A(1) = -1
I'SOMP PARALLEL

A(omp_get thread num()) = omp get thread num()
ISOMP END PARALLEL

PRINT *, “A(0)=",A(0), “ A(l)=",A(1)

END

The variables specified in a PRIVATE list are private to each thread in a team. In effect, the compiler
creates a separate copy of each of these variables for each thread in the team. When an assignment to a
private variable occurs, each thread assigns to its local copy of the variable. When operations involving
a private variable occur, each thread performs the operations using its local copy of the variable.

Important points about private variables are:

Variables declared private in a parallel region are undefined upon entry to the parallel
region. If the first use of a private variable within the parallel region is in a right-hand-
side expression, the results of the expression will be undefined (i.e., this is probably a
coding error).

Likewise, variables declared private in a parallel region are undefined when serial
execution resumes at the end of the parallel region.

The variables specified in a SHARED list are shared between all threads in a team, meaning that all
threads access the same storage area for SHARED data.

The DEFAULT clause lets you specify the default attribute for variables in the lexical extent of the
parallel region. Individual clauses specifying PRIVATE, SHARED, etc. status override the declared
DEFAULT. Specifying DEFAULT(NONE) declares that there is no implicit default, and in this case, each
variable in the parallel region must be explicitly listed with an attribute of PRIVATE, SHARED,
FIRSTPRIVATE, LASTPRIVATE, or REDUCT ION.

Variables that appear in the list of a FIRSTPRIVATE clause are subject to the same semantics as

PRIVATE variables, but in addition, are initialized from the original object existing prior to entering the
parallel region. Variables that appear in the list of a REDUCTION clause must be SHARED. A private copy

OpenMP Directives for Fortran 291

of each variable in list is created for each thread as if the PRIVATE clause had been specified. Each
private copy is initialized according to the operator as specified in Table §-1:

Table 8-1: Initialization of REDUCTION Variables

Operator / Intrinsic Initialization

+ 0
* 1
_ 0
-AND. .TRUE.
-OR. -FALSE.
-EQV. _TRUE.
-NEQV. _FALSE.
MAX Smallest Representable Number
MIN Largest Representable Number
1AND All bits on
10R 0
1EOR 0

At the end of the parallel region, a reduction is performed on the instances of variables appearing in list
using operator or intrinsic as specified in the REDUCTION clause. The initial value of each REDUCTION
variable is included in the reduction operation. If the {operator | intrinsic}: portion of the
REDUCTION clause is omitted, the default reduction operator is “+” (addition).

The COPYIN clause applies only to THREADPRIVATE common blocks. In the presence of the COPYIN
clause, data from the master thread’s copy of the common block is copied to the threadprivate copies
upon entry to the parallel region.

In the presence of an IF clause, the parallel region will be executed in parallel only if the corresponding
scalar_logical_expression evaluates to . TRUE.. Otherwise, the code within the region will be executed
by a single processor regardless of the value of the environment variable OMP_NUM_THREADS.

8.3 CRITICAL ... END CRITICAL

The OpenMP END CRITICAL directive uses the following syntax.

ISOMP CRITICAL [(name)]
< Fortran code executed in body of critical section >
I'SOMP END CRITICAL [(name)]

Within a parallel region, you may have code that will not execute properly when multiple threads act
upon the same sub-region of code. This is often due to a shared variable that is written and then read
again.

292 Chapter 8

The CRITICAL ... END CRITICAL directive pair defines a subsection of code within a parallel
region, referred to as a critical section, which will be executed one thread at a time. The optional name
argument identifies the critical section. The first thread to arrive at a critical section will be the first to
execute the code within the section. The second thread to arrive will not begin execution of statements
in the critical section until the first thread has exited the critical section. Likewise, each of the
remaining threads will wait its turn to execute the statements in the critical section.

Critical sections cannot be nested, and any such specifications are ignored. Branching into or out of a
critical section is illegal. If a name argument appears on a CRITICAL directive, the same name must
appear on the END CRITICAL directive.

PROGRAM CRITICAL USE
REAL A(100,100), MX, LMX
INTEGER I, J
MX = -1.0
LMX = -1.0
CALL RANDOM SEED ()
CALL RANDOM NUMBER (A)
!SOMP PARALLEL PRIVATE (I), FIRSTPRIVATE (LMX)

1$OMP DO
DO J=1,100
DO I=1,100
ILMX = MAX(A(I,J), LMX)
END DO
END DO

I'SOMP CRITICAL
MX = MAX(MX, LMX)

!'SOMP END CRITICAL

I'SOMP END PARALLEL
PRINT *, “MAX VALUE OF A IS “, MX
END

Note that this program could also be implemented without the critical region by declaring MX as a
reduction variable and performing the MAX calculation in the loop using MX directly rather than using
LMX. See the DO ... END DO and PARALLEL ... END PARALLEL sections for more information on
how to use the REDUCTION clause on a parallel DO loop.

8.4 MASTER ... END MASTER

The OpenMP END MASTER directive uses the following syntax.

I'SOMP MASTER
< Fortran code in body of MASTER section >
I'SOMP END MASTER

OpenMP Directives for Fortran 293

In a parallel region of code, there may be a sub-region of code that should execute only on the master
thread. Instead of ending the parallel region before this subregion and then starting it up again after this

subregion, the MASTER ... END MASTER directive pair let you conveniently designate code that
executes on the master thread and is skipped by the other threads. There is no implied barrier on entry
to or exit from a MASTER ... END MASTER section of code. Nested master sections are ignored.

Branching into or out of a master section is not supported.

PROGRAM MASTER USE
INTEGER A(0:1)
INTEGER omp_get thread num
A=-1
!SOMP PARALLEL
A(omp_get thread num()) = omp_get thread num()
!SOMP MASTER
PRINT *, “YOU SHOULD ONLY SEE THIS ONCE”
!SOMP END MASTER
!'SOMP END PARALLEL
PRINT *, “A(0)=%, A(0), ™ A(1l)=", A(1l)
END

8.5 SINGLE ... END SINGLE

The OpenMP SINGLE END SINGLE directive uses the following syntax.

1SOMP SINGLE [Clauses]
< Fortran code in body of SINGLE processor section >
ISOMP END SINGLE [NOWAIT]

Clauses:
PRIVATE (1ist)
FIRSTPRIVATE (1ist)

In a parallel region of code, there may be a sub-region of code that will only execute correctly on a
single thread. Instead of ending the parallel region before this subregion and then starting it up again
after this subregion, the SINGLE ... END SINGLE directive pair lets you conveniently designate code
that executes on a single thread and is skipped by the other threads. There is an implied barrier on exit
froma SINGLE ... END SINGLE section of code unless the optional NOWAIT clause is specified.

Nested single process sections are ignored. Branching into or out of a single process section is not
supported.

PROGRAM SINGLE_ USE
INTEGER A(0:1)
INTEGER omp_get thread num()
I'SOMP PARALLEL
A(omp_get thread num()) = omp get thread num()

294 Chapter 8

1$OMP SINGLE
PRINT *, "YOU SHOULD ONLY SEE THIS ONCE"
1SOMP END SINGLE
1SOMP END PARALLEL
PRINT *, "A(0)=", A(0), " A(l)=", A(1)
END

The PRIVATE and FIRSTPRIVATE clauses are as described in the PARALLEL ... END PARALLEL
section.

8.6 DO ... END DO

The OpenMP DO END DO directive uses the following syntax.

Syntax:
ISOMP DO [Clauses]
< Fortran DO loop to be executed in parallel >
ISOMP END DO [NOWAIT]

Clauses:

PRIVATE (list)

FIRSTPRIVATE (list)

LASTPRIVATE (1ist)

REDUCTION ({operator | intrinsic } : list)
SCHEDULE (type [, chunk])

ORDERED

The real purpose of supporting parallel execution is the distribution of work across the available
threads. You can explicitly manage work distribution with constructs such as:

IF (omp_get thread num() .EQ. 0) THEN
ELSE IF (omp_get thread num() .EQ. 1) THEN
ENDIF
However, these constructs are not in the form of directives. The DO ... END DO directive pair

provides a convenient mechanism for the distribution of loop iterations across the available threads in a
parallel region. Items to note about clauses are:

e Variables declared in a PRIVATE list are treated as private to each processor participating in
parallel execution of the loop, meaning that a separate copy of the variable exists on each
processor.

e Variables declared in a FIRSTPRIVATE list are PRIVATE, and in addition are initialized from the
original object existing before the construct.

OpenMP Directives for Fortran 295

e Variables declared in a LASTPRIVATE list are PRIVATE, and in addition the thread that executes the
sequentially last iteration updates the version of the object that existed before the construct.

e The REDUCTION clause is as described in the PARALLEL ... END PARALLEL section.
e The SCHEDULE clause is explained in the following section.

e If ORDERED code blocks are contained in the dynamic extent of the DO directive, the ORDERED
clause must be present. For more information on ORDERED code blocks, see the ORDERED section.

The DO ... END DO directive pair directs the compiler to distribute the iterative DO loop immediately
following the Y$OMP DO directive across the threads available to the program. The DO loop is executed
in parallel by the team that was started by an enclosing parallel region. If the Y$OMP END DO directive is
not specified, the '$OMP DO is assumed to end with the enclosed DO loop. DO ... END DO directive
pairs may not be nested. Branching into or out of a Y$OMP DO loop is not supported.

By default, there is an implicit barrier after the end of the parallel loop; the first thread to complete its
portion of the work will wait until the other threads have finished their portion of work. If NOWAIT is
specified, the threads will not synchronize at the end of the parallel loop.

Other items to note about '$OMP DO loops:

The DO loop index variable is always private.
T$OMP DO loops must be executed by all threads participating in the parallel region or none at all.

The END DO directive is optional, but if it is present it must appear immediately after the end of the
enclosed DO loop.

PROGRAM DO _USE

REAL A(1000), B(1000)
DO I=1,1000

B(I) = FLOAT(I)
END DO
1SOMP PARALLEL
1SOMP DO
DO I=1,1000
A(I) = SQRT(B(I));
END DO

ISOMP END PARALLEL
END
The SCHEDULE clause specifies how iterations of the DO loop are divided up between processors. Given
a SCHEDULE (type [, chunk]) clause, type can be STATIC, DYNAMIC, GUIDED, or RUNT IME.

296 Chapter 8

These are defined as follows:

e When SCHEDULE (STATIC, chunk) is specified, iterations are allocated in contiguous blocks of
size chunk. The blocks of iterations are statically assigned to threads in a round-robin fashion in
order of the thread ID numbers. The chunk must be a scalar integer expression. If chunk is not
specified, a default chunk size is chosen equal to:

(number_of iterations + omp_num_threads() - 1) / omp_num_threads()

e When SCHEDULE (DYNAMIC, chunk) is specified, iterations are allocated in contiguous blocks
of size chunk. As each thread finishes a piece of the iteration space, it dynamically obtains the next
set of iterations. The chunk must be a scalar integer expression. If no chunk is specified, a default
chunk size is chosen equal to 1.

e When SCHEDULE (GUIDED, chunk) is specified, the chunk size is reduced in an exponentially
decreasing manner with each dispatched piece of the iteration space. Chunk specifies the
minimum number of iterations to dispatch each time, except when there are less than chunk
iterations remaining to be processed, at which point all remaining iterations are assigned. If no
chunk is specified, a default chunk size is chosen equal to 1.

e When SCHEDULE (RUNTIME) is specified, the decision regarding iteration scheduling is deferred
until runtime. The schedule type and chunk size can be chosen at runtime by setting the
OMP_SCHEDULE environment variable. If this environment variable is not set, the resulting
schedule is equivalent to SCHEDULE(STATIC).

8.7 BARRIER

The OpenMP BARRIER directive uses the following syntax.

! SOMP BARRIER

There may be occasions in a parallel region, when it is necessary that all threads complete work to that
point before any thread is allowed to continue. The BARRIER directive synchronizes all threads at such
a point in a program. Multiple barrier points are allowed within a parallel region. The BARRIER
directive must either be executed by all threads executing the parallel region or by none of them.

8.8 DOACROSS

The C$DOACROSS directive is not part of the OpenMP standard, but is supported for compatibility with
programs parallelized using legacy SGI-style directives.

Syntax:

CSDOACROSS [Clauses 1]
< Fortran DO loop to be executed in parallel >

OpenMP Directives for Fortran 297

Clauses:

[{PRIVATE | LOCAL} (list)]

[{SHARED | SHARE} (list)]

[MP_SCHEDTYPE={SIMPLE | INTERLEAVE}]

[CHUNK=<integer expression>]

[IF (logical expression)]
The C$DOACROSS directive has the effect of a combined parallel region and parallel DO loop applied to
the loop immediately following the directive. It is very similar to the OpenMP PARALLEL DO directive,
but provides for backward compatibility with codes parallelized for SGI systems prior to the OpenMP
standardization effort. The C$DOACROSS directive must not appear within a parallel region. It is a
shorthand notation that tells the compiler to parallelize the loop to which it applies, even though that
loop is not contained within a parallel region. While this syntax is more convenient, it should be noted
that if multiple successive DO loops are to be parallelized it is more efficient to define a single enclosing
parallel region and parallelize each loop using the OpenMP DO directive.

A variable declared PRIVATE or LOCAL to a CSDOACROSS loop is treated the same as a private variable
in a parallel region or DO (see above). A variable declared SHARED or SHARE to a C$DOACROSS loop is
shared among the threads, meaning that only 1 copy of the variable exists to be used and/or modified by
all of the threads. This is equivalent to the default status of a variable that is not listed as PRIVATE in a
parallel region or DO (this same default status is used in CSDOACROSS loops as well).

8.9 PARALLEL DO

The OpenMP PARALLEL DO directive uses the following syntax.

Syntax:
I'SOMP PARALLEL DO [CLAUSES]
< Fortran DO loop to be executed in parallel >
[1SOMP END PARALLEL DO]

Clauses:

PRIVATE (1list)

SHARED (list)

DEFAULT (PRIVATE | SHARED | NONE)
FIRSTPRIVATE (1ist)

LASTPRIVATE (1ist)

REDUCTION ({operator | intrinsic} : list)
COPYIN (Ilist)

IF (scalar logical expression)

SCHEDULE (type [, chunk])

ORDERED

The semantics of the PARALLEL DO directive are identical to those of a parallel region containing only
a single parallel DO loop and directive. Note that the END PARALLEL DO directive is optional. The

298 Chapter 8

available clauses are as defined in the DO ... END DO and PARALLEL ... END PARALLEL sections.

8.10 SECTIONS ... END SECTIONS

The OpenMP SECTIONS / END SECTIONS directive pair uses the following syntax:

Syntax:
1SOMP SECTIONS [Clauses]
[1$SOMP SECTION]
< Fortran code block executed by processor i >
[1SOMP SECTION]
< Fortran code block executed by processor j >

!'SOMP END SECTIONS [NOWAIT]

Clauses:

PRIVATE (list)

FIRSTPRIVATE (list)

LASTPRIVATE (list)

REDUCTION ({operator | intrinsic} : list)

The SECTIONS / END SECTIONS directives define a non-iterative work-sharing construct within a
parallel region. Each section is executed by a single processor. If there are more processors than
sections, some processors will have no work and will jump to the implied barrier at the end of the
construct. If there are more sections than processors, one or more processors will execute more than
one section.

A SECTION directive may only appear within the lexical extent of the enclosing SECTIONS / END
SECTIONS directives. In addition, the code within the SECTIONS / END SECTIONS directives must be a
structured block, and the code in each SECTION must be a structured block.

The available clauses are as defined in the DO ... END DO and PARALLEL ... END PARALLEL

sections.

8.11 PARALLEL SECTIONS

The OpenMP PARALLEL SECTIONS/END SECTIONS directive pair uses the following syntax:
Syntax:

I'SOMP PARALLEL SECTIONS [CLAUSES]

[1$SOMP SECTION]

< Fortran code block executed by processor i >
[1$SOMP SECTION]

OpenMP Directives for Fortran 299

< Fortran code block executed by processor j >

!SOMP END SECTIONS [NOWAIT]

Clauses:
PRIVATE (list)
SHARED (1list)
DEFAULT (PRIVATE | SHARED | NONE)
FIRSTPRIVATE (list)
LASTPRIVATE (list)
REDUCTION ({operator | intrinsic} : list)
COPYIN (list)
IF (scalar logical expression)

The PARALLEL SECTIONS / END SECTIONS directives define a non-iterative work-sharing construct
without the need to define an enclosing parallel region. Each section is executed by a single processor.
If there are more processors than sections, some processors will have no work and will jump to the
implied barrier at the end of the construct. If there are more sections than processors, one or more
processors will execute more than one section.

A SECTION directive may only appear within the lexical extent of the enclosing PARALLEL SECTIONS
/ END SECTIONS directives. In addition, the code within the PARALLEL SECTIONS / END SECTIONS
directives must be a structured block, and the code in each SECTION must be a structured block.

The available clauses are as defined in DO ... END DO and PARALLEL ... END PARALLEL sections.

8.12 ORDERED

The OpenMP ORDERED directive is supported using the following syntax:

' SOMP ORDERED
< Fortran code block executed by processor >
I SOMP END ORDERED

The ORDERED directive can appear only in the dynamic extent of a DO or PARALLEL DO directive that
includes the ORDERED clause. The code block between the ORDERED / END ORDERED directives is
executed by only one thread at a time, and in the order of the loop iterations. This sequentializes the
ordered code block while allowing parallel execution of statements outside the code block. The
following additional restrictions apply to the ORDERED directive:

The ORDERED code block must be a structured block. It is illegal to branch into or out of the block.

A given iteration of a loop with a DO directive cannot execute the same ORDERED directive
more than once, and cannot execute more than one ORDERED directive.

300 Chapter 8

8.13 ATOMIC

The OpenMP ATOMIC directive uses following syntax:

1$0MP ATOMIC
The ATOMIC directive is semantically equivalent to enclosing the following single statement in a
CRITICAL /END CRITICAL directive pair. The statement must be of one of the following forms:
X = X operator expr
X = expr operator x
X = intrinsic (x, expr)
X = intrinsic (expr, x)

where X is a scalar variable of intrinsic type, expr is a scalar expression that does not reference X,
intrinsic is one of MAX, MIN, I1AND, IOR, or IEOR, and operator is one of +, *, -, /, _AND., .OR.,
.EQV., or -NEQV..

8.14 FLUSH

The OpenMP FLUSH directive uses the following syntax:

I$OMP FLUSH [(list)]

The FLUSH directive ensures that all processor-visible data items, or only those specified in list when
it’s present, are written back to memory at the point at which the directive appears.

8.15 THREADPRIVATE

The OpenMP THREADPRIVATE directive uses the following syntax:

! $OMP THREADPRIVATE ([/common blockl/ [, /common block2/] ..])

Where common_blockn is the name of a common block to be made private to each thread but global
within the thread. This directive must appear in the declarations section of a program unit after the
declaration of any common blocks listed. On entry to a parallel region, data in a THREADPRIVATE
common block is undefined unless COPYIN is specified on the PARALLEL directive. When a common
block that is initialized using DATA statements appears in a THREADPRIVATE directive, each thread’s
copy is initialized once prior to its first use.

The following restrictions apply to the THREADPRIVATE directive:

The THREADPRIVATE directive must appear after every declaration of a thread private common
block.

OpenMP Directives for Fortran 301

Only named common blocks can be made thread private

It is illegal for a THREADPRIVATE common block or its constituent variables to appear in any
clause other than a COPY IN clause.

8.16 Run-time Library Routines

User-callable functions are available to the Fortran programmer to query and alter the parallel execution
environment.

integer omp_get num_ threads ()

returns the number of threads in the team executing the parallel region from which it is called. When
called from a serial region, this function returns 1. A nested parallel region is the same as a single
parallel region. By default, the value returned by this function is equal to the value of the environment
variable OMP_NUM_THREADS or to the value set by the last previous call to the
omp_set_num_threads() subroutine defined in the following section.

subroutine omp_ set num threads(scalar integer exp)

sets the number of threads to use for the next parallel region. This subroutine can only be called from a
serial region of code. If it is called from within a parallel region, or within a subroutine or function that
is called from within a parallel region, the results are undefined. This subroutine has precedence over
the OMP_NUM_THREADS environment variable.

integer omp_get thread num()

returns the thread number within the team. The thread number lies between 0 and
omp_get_num_threads()-1. When called from a serial region, this function returns 0. A nested
parallel region is the same as a single parallel region.

integer function omp get max threads()

returns the maximum value that can be returned by calls to omp_get_num_threads(). If
omp_set_num_threads() is used to change the number of processors, subsequent calls to
omp_get_max_threads() will return the new value. This function returns the maximum value
whether executing from a parallel or serial region of code.

integer function omp get num procs ()

returns the number of processors that are available to the program.

logical function omp in parallel()

returns . TRUE. if called from within a parallel region and .FALSE. if called outside of a parallel
region. When called from within a parallel region that is serialized, for example in the presence of an IF
clause evaluating . FALSE., the function will return . FALSE..

302 Chapter 8

subroutine omp_set_dynamic(scalar logical_ exp)

is designed to allow automatic dynamic adjustment of the number of threads used for execution of
parallel regions. This function is recognized, but currently has no effect.

logical function omp get dynamic()

is designed to allow the user to query whether automatic dynamic adjustment of the number of threads
used for execution of parallel regions is enabled. This function is recognized, but currently always
returns .FALSE..

subroutine omp_set nested(scalar logical exp)

is designed to allow enabling/disabling of nested parallel regions. This function is recognized, but
currently has no effect.

logical function omp get nested()

is designed to allow the user to query whether dynamic adjustment of the number of threads available
for execution of parallel regions is enabled. This function is recognized, but currently always returns
-FALSE..

subroutine omp init lock (integer var)

initializes a lock associated with the variable integer_var for use in subsequent calls to lock routines.
This initial state of integer_var is unlocked. It is illegal to make a call to this routine if integer_var is
already associated with a lock.

subroutine omp destroy lock(integer var)

disassociates a lock associated with the variable integer_var.

subroutine omp set lock(integer var)

causes the calling thread to wait until the specified lock is available. The thread gains ownership of the
lock when it is available. It is illegal to make a call to this routine if integer_var has not been associated
with a lock.

subroutine omp unset lock (integer var)

causes the calling thread to release ownership of the lock associated with integer_var. It is illegal to
make a call to this routine if integer_var has not been associated with a lock.

logical function omp test lock(integer var)

causes the calling thread to try to gain ownership of the lock associated with integer_var. The function
returns - TRUE. if the thread gains ownership of the lock, and . FALSE. otherwise. It is illegal to make a
call to this routine if integer_var has not been associated with a lock.

OpenMP Directives for Fortran 303

8.17 Environment Variables

OMP_NUM_THREADS specifies the number of threads to use during execution of parallel regions. The
default value for this variable is 1. For historical reasons, the environment variable NCPUS is supported
with the same functionality. In the event that both OMP_NUM_THREADS and NCPUS are defined, the value
of OMP_NUM_THREADS takes precedence.

Note: OMP_NUM_THREADS threads will be used to execute the program regardless of
the number of physical processors available in the system. As a result, you can run
programs using more threads than physical processors and they will execute correctly.
However, performance of programs executed in this manner can be unpredictable, and
oftentimes will be inefficient.

OMP_SCHEDULE specifies the type of iteration scheduling to use for DO and PARALLEL DO loops which
include the SCHEDULE (RUNTIME) clause. The default value for this variable is “STATIC”. If the optional
chunk size is not set, a chunk size of 1 is assumed except in the case of a STATIC schedule. For a
STATIC schedule, the default is as defined in the DO ... END DO and PARALLEL ... END PARALLEL
sections. Examples of the use of OMP_SCHEDULE are as follows:

$ setenv OMP_SCHEDULE “STATIC, 5”
$ setenv OMP_SCHEDULE “GUIDED, 8"
$ setenv OMP_SCHEDULE “DYNAMIC”

OMP_DYNAMIC currently has no effect.

OMP_NESTED currently has no effect.

MPSTKZ increase the size of the stacks used by threads executing in parallel regions. It is for use with
programs that utilize large amounts of thread-local storage in the form of private variables or local
variables in functions or subroutines called within parallel regions. The value should be an integer <n>

concatenated with M or m to specify stack sizes of n megabytes. For example:

$ setenv MPSTKZ 8M

304 Chapter 8

9 HPF Directives

HPF directives are Fortran 90/95 comments which convey information to the PGHPF compiler.
Directives are the heart of an HPF program, indicating data parallelism by specifying how data is
assigned and allocated among processors on a parallel system, and the interrelationships between
various data elements.

9.1 Adding HPF Directives to Programs

Directives in an HPF program may have any of the following forms:

CHPFS directive
IHPFS directive
*HPF$ directive

Since HPF supports two source forms, fixed source form, and free source form, there are a variety of
methods to enter a directive. Section 3.4 of the Fortran 95 Handbook outlines methods for entering
code that is valid for both free and fixed form Fortran. The C, !, or * must be in column 1 for fixed
source form directives. In free source form, Fortran limits the comment character to !. If you use the
'HPF$ form for the directive origin, and follow the rules outlined in the Fortran 95 Handbook, your
code will be universally valid. The body of the directive may immediately follow the directive origin.
Alternatively, using free source form, any number of blanks may precede the HPF directive. Any names
in the body of the directive, including the directive name, may not contain embedded blanks. Blanks
may surround any special characters, such as a comma or an equals sign.

The directive name, including the directive origin, may contain upper or lower case letters (case is not
significant).

HPF Directives 305

9.2

HPF Directive Summary

Table 9-1: HPF Directive Summary

DIRECTIVE FUNCTION

ALIGN Specifies that a data object is mapped in the same fashion as an associated
data object. This is a specification statement. By default, objects are aligned
to themselves.

DIMENSION Specifies the dimensions of a template or processor "array". This is a
specification statement.

DISTRIBUTE Specifies the mapping of data objects to processors. This is a specification
statement. By default, objects are not distributed.

DYNAMIC Specifies that an object may be dynamically realigned or redistributed.

INDEPENDENT Preceding a DO loop or FORALL , this directive specifies that the DO loop's
iterations do not interact in any way and that the FORALL index
computations do not interfere with each other, and thus the FORALL may be
executed in parallel. This is an executable statement. By default, FORALL
and DO loops are not assumed to be independent.

INHERIT Specifies that a subprogram's dummy argument use the template associated
with the actual argument for its alignment. This is a specification statement.

NOSEQUENCE Specifies variables that are not sequential. Note that using PGHPF, by default
variables is not sequential. Variables will be sequential if the compiler option
-Msequence is supplied.

PROCESSORS Specifies the number and rank of a processor arrangement. This is a
specification statement.

REALIGN This is similar to ALIGN, but is executable. An array can be realigned at any
time, if it is declared using the DYNAMIC attribute.

REDISTRIBUTE This is similar to DISTRIBUTE, but is executable. An array can be
redistributed at any time, if it is declared using the DYNAMIC attribute.

SEQUENCE Specifies that a variable or common block is sequential and requires linear,
standard FORTRAN 77, treatment. This is a specification statement.

TEMPLATE Defines an entity that may be used as an abstract align-target for a distribution
or a redistribution. This is a specification statement.

306

Chapter 9

ALIGN - REALIGN

The ALIGN directive specifies how data objects are mapped in relation to other data objects. The data
objects that are most often aligned in HPF programs are arrays. Alignment suggests to the compiler that
entire objects or elements of arrays be stored on the same processor. Operations on objects that are
aligned should be more efficient than operations on objects that are not aligned, assuming that objects
that are not aligned may reside on different processors.

REALIGN is similar to ALIGN, but is executable. An array can be realigned at any time, if it is
declared using the DYNAMIC attribute.

Syntax
IHPF$ ALIGN alignee align-directive-stuff
or
'HPF$ ALIGN align-attribute-stuff :: alignee-list
where:
alignee is an object-name.

align-directive-stuff is (align-source-list) align -with-clause
align-attribute-stuff is [(align-source-list)] align -with-clause

Each align-source has the form:

*
align-dummy

Each align-with-clause has the form:

WITH align-target [(align-subscript-1ist)]
An align-subscript has the form:
int-expr

align-subscript-use
subscript-triplet

*

Type

Specification

HPF Directives 307

Default

The default PGHPF alignment specifies that a data object is replicated across all processor memories.
For example, for an array RAY1 with a single dimension and a template T with matching size and
shape, the following alignment specifies replication when T is distributed in any manner across
processors.

HPF$ ALIGN RAY1 (*) WITH T (*)
'HPF$ DISTRIBUTE T (BLOCK)

See Also

For details on the ALIGN syntax specifications, refer either to section 4.5 of The High Performance
Fortran Handbook, or section 3.4 of the HPF Language Specification.

Example

PROGRAM TEST
INTEGER A(1000)
'HPF$ PROCESSORS PROC(10)
'HPF$ TEMPLATE T (1000)
HPF$ ALIGN A(:) WITH T(:)
IHPF$ DISTRIBUTE (BLOCK) ONTO PROC:: T

DIMENSION

The DIMENSION attribute specifies the dimensions and extents for each dimension of a TEMPLATE
or PROCESSORS directive.

Syntax

IHPF$ DIMENSION (explicit-shape-spec-list)

Type

Specification

Default
The default for a TEMPLATE or PROCESSORS arrangement is a scalar.

See Also
The TEMPLATE and PROCESSORS directives.

308 Chapter 9

Example

REAL A(100,100)

'HPF$ PROCESSORS, DIMENSION(10,10):: PROC
'HPF$ TEMPLATE, DIMENSION(10,10):: T

'HPF$ ALIGN WITH T:: A

IHPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO PROC:: T

DYNAMIC

The DYNAMIC attribute specifies that an object may be dynamically realigned or redistributed.

Syntax
'HPF$ DYNAMIC alignee-or-distributeee-list

Type

Specification

Default

By default an object is not dynamic.

See Also
The REALIGN and REDISTRIBUTE directives.

Example
REAL A(100,100)
|HPFS DYNAMIC A
IHPF$ PROCESSORS, DIMENSION(10,10):: PROC
IHPF$ TEMPLATE, DIMENSION(10,10):: T
IHPF$ ALIGN WITH T:: A
|HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO PROC:: T

DISTRIBUTE - REDISTRIBUTE

The DISTRIBUTE directive specifies a mapping of data objects to abstract processors in a processor
arrangement. Distribution partitions an object, in the usual case an array (actually a template), among a
set of processors.

HPF Directives 309

REDISTRIBUTE is similar to DISTRIBUTE, but is executable. An array can be redistributed at any
time, if it is declared using the DYNAMIC attribute
Syntax

IHPF$ DISTRIBUTE distributee dist-directive-stuff

or

'HPF$ DISTRIBUTE dist-attribute-stuff :: distributee-list

where dist-directive-stuff is one of:

(dist-format-list)
(dist-format-list) ONTO processors-name

The form of dist-attribute-stuff is one of:

(dist-format-list)
(dist-format-list) ONTO processors-name
ONTO dist-target

The dist-format may be one of:

BLOCK [(int-expr) 1
CYCLIC [(int-expr)]

Type

Specification

Default

By default, each object is replicated and distributed to every processor.

See Also

For details on the DISTRIBUTE syntax specifications, refer either to section 4.4 of The High
Performance Fortran Handbook, or section 3.3 of the HPF Language Specification.
Example

REAL A(100,100)
|HPF$ PROCESSORS PROC (10,10)

310 Chapter 9

'HPF$ TEMPLATE T (10,10)
'HPF$ ALIGN WITH T:: A
'HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO PROC:: T

INDEPENDENT

The INDEPENDENT directive specifies that the iterations of a DO loop, or the computations for the
active index values of a FORALL, do not interfere with each other in any way. Refer to the PGHPF
Release notes for details on extensions to the INDEPENDENT directive.

Syntax
|HPF$ INDEPENDENT [, NEW (variable-list) 1]

Type

Executable

Default

By default, DO and FORALL statements are not independent.

See Also

For details on the INDEPENDENT syntax specifications, refer either to section 6.4 of The High
Performance Fortran Handbook, or section 4.4 of the HPF Language Specification. Also refer to the
PGHPF Release notes for details on extensions to the INDEPENDENT directive.

Example

|HPFS$ INDEPENDENT
DO I = 2, N-1
X(I) = Y(I-1) + Y(I) + Y(I+1)
END DO

INHERIT

The INHERIT directive specifies that the template for a dummy argument should be the same as the
template for the corresponding actual argument.

Syntax

'HPF$ INHERIT dummy-argument-name-list

HPF Directives 311

Default

If the INHERIT attribute is not used, and ALIGN and DISTRIBUTE are not used for a dummy
argument, then the dummy's template has the same shape as the dummy argument and it is ultimately
aligned with itself.

Type

Specification

See Also

For details on the INHERIT syntax specifications, refer either to section 5.4 of The High Performance
Fortran Handbook, or section 3.9 of the HPF Language Specification.

Example

REAL VAR1 (100)
IHPFS$ DISTRIBUTE VAR (BLOCK)10))
CALL SUB1(VAR1(10:20:2))

SUBROUTINE SUB1 (PARAM1)
REAL PARAM1 (5)
'HPF$ INHERIT PARAM1

PROCESSORS

The PROCESSORS directive specifies one or more processor arrangements, by name, rank, and size.

Syntax
IHPF$ PROCESSORS processors-decl-list
Default

The default for PROCESSORS is the number of processors on which the program is running, as
specified by the runtime command-line options.

Type

Specification

See Also

For details on the PROCESSOR syntax specifications, refer either to section 4.8 of The High
Performance Fortran Handbook, or section 3.7 of the HPF Language Specification

312 Chapter 9

For finding more information on processors while running a program, refer to the
NUMBER_OF_PROCESSORS and PROCESSORS_SHAPE intrinsics.

Examples
|HPFS PROCESSORS PROCN (128)
IHPF$ PROCESSORS PROC2 (3,3, 3)
IHPF$ PROCESSORS: : PROC3(-8:12,100:200)

NO SEQUENCE

In environments where variables are by default sequential, the NO SEQUENCE directive specifies that
non-sequential access should apply to a scoping unit or to variables and common blocks within the
scoping unit.

Syntax
IHPF$ NO SEQUENCE
or
IHPF$ NOSEQUENCE [::] association-name-list
Type
Specification
See Also

For details on the NO SEQUENCE syntax specifications, refer either to section 4.10.2 of The High
Performance Fortran Handbook, or section 7.1.3 of the HPF Language Specification

The SEQUENCE directive.

Example

INTEGER FLAG, I, A(1000)
COMMON /FOO/ A,I,FLAG
|HPF$ NOSEQUENCE FOO

SEQUENCE

The SEQUENCE directive allows a user to declare explicitly that variables or common blocks are to be
treated by the compiler as sequential.

HPF Directives 313

Syntax
|HPFS SEQUENCE
or

IHPF$ SEQUENCE [::] association-name-list

Type

Specification

See Also

For details on the SEQUENCE syntax specifications, refer either to section 4.10.2 of The High
Performance Fortran Handbook, or section 7.1.3 of the HPF Language Specification.

The NO SEQUENCE directive.

Example

INTEGER FLAG, I, A(1000)
COMMON /FOO/ A,I,FLAG
'HPF$ SEQUENCE FOO

TEMPLATE

The TEMPLATE directive declares one or more templates, specifying for each a name, rank, and size
for each dimension.
Syntax
IHPF$ TEMPLATE template-decl-list
Default
By default for each object, a new template is created and in the absence of an explicit ALIGN directive,

the object is ultimately aligned to itself.

Type

Specification

314 Chapter 9

See Also

For details on the TEMPLATE syntax specifications, refer either to section 4.9 of The High
Performance Fortran Handbook, or section 3.8 of the HPF Language Specification.
Examples

HPF$ TEMPLATE VARI (N)
HPF$ TEMPLATE VAR2 (N, N)
'HPF$ TEMPLATE, DISTRIBUTE (BLOCK,BLOCK) :: BOARD(8, 8)

HPF Directives 315

Appendix A HPF LOCAL

This appendix lists the HPF_ LOCAL LIBRARY procedures. Table A.1 briefly lists the procedures.
Refer to the man pages supplied with the PGHPF software for further details on these procedures. Refer
to Chapter 6 for details on the intrinsics defined in the Fortran 90/95 Language Specification and for
HPF LIBRARY procedures.

For complete descriptions of the HPF_LOCAL_LIBRARY routines, and the current standards for
HPF_LOCAL extrinsics, refer to Annex A, "Coding Local Routines in HPF and Fortran 90", in the
High Performance Fortran Language Specification.

Table A.1: HPF_LOCAL_LIBRARY Procedures

Intrinsic Description

ABSTRACT_TO_PHYSICAL Returns processor identification for the physical
processor associated with a specified abstract
processor.

GLOBAL_AL IGNMENT Returns information about the global HPF array
argument.

GLOBAL_DISTRIBUTION Returns information about the global HPF array
argument.

GLOBAL_LBOUND Returns lower bounds of the actual HPF global
array associated with a dummy array.

GLOBAL_SHAPE Returns the shape of the global HPF actual
argument.

GLOBAL_SIZE Returns the global extent of the specified
argument.

GLOBAL_TEMPLATE Returns template information for the global
HPF array argument.

GLOBAL_TO_LOCAL Converts a set of global coordinates within a

global HPF actual argument.

HPF_LOCAL 317

Intrinsic Description

GLOBAL_UBOUND Returns upper bounds of the actual HPF global
array associated with a dummy array.

LOCAL_BLKCNT Returns the number of blocks of elements in
each dimension on a given processor.

LOCAL_L INDEX Returns the lowest local index of all blocks of
an array dummy.

LOCAL_TO_GLOBAL Converts a set of local coordinates within a local
dummy array to an equivalent set of global
coordinates.

LOCAL_UINDEX Returns the highest local index of all blocks of

an array dummy argument.

MY_PROCESSOR Returns the identifying number of the calling
physical processor.

PHYSICAL_TO_ABSTRACT Returns coordinates for an abstract processor,
relative to a global actual argument array.

ABSTRACT_TO PHYSICAL

Subroutine returns processor identification for the physical processor associated with a specified
abstract processor relative to a global actual argument array.
Synopsis
ABSTRACT TO_ PHYSICAL (ARRAY, INDEX, PROC)
Arguments

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument. It is an INTENT(IN) argument.

INDEX must be a rank-1 integer array containing the coordinates of an abstract processor in the
processors arrangement onto which the global HPF array is mapped. It is an INTENT(IN) argument.
The size of INDEX must equal the rank of the processors arrangement.

PROC must be scalar and of type integer. It is an INTENT(OUT) argument. It receives the identifying
value for the physical processor associated with the abstract processor specified by INDEX.

318 Appendix A

GLOBAL_ALIGNMENT

This has the same interface and behavior as the HPF inquiry subroutine HPF_ ALIGNMENT, but it
returns information about the global HPF array actual argument associated with the local dummy
argument ARRAY, rather than returning information about the local array.

Synopsis

GLOBAL_ALIGNMENT (ARRAY, ...)

GLOBAL_DISTRIBUTION

This has the same interface and behavior as the HPF inquiry subroutine HPF_DISTRIBUTION, but it
returns information about the global HPF array actual argument associated with the local dummy
argument ARRAY, rather than returning information about the local array.

Synopsis

GLOBAL_DISTRIBUTION (ARRAY, ...)

GLOBAL_LBOUND

Inquiry function, returns all the lower bounds or a specified lower bound of the actual HPF global array.

Synopsis
GLOBAL_LBOUND (ARRAY, DIM)
Arguments

Optional argument. DIM

ARRAY may be of any type. It must not be a scalar. It must be a dummy array argument of an
HPF_LOCAL procedure which is argument associated with a global HPF array actual argument.

DIM (optional) must be scalar and of type integer with a value in the range 1 <= DIM <= n, where n is
the rank of ARRAY. The corresponding actual argument must not be an optional dummy argument.

Return Type

The result is of type default integer. It is scalar if DIM is present; otherwise the result is an array of rank
one and size n, where n is the rank of ARRAY.

HPF_LOCAL 319

Return Value

If the actual argument associated with the actual argument associated with ARRAY is an array section
or an array expression, other than a whole array or an array structure component,

GLOBAL _LBOUND(ARRAY, DIM) has the value 1; otherwise it has a value equal to the lower bound
for subscript DIM of the actual argument associated with the actual argument associated with ARRAY.

GLOBAL LBOUND(ARRAY) has a value whose i th component is equal to
GLOBAL LBOUND(ARRAY, i), fori=1,2,..n where n is the rank of ARRAY.

GLOBAL_SHAPE

Returns the shape of the global HPF actual argument associated with an array or scalar dummy
argument of an HPF_LOCAL procedure.
Synopsis
GLOBAL_SHAPE (SOURCE)
Argument
SOURCE may be of any type. It may be array valued or a scalar. It must be a dummy argument of an
HPF_LOCAL procedure which is argument associated with a global HPF actual argument.
Return Type

The result is a default integer array of rank one whose size is equal to the rank of SOURCE.

Return Value

The value of the result is the shape of the global actual argument associated with the actual argument
associated with SOURCE.

GLOBAL_SIZE

Inquiry function returns the extent along a specified dimension of the global HPF actual array argument
associated with a dummy array argument of an HPF_LOCAL procedure.

Synopsis

GLOBAL_SIZE (ARRAY, DIM)

320 Appendix A

Arguments
ARRAY may be of any type. It must not be a scalar. It must be a dummy argument of an HPF_LOCAL
procedure which is argument associated with a global HPF actual argument.

DIM (optional) must be scalar and of type integer with a value in the range 1<= DIM <= n, where n is
the rank of ARRAY.
Return Type

Default integer scalar.

Return Value

The result has a value equal to the extent of dimension DIM of the actual argument associated with the
actual argument associated with ARRAY or, if DIM is absent, the total number of elements in the actual
argument associated with the actual argument associated with ARRAY.

GLOBAL_TEMPLATE

This has the same interface and behavior as the HPF inquiry subroutine HPF_ TEMPLATE, but it
returns information about the global HPF array actual argument associated with the local dummy
argument ARRAY, rather than returning information about the local array.
Synopsis

GLOBAL_TEMPLATE (ARRAY, ...)
Arguments

Refer to HPF_ TEMPLATE.

GLOBAL_TO_LOCAL

Subroutine converts a set of global coordinates within a global HPF actual argument array to an
equivalent set of local coordinates within the associated local dummy array.

Synopsis

GLOBAL_TO_ LOCAL (ARRAY, G_INDEX, L_INDEX, LOCAL,
NCOPIES, PROCS)

HPF_LOCAL 321

Arguments
ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument. It is an INTENT(IN) argument.

G_INDEX must be a rank-1 integer array whose size is equal to the rank of ARRAY. It is an
INTENT(IN) argument. It contains the coordinates of an element within the global HPF array actual
argument associated with the local dummy array ARRAY.

L _INDEX (optional) must be a rank-1 integer array whose size is equal to the rank of ARRAY. It is an
INTENT(OUT) argument. It receives the coordinates within a local dummy array of the element
identified within the global actual argument array by G_INDEX. (These coordinates are identical on
any processor that holds a copy of the identified global array element.)

LOCAL (optional) must be scalar and of type LOGICAL. It is an INTENT(OUT) argument. It is set to
.TRUE. if the local array contains a copy of the global array element and to .FALSE. otherwise.

NCOPIES (optional) must be scalar and of type integer. It is an INTENT(OUT) argument. It is set to
the number of processors that hold a copy of the identified element of the global actual array.

PROCS (optional) must be a rank-1 integer array whose size is a least the number of processors that
hold copies of the identified element of the global actual array. The identifying numbers of those
processors are placed in PROCS. The order in which they appear is implementation dependent.

GLOBAL_UBOUND

Inquiry function returns all the upper bounds or a specified upper bound of the actual HPF global array
argument associated with an HPF_ LOCAL dummy array argument.

Synopsis
GLOBAL_UBOUND (ARRAY, DIM)
Arguments

Optional argument. DIM

ARRAY may be of any type. It must not be a scalar. It must be a dummy array argument of an
HPF_LOCAL procedure which is argument associated with a global HPF array actual argument.

DIM (optional) must be scalar and of type integer with a value in the range 1 <= DIM <= n, where n is
the rank of ARRAY. The corresponding actual argument must not be an optional dummy argument.

322 Appendix A

Return Type

The result is of type default integer. It is scalar if DIM is present; otherwise the result is an array of rank
one and size n, where n is the rank of ARRAY.

Return Value

If the actual argument associated with the actual argument associated with ARRAY is an array section
or an array expression, other than a whole array or an array structure component,

GLOBAL UBOUND(ARRAY, DIM) has a value equal to the number of elements in the given
dimension; otherwise it has a value equal to the upper bound for subscript DIM of the actual argument
associated with the actual argument associated with ARRAY, if dimension DIM does not have size zero
and has the value zero if dimension DIM has size zero.

GLOBAL UBOUND(ARRAY) has a value whose i th component is equal to
GLOBAL UBOUND(ARRAY, i), for i = 1,2,...n where n is the rank of ARRAY.

LOCAL_BLKCNT

Pure function returns the number of blocks of elements in each dimension, or of a specific dimension of
the array on a given processor.

Synopsis
LOCAL_BLKCNT (ARRAY, DIM, PROC)

Arguments
Optional arguments. DIM, PROC.

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument.

DIM (optional) must be scalar and of type integer with a value in the range 1<= DIM <= n where n is
the rank of ARRAY. The corresponding actual argument must not be an optional dummy argument.

PROC (optional) must be scalar and of type integer. It must be a valid processor number.

Return Type

The result is of type default integer. It is scalar if DIM is present; otherwise the result is an array of rank
one and size n, where n is the rank of ARRAY.

HPF_LOCAL 323

Return Value

The value of LOCAL_BLKCNT(ARRAY, DIM, PROC) is the number of blocks of the ultimate align
target of ARRAY in dimension DIM that are mapped to processor PROC and which have at least one
element of ARRAY aligned to them.

LOCAL BLKCNT(ARRAY, DIM) returns the same value as LOCAL BLKCNT(ARRAY, DIM,
PROC=MY_PROCESSOR()).

LOCAL_BLKCNT(ARRAY) has a value whose i th component is equal to
LOCAL_BLKCNT(ARRAY, i), for i = 1,...,n, where n is the rank of ARRAY.

LOCAL_LINDEX

Pure function returns the lowest local index of all blocks of an array dummy argument in a given
dimension on a processor.
Synopsis
LOCAL_LINDEX (ARRAY, DIM, PROC)
Arguments

Optional argument. PROC.

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument.

DIM must be scalar and of type integer with a value in the range 1 <= DIM <=n, where n is the rank
of ARRAY.

PROC (optional) must be scalar and of type integer. It must be a valid processor number.

Return Type

The result is a rank-one array of type default integer and size 1<= DIM <=n, where n is the value
returned by LOCAL _BLKCNT(ARRAY, DIM [, PROC)).

Return Value

The value of LOCAL_LINDEX(ARRAY, DIM, PROC) has a value whose i th component is the local
index of the first element of the i th block in dimension DIM of ARRAY on processor PROC.

LOCAL LINDEX(ARRAY, DIM) returns the same value as LOCAL_LINDEX(ARRAY, DIM,
PROC=MY PROCESSOR()).

324 Appendix A

LOCAL_TO GLOBAL

Subroutine converts a set of local coordinates within a local dummy array to an equivalent set of global
coordinates within the associated global HPF actual argument array.
Synopsis
LOCAL_TO_GLOBAL (ARRAY, L INDEX, G INDEX)
Arguments

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument. It is an INTENT(IN) argument.

L _INDEX must be a rank-1 integer array whose size is equal to the rank of ARRAY. It is an
INTENT(IN) argument. It contains the coordinates of an element within the local dummy array
ARRAY.

G_INDEX must be a rank-1 integer array whose size is equal to the rank of ARRAY. It is an

INTENT(OUT) argument. It receives the coordinates within the global HPF array actual argument of
the element identified within the local array by L_INDEX.

LOCAL_UINDEX

Pure function returns the highest local index of all blocks of an array dummy argument in a given
dimension on a processor.

Synopsis
LOCAL UINDEX (ARRAY, DIM, PROC)

Arguments

Optional argument. PROC.

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument.

DIM must be scalar and of type integer with a value in the range 1 <= DIM <= n, where n is the rank of
ARRAY.

PROC (optional) must be scalar and of type integer. It must be a valid processor number.

HPF_LOCAL 325

Return Type

The result is a rank-one array of type default integer and size b , where b is the value returned by
LOCAL BLKCNT(ARRAY, DIM [, PROC])

Return Value

The value of LOCAL UINDEX(ARRAY, DIM, PROC) has a value whose i th component is the local
index of the last element of the i th block in dimension DIM of ARRAY on processor PROC.

LOCAL_UINDEX(ARRAY, DIM) returns the same value as LOCAL UINDEX(ARRAY, DIM,
PROC=MY_PROCESSOR()).

MY _ PROCESSOR

Pure function returns the identifying number of the calling physical processor.

Synopsis
MY PROCESSOR ()

Return Type

The result is scalar and of type default integer.

Return Value

Returns the identifying number of the physical processor from which the call is made. This value is in
the range where is the value returned by NUMBER_OF PROCESSORS)().

PHYSICAL_TO ABSTRACT

Subroutine returns coordinates for an abstract processor, relative to a global actual argument array,
corresponding to a specified physical processor. This procedure can be used only on systems where
there is a one-to-one correspondence between abstract processors and physical processors. On systems
where this correspondence is one-to-many an equivalent, system-dependent procedure should be
provided.

Synopsis

PHYSICAL TO ABSTRACT (ARRAY, PROC, INDEX)

326 Appendix A

Arguments

ARRAY may be of any type; it must be a dummy array that is associated with a global HPF array actual
argument. It is an INTENT(IN) argument.

PROC must be scalar and of type default integer. It is an INTENT(IN) argument. It contains an
identifying value for a physical processor.

INDEX must be a rank-1 integer array. It is an INTENT(OUT) argument. The size of INDEX must
equal the rank of the processor arrangement onto which the global HPF array is mapped. INDEX
receives the coordinates within this processors arrangement of the abstract processor associated with the
physical processor specified by PROC.

HPF_LOCAL 327

Index

ABSTRACT TO PHYSICAL............... 318
ACCEPT ..ot 58
ADVANCE ..ottt 171
ALIGN ..ot 307
WITH..cooiiiiiiiecnccceeee 307
ALLOCATABLEcccocvvniiiiiiinicnienen. 59
ALLOCATEcocioiiiiiiiieeieeiceeeee, 60
arithmetic eXpressions..........ccceevvevverenenen. 29
ARRAY ..ot 61,153
arrays
ARRAY attribute.......ccocvvveinvereireencnnn 153
assumed Shapecceeeeevevienenceienene, 150
asSUMed SIZE€c..eveueeueeuieieieicieieeeenee 150
CM Fortran constructors.............c.cec...... 153
CONSLIUCtOr EXtENSIONS ...evuvvveverenrrvenennen 153
CONSTIUCTOTS. ... 153
deferred shape.......ccoceveveveeieniecieieee, 150
eXplicit Shapecceveveerieniieiereeiee 150
SECHIONS ...vvieeeiiieeeiiieeeiie e 152,153
Index

SPECIfiCatioN......ceevvereieiieiieiesieeieiceene 150
specification assumed shape 151
specification assumed Sizec..ccceeueenee 151
specification deferred shape.................... 151
specification explicit shape............c.c...... 150
subscript triplets........coeveevererieenienieiens 152
SUDSCIIPLS ..ot 151
VECtOr SUDSCIIPLS ...eveeevereeiieiieiieieniieneens 153
ASSIGN ..ot 62
assignment statements............cceeverveeenennen. 32
assumed shape arrays.........c.cocceevererennrne 150
assumed S1Z€ AITaYScccvereeeeerereneeenenns 150
attribute
DIMENSIONoeiiiinnrererccininenene 308
PURE ...ttt 127
BACKSPACE ..o 63
specifier
ERR ...oooiiiiiiiiiiccce, 63
TIOSTAT oo 63

329

binary constantscceeeevveeciereereeennenn, 47
BLOCK ...ttt 309
BLOCKDATA......ccioiiiieieieerceeeeen 64
BYTE...ooiiee e 64
CALL. ..ot 65
CASE ... 66
CHARACTER......ccciiieieieeeee e, 67
character constants.........c.cceeceevereeneenennenne. 43
character Set........coevevereeienieieneeseeeee 22
C language compatibilityccccerieuenne 23
CLOSE.....oiiiiiiiiiitceeeeeeeecen 68
DISP specifierccoceveeeerireneeeeee 68
DISPOSE specifier......c.cccevirereeeenennenne. 68
ERR specifier.....ccecvererienieeieieneeieeee 68
IOSTAT specifier.....c..cocecevereneecrncnnenes 68
STATUS specifier......ccccceverereneeecirennens 68
UNIT Specifiercoceevereerienenienieneeiene 68
closing a file........ccooeverienieniieiieieiee 157
CM Fortran
AITAYS c.veveeneerreententeeeenteetenreeseeneeeseereseeens 153
CM Fortran Intrinsicsccccceeeerveenenne 254

330

CSHIFT ... 254
EOSHIFT ..o 255
RESHAPE ... 255

column formatting

continuation field..............cccceeeeenreenns 24,25
label field.......cccoevvininineciinnccee 24
statement fieldcccoooeeveeieiinennns 24,25
COMMON.....ooiiiiiiiiiiiienicncceeee, 69
COMPLEXcocoiiiiiiiiiniinicniencececee 72
complex constants...........cceeveeeeeerrereeennnnne 42
Conformance to standards............cccceueunee. 15
CONSLANTS ..veeeeeieeeietieieeie et 40
PARAMETER statement..........c..ccccecuenene 44
CONTAINS ..ot 73
CONTINUEcootiiiiiiienieneeecee 74
CONVENLIONScoueeneierieeieeie e 17
CSHIFT
CM Fortran.........coceveeeveneeneeneeieneneeens 254
CYCLE ..ot 74
CYCLIC.....cooiiiiiiieieeieceeceeeeeeeen 309
DATA e 75
data types
Index

binary constantsceceeeveenienennienennen 47

character constants............ccocceceeereeeecenne 43
complex CONnStants...........ecevererereeerennene 42
CONSTANTS ... 40
double precision constants..........c..c..c.c..... 42
CXLENSIONS ..vveeeienvieeeenieriieieieeieeieeieeeeseene 38
hexadecimal constantsc.ccceceeuenene 47
INteZEr CONSLANTSoveeueeeieiereeieieieceeenene 40
kind parameterccceeeverereneieinennne 37
logical constantsccccceeverieruiecieniennnans 43
octal CONStANES......cc.eervereeeiereeierieeieieseeane 47
real ConStantsceceveeveerieeienienienienieans 41
81Z€ SPECIfiCaAtiON. ...ccueeuvereieieriieieniieieieae 38
DEALLOCATEccocveiiiiiiiiniinicnieee. 75
STAT specifierceoeeeerinireeeeeeee 76
debug statements..........ccceeeeereeienieniennen. 25
DECODEooiiiiieieeeeeeeeee e 76
deferred shape arraysccccevveveeennne 150
derived typescooveveerereneeeeeeeee e 44
DIMENSIONooiiiiiiiiieieeieneneesieeeen 77
direct access filesc.ccoevereevenevninnene, 157
Directives
Index

Parallelizationccccccveevvincninicnennne 289
DO 79
double precision constants 42
DOUBLECOMPLEXccccccvvvineininnnne 81
DOUBLEPRECISION.......cocccoviniinieninne 82
DOWHILEccooiiiiniininicenenceeneas 81
DYNAMIC.....cocooiiniiineneneceeeene 309
ELSE ..o 83,101, 102
ELSE IF...coiiiininincrircceccean, 84,102
ELSE WHERE........coccoiiiniiiniiinenn, 84
ELSEIF......cooviiiiniieineeneeceeeene 101
ELSEWHEREcccovviiinineinienn 145
ENCODEcoiiiiiiieneeseeeeea 85
END oot 86
END DOt 79
END IF ...ciiiiiiiniiieneeeneeceeeee 102
ENDBLOCKDATA....cccotveirineirenennn, 64
ENDCASE ..ottt 66
ENDFILE....ccccoiiiiniiiincecnceecneeene 86
ENDFORALLccccviiiiniiiinciecnreen, 94
ENDFUNCTIONccccoveviniinineceenenenn 97
ENDIFcoiiiiiieiniieneeeeeeeeee 101

ENDINTERFACE.........ccooiviiiiiiiens 109

ENDPROGRAMccccceoiviiiiiiieicne 126
ENDSUBROUTINE.........cccocviiiiiinns 139
ENDTYPE ..o 141
ENDWHERE.........cccccooiiiiiiiiiiiiis 145
ENTRY .cviiiiiieieieieencneeeeceeeeceen 89

MPSTKZcoviiiiiiiiniiieneeceeeienene 304
OMP _DYNAMICccocevviiiiiinieeieenene 304
OMP_NESTED.....ccceoiiiininieninieienene 304
OMP_NUM_THREADSccoovveermenneenn. 304
OMP_SCHEDULEcccoceeviininininene 304
EOSHIFT
CM Fortran........cocceeeveevenenecneneenicneens 255
EXIT oo 92
CXPIESSIONS. ...cvvienrieerierriereeereenreereereeneeenas 27
EXTERNAL ..ot 93
EXTRINSIC ..o, 93
F77 3F ROULINES....cvevveeinienieeiieieieieene 257
ABORT ..ottt 258
ACCESS ..o 258
ALARM ..cooiiiiiiiiniiicieeceeeecee 259

332

BESSEL FUNCTIONScccocviiinininne. 259
ChAIT e 260
CHMOD.....c.commiiiiininneeieeeneneneaee 261
CTIME ..ot 261
DATE ..ot 261
DRANDMooiiiiiiiieiieeeececeeee 277
DSECNDS....coettiririeieieieeireresieieieieeens 279
ELAPSED TIME........cccooviiieieieeieene 262
ERROR FUNCTIONScoceeieniinieiene 262
EXIT ..ottt 263
FDATE. ..o 263
FGETC ..ot 263
FLUSH .ottt 264
FORK ..ottt 264
FSTAT ..ottt 280
GERROR......cootiiiiincccceeee 266
GETARG. ...t 266
GETC .t 267
GETCWD....ooiiiiiiiiiiieieececeeeee 267
GETENV ..ot 268
GETGID....cootmmiieiiinneeieceenenenee 268
GETLOG...c.ccoiiieciicreeecc e 268
GETPID ..oeiiiiiiiinceeeeeeeeeee 269

Index

GMTIME.......cooiiiiiiiceee 269 QSORT ..ot 276
HOSTNM ..ot 270 RAND ...ooiiiiiiinceccecceeeee 277
TARG ..o 267 RANDOMcocovviiiiiiiiiiiiiiiicicieene 277
IDATE ..ooooiiieeeeeeeeeeeee e 270 RANGE ..o, 278
TERRNOooiiiiiiiiiieeeeeeeeee e, 270 RENAME ..o 278
TOINIT oo 271 RINDEX ..o, 279
IRAND ..ottt 277 SECNDS ..ottt 279
IRANDMooooiiiiiieiece e 277 SIGNAL....ccooiiiiiiiineeccee, 280
ISATTY oo 271 SLEEP ..ot 280
ITIMEcooiiiiiiiiieeeeeee e, 271 SRAND......ootietieeeee et 277
KILL .ot 272 STAT oo 280
LINK ..o, 272 STIME ..ot 281
LNBLNK ...ttt 272 SYMLNK ...oooviiiiiiniiienieeneereneeeee, 281
LOC .. 273 SYSTEMooviiiiiiiniiiiniiicnicecnceeee, 282
LSTAT ..ottt 280 TIME ..o 282
LTIME ..ot 273 TIMES ..ot 283
MALLOCooooiieiieieeeeeeeeeeeee e 273 TTYNAM ..ottt 283
MCLOCKovtiieetieieeieesie e 274 UNLINK ..., 283
MVBITS ..ot 274 WAIT ..o 284
OUTSTR ..ot 275 F77 VAX Built-In Functions................... 284
PERROR.......ooiiiiiiiiieeeeeee 275 YOLOC ...ttt 284
PUTC oo 275 YOREF(R) ..ooeevveeeeeseeeeeeeeeseeseeeseeeesee 284

F77 VAX System Subroutines................ 284 ASIN s 199

F77 VAX/VMS Subroutines................... 285 ASSOCIATED ..ot 200
DATE ..ot 285 ATAN. ..o, 200, 201
EXIT oot 285 ATANZ ..o 201
GETARG oo 286 153 A VA < 202
TARGC ..o 286 BTEST ..o 202
IDATE.....ooiiiieeeeeceee 286 CEILING.....coiiiiiieneeeneeeneeeeeeee 202
MVBITS ..o 286 CHARoooiiiiiineceeeccece 203
RAN Lt 287 CMPLX ..ot 203, 208
SECNDS ..ottt 288 CONIJG ..ot 204
TIME. ..ot 288 COSH.....ooii 204, 205

F90 Functions COUNT .ot 205
ABS . 194 CSHIFT ..ottt 207
ACHAR ..o, 194 DATE_AND_TIME......cccooviiiinn. 207
ACOS e, 194, 195 DBLE ..ot 208
ADJUSTL ...oooiieieeeeeeee e 195 DIGITS....ooooiiiiiiiiiiiii, 209
ADJUSTR ..o 195 DIM .ot 209
AIMAG ...cooiiiiiiiiinicccceeeecee 196 DOT_PRODUCTccotiiiiriricierernns 209
AINT o 196 DPROD ..o, 210
ALL .ot 197 EOSHIFTooviiiiiiieic 210
ALLOCATED ..o 197 EPSILON .ccoiiiiiiiiinieieniccceeceee 211
ANINT e 198 EXP oo 211
ANY Lo 198 EXPONENT.......coooiiiiiiiiiiniieia 212

334 Index

13:7Xe8 3 (0) N 212
1S 107C3 SN 213,248
TACHARovvooioiomomeeeeeeeoeeeeeeee 213
1VNN) 0 J 214,216,218, 223, 224
115115 214
IBITS........ 198, 204, 211, 214, 233, 234, 251
1)) =5 G 216
INT oo 216,217,218, 220
(0 S 218
103 13 A 219, 226, 240, 243
1503 15 X 219
15€1) 0 XS 221
192101611 0 X 221
LEN TRIM w..ooooooioooeeeeeeeeoeeeeeen 222
LGE oooooooooeoeeeeeeeeeeeeeeeeeeeeeeeeeeeee 223
5 55 224
|50 L 224,225
LOGI0...coooeoeveeceeeeeeeeeeeeeeeeeeeeeeeee 225
15013 (07N D 226
MATMUL ..o 226
MAX oo 227
MAXEXPONENTocoommmmmmrrrccrr 227

Index

MAXLOC ... 228
MAXVAL ..oooooooioooereeeeeeeeeeeeeee. 228,231
MERGEovvoooooooeoeeeeeeeeeeeeeeeeeee 229
MIN oo 229
MINEXPONENToooooommmmmrrrcerrren. 230
MINVAL oo 231
1Y/ () 0 YN 231
1Y/(0) 0161 50 TN 232
MVBITS ...ooooooeooeeeeeeeeceeeeeeeeeeeeeee 232
NEARESTooommimmoooeiooeeeeeeooeeeeeeeeeeenes 233
NINT oo 217, 220,221, 233
1[G AN 234
| TN @) 235, 250
PRECISION.........oooommvoooeeeoeeeereeeese. 235
PRESENTooooooooimmeeeoeeoeeeeeeeeeeeee 236
13:0) 010764 WS 236
19N 0) 0 G 236
RANDOM NUMBER..........oo..cccomon. 237
RANDOM SEED.........ooovocooommrrrorr. 237
RANGEooooooooooeeeeeeeeeeeeeeee 238
1Y 27N 238
1212) 7N A 239
RESHAPEoooooooomoeeeceeeeeeeeeeeceseee 239

335

RRSPACINGooceniiiiiiiiiienercee 239 VERIFY oo 220, 251

SCALE ..ot 240 FO0 Functions:coeveveeevveeeecneeeenee. 222
SCAN ..ot 240 F95 Functions
SELECTED_INT KINDccecervruennne 241 CPU TIMEcooovviiieiceieeeeeiesnina 206
SELECTED REAL KIND.........cccc...... 241 NULL ..o 234
SET_EXPONENT.......ocoovoviiiiiiiiiiinns 242 file access methodscoovveeiiiiieicnnn, 155
SHAPE ... 242 fixed source fOrmoevemeemeeeeei, 21 s 24
SIGN ..o 243 FORALL oo 94
SIN oo 243,244 FORMAT oo 95
Y1) 244 Format control
SIZE oot 244 specifier
SPACING......oooooiiiiiiieeeeeieee e 245 $ speciﬁer 170
SPREAD ...oooiiiieeieeeeeeeee e 245 A speciﬁer 162
SQRT e 246 B SPECIfier v.vvvvvvvvrorerrrreeeeeeeeeeeeeeeeee 163
SUM ..o 246 TN TTiT S 166
SYSTEM _CLOCKcceoiiriiiieeieeene 247 D specifier 163
TAN 247 .

E specifiercooevvveeveenicieieee 164
TANH ... 248

EN specifiercooovvvevvieneeneennane, 164
TRANSFER ..o 248

end of recordcccvvvveviieicneninnnn. 170
TRANSPOSE.....cooeeeieeeeeeeeeee 249 .

ES specifier......cccovevveierienieirennne, 164
TRIM...ooiieeeeeeeeee e 249 .

F specifiercoovvvvveevieeieieieee, 165
UBOUND.......ooooooevererreenrssssessooennee 250 o

format terminationcceeeveeeennn. 170
UNPACK ... 250

336 Index

G specCifier......ccovvvevieeieeieiieieene, 165

H specifier.......ccoovvevieniiiieieeieens 167
Ispecifiercocevverieniieiieieeiee 165
L specifiercccoevervevieieeieiee 166
O specifier......ccoeveveerveniienne 167, 169
P specifier......coceveenieniiieeeee 167
Q specifier......ccoveenieieiiieeee 168
quote controlcccoeeerieieeienenne. 166
S specifier......ccevueveiiienieieieee, 168
Slash. ..o, 170
SP specifiercocvvevereevieiiereeene 168
SS specifiercccvvevercierieieieeee 168
T specifieroccveveereeeieeieceeeee 168
TL specifier.....cccceveerereerienieene 168
X SPECIfier.ccvieieeieiieiieeeeeeieee 168
Z Specifierccocovvveervenrene 167, 169
format specifications.........ccccceeeeeuernennen. 161
formatted data transfer.................cc....... 160
Fortran 77coceveeiieiiiieneeecee e 177
Math Intrinsics.......cooceevvereeeeeneereeeriennenne 181
Zero Extend Functions..........ccccceeeevennene 178
Fortran Intrinsics.........cocvveverveienienennene 177

Index

Fortran Parallelization Directives

ATOMIC ..o 300, 301
BARRIER ..o 297
CRITICAL ... END CRITICAL.............. 292
DO ... END DO.....ccccccoviiiiiiiiiiiiine 295
DOACROSS ... 297
FLUSH ...t 301
MASTER ... END MASTER................... 293
PARALLEL DOcccccooiiiiiiiiiine 298
PARALLEL SECTIONS...........ccoceeee 299
SECTIONS ... END SECTIONS 299
SINGLE ... END SINGLE............cc.c...... 294
THREADPRIVATEcccccoeiiiie 301

Fortran program unit

elements Of......ccoeeveineenncincenecee 20

free source formccoevveveeenninennnn. 21,23
COMMENES.....ouviiiiiiiiiiiiieiieieecee e 23
continuation linec.cceeeveevencrenennennne 23
statement labels..........cococeveeiecninincnene. 24
FUNCTIONcoviiiiniiniinieiceieeieeeeeen 97
GLOBAL ALIGNMENT.......cccccoeenees 319
GLOBAL DISTRIBUTION................... 319
337

GLOBAL _LBOUNDccecvvviieiennne 319

GLOBAL SHAPEcccooiiiiiiiiieens 320
GLOBAL SIZE......cccooninininiiieienns 320
GLOBAL TEMPLATEcccccvvviiiinnne 321
GLOBAL TO LOCAL.......cccecvvverennene 321
GLOBAL _UBOUND......ccccevieiieirnene 322
GOTO
ASSIgNEd ... 99
Computed.....c.eecverieierieeieie e 99
Unconditional..........ccceceevereevieninneniennee. 100
hexadecimal constants 47,48
hollerith constants..........cccceeevererenennenne. 49
HPF Directives
THPFS ..o 305
FHPFS oo 305
adding to HPFcccoocveviinieieieieieee 305
ALIGN oot 307
CHPFS ...t 305
DISTRIBUTEcooiiiiiiiinieieiiecee 309
DISTRIBUTE BLOCKcccceeeieienee 309
DISTRIBUTE CYCLIC......cccecvevreene 309
DISTRIBUTE ONTOccccovvvviieieennn 309

338

INDEPENDENTcccocoviiniiniieiceieeee, 311
INHERIToooiiiiiinieecece 311
NOSEQUENCEccccovmmeririirinnnenen. 313
PROCESSORS.......ocoeviiininriereiiieens 312
REALIGN ..ottt 307
REDISTRIBUTEccocoeoiiieieiiene, 309
SEQUENCEccectvmririeieieiieniseeierenenes 313
summary tableccovvvevveviereecieneeeenens 306
TEMPLATEcooeiiiirnecccenee 314
HPF_LOCAL Functions

ABSTRACT_TO_PHYSICAL 318
GLOBAL_ALIGNMENTcccceceeienene 319
GLOBAL DISTRIBUTION................... 319
GLOBAL LBOUND......ccceviriiiinianene 319
GLOBAL_SHAPEcccccovveriiiinnrnen. 320
GLOBAL _SIZEccooommiiicinnnenen. 320
GLOBAL TEMPLATE.........cccccevvvenene 321
GLOBAL TO LOCAL....cccceviereeenene 321
GLOBAL UBOUND.......ccceveriiririanene 322
LOCAL BLKCNT.....coceiiiiiieierieenne. 323
LOCAL LINDEX.....cccoocevininiininienene 324
LOCAL_TO_GLOBAL........ccceceueurenenee 325
LOCAL_UNIDEXccccccenmnvuerericcnns 325

Index

MY_PROCESSOR........ccocerireiiininne 326

OVEIVIEW ...onvviiieiiciinieeneeiceeieceeieee 317
PHYSICAL TO_ABSTRACT............... 326
IF
Arithmetic.....coooveeveeeiveineieceeen 100
BIOCK ..o 101
Logical......coceviiiiniiiinieeneeeceee 102
IMPLICIT ..ot 102
implied DO list......ccccoenineneniinicniincnne 160
INCLUDE.......ccoceeviiiiniiniinieeeene 26, 103
INDEPENDENTccccociiniiiiiiiiineene 311
INHERIT.....oeiiiiiiieieeceee, 311
input and oUtpuULtoceerieiiiiiiiieeeee, 155
INQUIREcciiiieieeeeeeeeee e 104
ACCESS specifierccccevvvveenenieniennenns 104
ACTION sSpecifiercccevereenenierienienns 104
BLANK specifier.......cccceveveenieneenenncnes 104
DELIM specifier.......cccoovveneneeeencennn 104
DIRECT specifier.......ccooeverereneceenennn 105
ERR specifier.......cccoverienenienieneeiennne 105
EXIST specifier.......ccccveveneniciecncnnenn 105
FILE Specifier......ccccccecevinenveveieencnnenn 105
Index

FORM specifiercocceveeeeneneenieneennene 105
FORMATTED specifier........c.ccoceeeneeen. 105
IOSTAT specifierccceeeveeerenenieene 105
NAME specifier.......cccocevievieneeirenennnenne. 105
NAMED specifier......cccoveevieneeceenieneenne. 105
NEXTREC specifier......c..ccccceecerenennene 105
NUMBER specifier.......c..cccceeerveenennnenne. 105
OPENED specifier........ccocevervenienienenne 105
PAD specifier......cccecevereenienieienieeienne 106
POSITION specifiercccoereecvereennennene 106
READ specifier.......ccccceverieneeeienienienene 106
READWRITE specifier.........cccceeereenen. 106
RECL specifierccccevvevereenenienicneenne 106
SEQUENTIAL specifier.........cccccceruenneee. 106
STATUS specifiercccevverreeveeeenerennenne. 106
UNFORMATTED specifier.................... 106
WRITE specifier.......cccooveevienincieneneennene 106
INTEGER......cooiiiiiiiiieeeeeee 107
Integer CONStaNtS......c.ccverveeveeeereerrenneenn. 40
INTENT ...cooiiiiicceeeee 108
INTERFACE.....c.cccoctiniiiniiniiniececns 109
INTRINSIC...c.oooiiiiiiiiiiieeececee 110

339

intrinsic data typesecveevereerreenreenennn. 37

list-directed formattingccccevveneenne 171
list-directed inpULt........cceevereveereieniennne 171
list-directed output.........cccevverevecirerennene 172
LOCAL BLKCNTccoveviiiriecrereenns 323
LOCAL LINDEX.....cccooovoiminininenenn 324
LOCAL TO GLOBAL......ccocecerenenn. 325
LOCAL UNIDEX....ccccoiveinineenenienenn. 325
LOGICAL...cceoiviiivincicicececnne 111
logical constants............cc.cceeveerveeveeiennenns 43
MAP@)....ccooviviiiiniiieinciccnecceeeee 112
multiple statements............ccoeevevvereenennen. 24
MY _PROCESSOR......cccoccvvumeirnercnnnes 326
NAMELIST ...ooveiiiriiieieeeeeeeee 115
namelist Groups.......cceevevevereeeeeniereeeene 174
namelist iNPutooceevvevierieieieeeeee 174
namelist output.........cooceevievieeciinienceeee 175
NoN-advancing i/0c.cceceeveeeeiereenennnne 171
NULLIFY oot 116
octal constants.........ccccoeeevveeeeineeeennen. 47, 48
ONTO i 309
OPEN ..ot 116

ACCESS specifier......coceveerenerieneneenne. 116
ACTION specifier.....ccccoeveeeerenenennne. 116
BLANK specifiercoooeveeieeneniienene 116
DELIM specifierccoovvevevveeeereenieennnne. 117
ERR specifierccoevevieievencnincnenene. 117
FILE specifier......c.ccocevvevecirencnincienene. 117
FORM specifier......ccccevereenenenienieneenne. 117
TIOSTAT specifier.......cocerereeinenenenecnns 117
PAD Specifier.......cccvirenenieineneneecs 117
POSITION specifier......ccccovvevereereeennnne. 117
RECL specifier........ccovevveeveencninenennene. 117
STATUS specifier......c.ccoevveevvenverennennnne 117
opening and closing files 156
OpenMP Directives
SYMEAX .eenveneenieeireienieetente ettt sieeneeas 289

OpenMP Environment Variables

MPSTKZ ..ot 304
OMP DYNAMICooviiiieieeeeenen, 304
OMP _NESTED....ccoooiiiiniiniiiieeieeee, 304
OMP_NUM_THREADS......ccooovorerrreen.e. 304
OMP_SCHEDULEc.ccocevieiiinianene 304
OpenMP Fortran Directives.................... 289
Index

OpenMP Fortran Support Routines

omp_destroy 10ck()......ceoververereenienncnne. 303
omp get dynamic().....c..cocererereeeennnn 303
omp get max_threads()c.ccoceeeeneenn 302
omp_get nested() «vovvrverieeierierieeieieene 303
omp_get nUM_Procs().....oceeverveerererennenne 302
omp_get num_threads().......c.cceceeruenennee 302
omp_get thread num()......ccceceveeuenenne. 302
omp_in_parallel()ccoverererieerenenn 302
omp_init 10CK() ..cooverrerveriieieieneeieee, 303
omp_set_dynamic()ccoevvevverrerererrennnnne 303
omp_set_10CK() .veevvereerieniinieierieeee 303
omp_set NesSted()......ceveererierierennennenne 303
omp_set num_threads()........c.ccoceevuennne 302
omp_test 10CK() .vevveeeerininiieiecne 303
omp_unset_10ck() ..ooovvevereieienierieiene, 303
option
“MALNES...ceeviiiiciceerce 25
-Mfreeformc.coeeeveeninininecie 21
OPTIONAL.....ccoeiiiiriiniinicneececece 119
OPTIONS....cooiiiiiiinienieneeseecee e 120
Parallelization Directives...........cccccoueuee 289
Index

PARAMETERcccccooiiiiniiniiniiiiiens 121
PAUSE ...t 121
PHYSICAL TO_ABSTRACT 326
POINTER. ..ot 122
POINLETLS ...t 47
precedence rulesocceeeerieiienieneene 28
PRINT ...ooiiiiiceeceeen 124
printer controlsccevveveeieniienieneenens 162
PRIVATE....cooiiiiiiiiieceies 125
PROGRAM.......coiiiiiiiiiiiiiciiceceie 126
PUBLIC ..ottt 126
PURE ..ot 127
READ. ..ot 128
ADVANCE specifiercccceoeeereneneenne. 128
END Specifierc.ccoverererieireseneene 128
EOR specifier.....cccooveeenieienieieieeiene 128
ERR specifier........cocevevieiecincncncncnnnne 128
FMT specifierccccoeveeervcncncncnennne 128
IOSTAT specifiercccceecvevereeneneenene 128
NML Specifier.......cccovereeeinenenieneeenes 128
REC specifier.......ccuveveneneirininieene 128
SIZE specifier.......ccccceverevenienieienieenenne. 128

341

real CONSLANESooveveeirriieiirieeeiereeeienieaes 41
REALIGN.......coviiiiieiniceeeeeeeeene 307
RECORD.......coeiiiieiniicenceceeee 131
RECURSIVEccoooviiniiiinieceneccnns 132
REDIMENSION.......cccoiiiiiniiiinenn 133
REDISTRIBUTEcccoviiiiniiiiinieinn 309
Related Publicationsc..cccceceeeeueecencnne 18
RESHAPE

CM Fortran........c.ccoceveeveninieninienicnens 255
RETURNcoooiiiiiiciniccneeceeeeane 133
REWINDooeiiiiiiiiiniciciceeceene 134

specifier

ERR oot 134

TIOSTAT .o 134

UNIT .o 134
SELECT ..ot 66
SELECT CASEccoveoininiininccnceeens 136
Standard compatibility...........cccceeeveevennnns 15
standard preconnected units.................... 156
Statement

ACCEPT ..ot 58

342

ALLOCATABLE......cooeiiiiiiiieee 59
ALLOCATE....cccioiiiieiiieieneniceseeee 60
ARRAY .ot 61, 153
ASSIGN ..ot 62
BACKSPACEcooeiiiiieeeiceeeeee, 63
BLOCKDATA ...cooiiiieiieeceeeeeeee, 64
BYTE ..o, 64
CALL ..ot 65
CASE ..o 66
CHARACTER.......cociiiiiiiiiiniciiiieiee 67
CLOSE ..ottt 68
COMMON ..ottt 69
COMPLEXcoiiiiiiiniiiinieereeeseeiee 72
CONTAINS....cooiiiieneeeeeeeceeee 73
CONTINUE ..ot 74
CYCLE....cooiiiiiiiiiiniciineccneeeeeee 74
DATA oo 75
DEALLOCATE ..coooiiiiiieieeeieeeeeee 75
DECODE......cocoiiiiirieiiiieeneeeeeeee 76
DIMENSIONoooiiiiniiiinieienecieeeeiee 77
DO 79
DOUBLECOMPLEX........ccccocevviininianene 81
DOUBLEPRECISIONccccociiiiiinieiene 82

Index

DOWHILEcccooiiiiiiiiiiniceieieee 81
ELSE ..o 83,101, 102
ELSETF ...occoiiiiiiiiciin 84,101, 102
ELSE WHEREccccooiiiiiiiiiiis 84
ELSEWHEREcccocoeviiniiiiniiiie 145
ENCODE......ccccooiviiiiniiiiniiiiciiicices 85
END ..oooviiiiiiiiiiiicis 86
END DO ..ot 79
END FUNCTION........ccccoeiiiiiiin. 97
ENDIF ..o 101, 102
END PROGRAMccoocvminiiriinencnann. 126
ENDBLOCKDATA ..ot 64
ENDCASE.....cccooiiiiiiiineneceeeee 66
ENDFILEcccooiiiiiiiiiiiicciee 86
ENDFORALLcccooiiiiiiiiiiieee 94
ENDINTERFACE..........ccooiiiiiiin 109
ENDSUBROUTINE........cccoceneieiinnn 139
ENDTYPE......cccooiiiiiiiiiiic 141
ENDWHERE........ccccooiiiiiiiiiiiii 145
ENTRY ..o 89
EXIT ..o 92
EXTERNAL ..o 93
EXTRINSIC ..o 93

Index

FORMATooooooooooooeeeeeeeeeeeeeeoeesesese 95
116) (4 3 (0) FEN 97
(1o 0T 99, 100
IF oo 100, 101, 102
111 (6] 1 AN 102
11N(@) 0]) HSS N 103
11N(0)811:3 23 104
INTEGERoooooooceeeeoeoeeeeeeeeeeeeoeoeoes 107
1N N3 OO 108
INTERFACEcoooooeeeeeeeeeeeeeeeeeeeeeoees 109
NG B2Y0NFS) (G 110
|501¢) (€)-N S 111
MAP@......ooooooeeoeoeoeeeeeeeeeeeeeeeeeee 112
NAMELISTooooooioooooorereeeceeeeeee 115
NULLIFY oo 116
10353 NS 116
161585 (6) VN DS 119
101588 (0) 1= 120
PARAMETERcooooeiiiioeeoieerirereesren, 121
N O1) S 121
10 1N o) 122
31N 124

343

PROGRAM.......cooviieeeeeeee e, 126 WRITE ... 146
PUBLIC ..o 126 Statement ordering.........cc.eceeeveveerenennenne. 21
READ. ...t 128 Statements and comments..............oeeeeee.... 20
REAL ..o 130 STOP...ooo e 137
RECORDcooooiiiiiiceeeeeeeeeeeens 131 STRUCTURE@) ..., 137
RECURSIVEcccooviiiiiiiiiiiiiis 132 SUBROUTINE ..o 139
REDIMENSIONccooviiiiiiieiieeee, 133 symbolic name SCoPe............oovvevverreennn.. 32
RETURN ...]33 tab formatting ... 25
REWIND. vt 134 (VN TC] 1 U 140
.. 135 BATGELS vrerreeeeeeeeeeeeeseeseeseesseeseeessesenneeess 47
SELECT oot 66 £ 153 O 101
SELECT CASE oot 136 TYPE oo 141
SEQUENCE.....ccoiiiiieee et 136 unformatted data transfer ... 159
TOP . 1

STO 37 UNION@ oo 142

STRUCTURE@.....cccvvveevvieeiieeeiieeennen. 137
@ USE ..o 144

SUBROUTINEccovviiiieiiieeeeeeeee 139
VOLATILE........cooiiiieeceeeeeeee e 145

TARGET ..., 140
WHERE ..ot 145

THEN....ccooiieeeeeeeee, 101, 102, 140
WITH ...oooiiiiee e, 307

TYPE. .o 141

WRITE
UNION@) ...ovveveeiieiecieeieieeeeieee e 142
specifier

USE .. 144
ADVANCE specifieruc........ 147

VOLATILE........ooooiieeeeeeeeee, 145

344 Index

Index

ERR specifier

FMT specifier

IOSTAT specifier........cocvrevereeennene

NML specifier.....c.ccocevererveneenennene

REC specifier

345

	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Related Publications
	1 Language Overview
	1.1 Elements of a Fortran Program Unit
	1.1.1 Statements
	1.1.2 Free and Fixed Source
	1.1.3 Statement Ordering

	1.2 The Fortran Character Set
	1.3 Free Form Formatting
	1.4 Fixed Formatting
	1.4.1 Column Formatting
	1.4.2 Fixed Format Label Field
	1.4.3 Fixed Format Continuation Field
	1.4.4 Fixed Format Statement Field
	1.4.5 Fixed Format Debug Statements
	1.4.6 Tab Formatting
	1.4.7 Fixed Input File Format – Summary

	1.5 Including Fortran Source Files
	1.6 The Components of Fortran Statements
	1.6.1 Symbolic Names

	1.7 Expressions
	1.7.1 Expression Precedence Rules
	1.7.2 Arithmetic Expressions
	1.7.3 Relational Expressions
	1.7.4 Logical Expressions
	1.7.5 Character Expressions
	1.7.6 Character Concatenation

	1.8 Symbolic Name Scope
	1.9 Assignment Statements
	1.9.1 Arithmetic Assignment
	1.9.2 Logical Assignment Statement
	1.9.3 Character Assignment

	1.10 Listing Controls
	1.11 OpenMP Directives
	1.12 HPF Directives

	2 Fortran Data Types
	2.1 Intrinsic Data Types
	2.1.1 Kind Parameter
	2.1.2 Number of Bytes Specification

	2.2 Constants
	2.2.1 Integer Constants
	2.2.2 Binary, Octal and Hexadecimal Constants
	2.2.3 Real Constants
	2.2.4 Integer Constants
	2.2.5 Complex Constants
	2.2.6 Logical Constants
	2.2.7 Character Constants
	2.2.8 PARAMETER Constants

	2.3 Derived Types
	2.4 Arrays
	2.4.1 An Array Declaration Element
	2.4.2 Deferred Shape Arrays
	2.4.3 Subscripts
	2.4.4 Character Substring

	2.5 Fortran Pointers and Targets
	2.6 Fortran Binary, Octal and Hexadecimal Constants
	2.6.1 Octal and Hexadecimal Constants - Alternate Form §
	2.7 Hollerith Constants
	2.8 Structures
	2.8.1 Records
	2.8.2 UNION and MAP Declarations
	2.8.3 Data Initialization

	2.9 Pointer Variables
	2.9.1 Restrictions

	3 Fortran Statements
	3.1 Origin of Statement
	3.2 Statements

	4 Fortran Arrays
	4.1 Array Types
	4.1.1 Explicit Shape Arrays
	4.1.2 Assumed Shape Arrays
	4.1.3 Deferred Shape Arrays
	4.1.4 Assumed Size Arrays

	4.2 Array Specification
	4.2.1 Explicit Shape Arrays
	4.2.2 Assumed Shape Arrays
	4.2.3 Deferred Shape Arrays
	4.2.4 Assumed Size Arrays

	4.3 Array Subscripts and Access
	4.3.1 Array Sections and Subscript Triplets
	4.3.2 Array Sections and Vector Subscripts

	4.4 Array Constructors
	4.5 CM Fortran Extensions
	4.5.1 The ARRAY Attribute §
	4.5.2 Array Constructors Extensions §

	5 Input and Output Formatting
	5.1 File Access Methods
	5.1.1 Standard Preconnected Units

	5.2 Opening and Closing Files
	5.2.1 Direct Access Files
	5.2.2 Closing a File

	5.3 Data Transfer Statements
	5.4 Unformatted Data Transfer
	5.5 Formatted Data Transfer
	5.5.1 Implied DO List Input Output List
	5.5.2 Format Specifications
	A Format Control – Character Data
	B Format Control – Binary Data
	D Format Control – Real Double Precision Data with Exponent
	E Format Control – Real Single Precision Data with Exponent
	EN Format Control
	ES Format Control
	F Format Control - Real Single Precision Data
	G Format Control
	I Format Control – Integer Data
	L Format Control – Logical Data
	Quote Format Control
	BN Format Control – Blank Control
	H Format Control – Hollerith Control
	O Format Control Octal Values
	P Format Specifier – Scale Control
	Q Format Control - Quantity
	S Format Control – Sign Control
	T , TL and X Format Controls – Spaces and Tab Controls
	Z Format Control Hexadecimal Values
	Slash Format Control / – End of Record
	The : Format Specifier – Format Termination
	$ Format Control

	5.5.3 Variable Format Expressions ,<expr>

	5.6 Non-advancing Input and Output
	5.7 List-directed formatting
	5.7.1 List-directed input
	5.7.2 List-directed output
	Notes

	5.7.3 Commas in External Field

	5.8 Namelist Groups
	5.8.1 Namelist Input
	5.8.2 Namelist Output

	6 Fortran Intrinsics
	6.1 FORTRAN 77 and Fortran 90/95 Intrinsics by Category
	6.2 FORTRAN 77 and Fortran 90/95 Intrinsics Descriptions
	6.3 Supported HPF Intrinsics
	6.4 CM Fortran Intrinsics §

	7 3F Functions and VAX Subroutines
	7.1 3F Routines
	7.2 VAX System Subroutines
	7.2.1 Built-In Functions

	7.2.2 VAX/VMS System Subroutines

	8 OpenMP Directives for Fortran
	8.1 Parallelization Directives
	8.2 PARALLEL ... END PARALLEL
	8.3 CRITICAL ... END CRITICAL
	8.4 MASTER ... END MASTER
	8.5 SINGLE ... END SINGLE
	8.6 DO ... END DO
	8.7 BARRIER
	8.8 DOACROSS
	8.9 PARALLEL DO
	8.10 SECTIONS … END SECTIONS
	8.11 PARALLEL SECTIONS
	8.12 ORDERED
	8.13 ATOMIC
	8.14 FLUSH
	8.15 THREADPRIVATE
	8.16 Run-time Library Routines
	8.17 Environment Variables

	9 HPF Directives
	9.1 Adding HPF Directives to Programs
	9.2 HPF Directive Summary

	Appendix A HPF_LOCAL
	Index

