BINF 630: Bioinformatics Methods

Iosif Vaisman

Email: ivaisman@gmu.edu

Example of a Pubmed entry

- Exacute of a contrast of

Example of a Pubmed entry

TA -	Proteins
JT -	Proteins
JID -	8700181
RN -	0 (Proteins)
SB -	IM
MH -	Algorithms
MH -	Amino Acid Sequence
MH -	Biophysical Phenomena
MH -	Biophysics
MH -	Computational Biology/*method
MH -	Computer Simulation
MH -	Hydrogen Bonding
MH -	Models, Chemical
MH -	Models, Molecular
MH -	Molecular Sequence Data
MH -	Protein Conformation
MH -	Protein Folding
MH -	Protein Structure, Secondary
MH -	Protein Structure, Tertiary
MH -	Proteins/chemistry
MH -	Proteomics/*methods
MH -	Sensitivity and Specificity
MH -	Software
MH -	Structural Homology, Protein
EDAT-	2005/05/12 09:00
MHDA-	2006/05/23 09:00
CRDT-	2005/05/12 09:00

Features of mapping services	Gene/Clone ID converter	ID mapping by UniProt	MatchMiner	DAVID gene ID conversion tool
Interface	Web-based GUI form	Web-based GUI form	Web-based GUI form, command line	Web-based GUI form
Output format	Html, text, spreadsheet	Html, text	Html, text, spreadsheet	Html, text, spreadsheet
Organisms	Human, mouse, rat	Human, mouse, rat and many other species	Human, mouse	Human, about another 90,000 species
Input/output gene	HUGO gene names, Entrez gene Ids, Ensembl gene Ids, UniGene cluster Ids, RefSeq RNAs (Additional output: CCDS) ^a	Entrez Gene, HGNC, Ensembl, UniGene, TIGR (JCVI)	Gene Symbol HUGO/Alias, Name, UniGene Cluster Id, Entrez Gene Id, RefSeq RNA	Entrez gene Id, Ensembl gene/transcript Id, RefSeq mRNA accession, UniGene Id
Input/output protein	RefSeq peptides, SwissProt names (Additional output: IPI, PDB)*	UniProtKB, RefSeq, GenPept, IPI, PDB	RefSeq protein	PIR accession, PIR Id, PIR NREF Id, RefSeq Protein accession, Uniprot Id/accession, UniRef Id

ID Converters

Chavan et al., 2011

ID Converters

Mapping services	Link
Gene/Clone ID converter	http://idconverter.bioinfo.cnio.es/
ID mapping by UniProt	http://www.uniprot.org/?tab=mapping
MatchMiner	http://discover.nci.nih.gov/matchminer/
DAVID gene ID conversion tool	http://david.abcc.ncifcrf.gov/conversion.jsp
g:Convert	http://biit.cs.ut.ee/gprofiler/gconvert.cgi
CRONOS	http://mips.helmholtz-muenchen.de/genre/proj/cronos/
bioDBnet:db2db	http://biodbnet.abcc.ncifcrf.gov/db/db2db.php

Chavan et al., 2011

Genome sequencing costs

Sequencing and storage cost

Infrastructure organization

Cloud computing

Cloud computing and DNA sequencing

Types of computational environments

Types of computational environments

Environment	URL
Cloud computing	
Amazon Elastic Compute Cloud	http://aws.amazon.com/ec2
Bionimbus	http://www.bionimbus.org
NSF CluE	http://www.nsf.gov/cise/clue/index.jsp
Rackspace	http://www.rackspacecloud.com
Science Clouds	http://www.scienceclouds.org
Heterogeneous computin	g
NVIDIA GPUs	http://www.nvidia.com
AMD/ATI GPUs	http://www.amd.com
Heterogeneous cloud con	iputing
SGI Cyclone Cloud	http://www.sgi.com/products/hpc_cloud/cyclone
Penguin Computing On Demand	http://www.penguincomputing.com/POD/Summary
GPU anaphics processing uni	t: NSE LIS National Science Foundation

Schadt et al., 2010

Defining Big Data

NOT JUST SIZE

The three Vs of Big Data: volume, variety and velocity (D.Laney, 2001)

Elements of "Big Data" include:

- •The degree of complexity within the data set
- •The amount of value that can be derived from innovative vs. non-innovative analysis techniques

•The use of longitudinal information supplements the analysis

http://mike2.openmethodology.org/wiki/Big_Data_Definition

Data Mining

- Data mining is the exploration and analysis, by automatic or semiautomatic means, of large quantities of data in order to discover meaningful patterns and rules
- · Common data mining tasks
 - Classification
 - Estimation
 - Prediction
 - Affinity Grouping
 - Clustering
 - Description

Knowledge Discovery

Knowledge is a.pattern that exceeds certain threshold of interestingness.

Factors that contribute to interestingness:

coverage confidence statistical significance simplicity unexpectedness actionability

Knowledge Discovery

- Directed and Undirected KD
- Directed KD
 - Purpose: Explain value of some field in terms of all the others
 - Method: We select the target field based on some hypothesis about the data. We ask the algorithm to tell us how to predict or classify it
 - Similar to hypothesis testing (e.g., in regression modeling) in statistics

Knowledge Discovery

- Undirected KD
 - Purpose: Find patterns in the data that may be interesting
 - Method: clustering, affinity grouping
 - Closest to ideas of machine learning in artificial intelligence
- Comparison
 - UKD helps us to recognize relationships & DKD helps us to explain them

Classification

 Classifying observations into different categories given characteristics

Estimation

Rules that explain how to estimate a value given characteristics

Prediction

• Rules that explain how to predict a future value or classification, given characteristics

Affinity Grouping

• Grouping by relations (not by characteristics)

Clustering

- Segmenting a diverse population into more similar groups
- In clustering, there are no pre-defined classes and no examples. Records are grouped together by some similarity measure.

Knowledge Discovery

