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Data management and utilization

An early example of biological data depository:

Cave painting: Lascaux Grotto, near Montignac, France., ca. 15,000 BCE (Ralph Morse, Getty Images)

Genomic data

Number of species
3%106-1x108
80,000 u
Individual genome
10° — 109 nucleotides

Population size
humans — 7.4 x 10°
bacteria — 272

300,000

Total number of cells in human body
5%1012-2x 1020
(Bianconi et al, Ann. Hum. Biol. 40:463, 2013)

Total gut microbiota
3x1018-4 x 1014
(Suau et al, Appl Environ Microbiol. 65:4799, 1999)

Last month estimate

Human: 3 x 1012

Bacterial: 4 x 10%3

(Sender et al, Cell 164:337, 2016)

Databases in Bioinformatics
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Data management and utilization

Cave painting: Ennedi Plateau, Chad,

, ca. 7,000 BCE (Encyclopaedia Britannica)

Genomic data

Protein structures
PDB - 116,258 (Feb 2016)

Functional genomics

GEO (Feb 2016) —
DataSets 3,848
Series 65,847

Samples 1,738,931

Variation:

Samples

Protein sequences

Swiss-Prot — 550,552 (Feb 2016)
TrEMBL - 61 million (Feb 2016)

Coding Mutations
Whole Genomes

s in cancer
COSMIC (Feb 2016) —
1,192,776
3,942,175
25,133
mber Variants 1,064,039

Copy Nui

Gene Expression Variants 9,479,893



Molecular Databases

Number of entries in UniProtKB/TrEMBL over time

Nucleic acid sequences: GenBank (198 million, Dec 2016) 90,000,000 ﬂ
WGS (395 million, Dec 2016) 80,000,000 ‘
‘! 70,000,000 | ‘ //
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TrEMBL (59 million, Jan 2016) S f
5 30,000,000
Protein structures: PDB (126 thousand, Feb 2017) 20000000 ’/
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Infrastructure organization

Cloud computing

Parallelism: Tightly coupled
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Cloud computing and DNA sequencing Types of computational environments
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Types of computational environments

Environment URL

Cloud computing

Amazon Elastic Compute  http://aws.amazon.com/ec2
Cloud

Bionimbus http://www.bionimbus.org

NSF CluE http:// nsf.gov/cise/clue/index.jsp
Rackspace http://www.rackspacecloud.com

Science Clouds http://www.scienceclouds.org
Heterogeneous computing

NVIDIAGPUs http://www.nvidia.com

AMD/ATIGPUs http://www.amd.com

Heterogeneous cloud computing

SGl Cyclone Cloud ht gi. | hpe_cloud/cycl
Penguin Computi http:/ i ing.com/POD/Summary
On Demand

GPU, graphics processing unit; NSF, US National Science Foundation.

Schadt et al., 2010

Genome sequencing costs

$100,000,000 $10,000.00
$10,000,000
\ $1,000.00
$1,000,000
\ $100.00
$100,000 \
$10,000 $10.00
$1,000
$1.00
—Cost per Genome
$100
— rM
Cost per Mb .
$10
http://www.genome.gov/sequencingcosts/
$1 $0.01
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Data Mining

+ Data mining is the exploration and analysis,
by automatic or semiautomatic means, of
large quantities of data in order to discover
meaningful patterns and rules

+ Common data mining tasks
— Classification
— Estimation
— Prediction
— Affinity Grouping
— Clustering
— Description

Defining Big Data

NOT JUST SIZE

The three Vs of Big Data: volume, variety and velocity
(D.Laney, 2001)

Elements of "Big Data" include:
*The degree of complexity within the data set

*The amount of value that can be derived from innovative
vs. non-innovative analysis techniques

*The use of longitudinal information supplements the
analysis

g/wiki/Big_Data_Definition

Sequencing and storage cost
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Knowledge Discovery

Knowledge is a.pattern that exceeds certain threshold
of interestingness.

Factors that contribute to interestingness:
coverage
confidence
statistical significance
simplicity
unexpectedness
actionability



Knowledge Discovery

¢ Directed and Undirected KD
¢ Directed KD

— Purpose: Explain value of some field in terms
of all the others

— Method: We select the target field based on
some hypothesis about the data. We ask the
algorithm to tell us how to predict or classify it

— Similar to hypothesis testing (e.g., in regression
modeling) in statistics

Classification

* Classifying observations into different
categories given characteristics

Estimation

* Rules that explain how to estimate a value
given characteristics

Clustering

* Segmenting a diverse population into
more similar groups

* In clustering, there are no pre-defined

classes and no examples. Records are

grouped together by some similarity
measure.

Knowledge Discovery

« Undirected KD

— Purpose: Find patterns in the data that may
be interesting

— Method: clustering, affinity grouping

— Closest to ideas of machine learning in
artificial intelligence

« Comparison

— UKD helps us to recognize relationships &
DKD helps us to explain them

Prediction

* Rules that explain how to predict a future

value or classification, given
characteristics

Affinity Grouping

» Grouping by relations (not by

characteristics)

Knowledge Discovery

Data Mining
Transformation &
Reduction
Preprocessing
Cleaning
Selection &
Sampling
@Dmabase(sj

B.Bergeron, 2002



