Scientific Models

Physical models -- Mathematical models

BINF 630: Bioinformatics Methods

Iosif Vaisman

Email: ivaisman@gmu.edu

Predictive power

Artificial Intelligence in Biosciences

Neural Networks (NN) Genetic Algorithms (GA) Formal Grammars (FG)

Artificial Intelligence in Biosciences

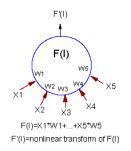
Neural Networks (NN)

Genetic Algorithms (GA) Formal Grammars (FG)

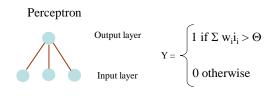
Neural Networks

- •interconnected assembly of simple processing elements (units or nodes)
- •nodes functionality is similar to that of the animal neuron
- processing ability is stored in the interunit connection strengths (weights)
- weights are obtained by a process of adaptation to, or *learning* from, a set of training patterns

Neural Networks

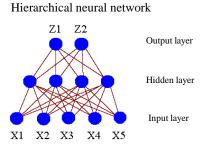


Neural Networks

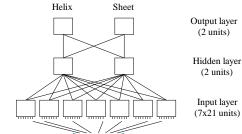


Learning process: $\Delta w_i = (T_p - Y_p)i_{pi}$

Neural Networks



Neural Networks



MKFGNFLLTYQP PELSQTE VMKRLVNLGKASEGC...

Artificial Intelligence in Biosciences

Neural Networks (NN) Genetic Algorithms (GA) Formal Grammars (FG)

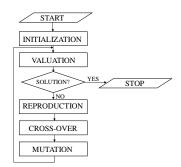
Genetic Algorithms

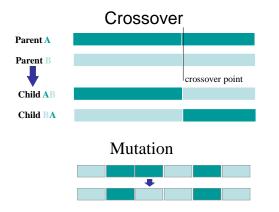
Search or optimization methods using simulated evolution. Population of potential solutions is subjected to natural selection, crossover, and mutation

choose initial population evaluate each individual's fitness

repeat select individuals to reproduce mate pairs at random apply crossover operator apply mutation operator evaluate each individual's fitness until terminating condition

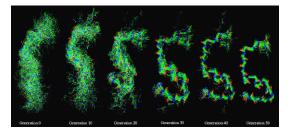
Genetic Algorithms





Genetic Algorithms Applications Parents 1000010010 1 4 5 1 6 5 1000000111 1 4 5 2 3 6 2 3 4 Children 100010010 6 5 1 4 5 2 3 4 1000100101 1 4 5 1 4 5 6 6 11 00 10 1 4 5 6 6 6

GA simulation of folding



Membrane binding domain of Blood Coagulation Factor VIII (J.Moult)

Artificial Intelligence in Biosciences

Neural Networks (NN) Genetic Algorithms (GA) Formal Grammars (FG)

Grammars and Language

gram•mar n.

1. the study of the way the sentences of a language are constructed

4. *Generative Gram.* a device, as a body of rules, whose output is all of the sentences that are permissible in a given language, while excluding all those that are not permissible.

Random House Unabridged Dictionary

Language Components

Semantics (meaning) Syntax (structure, form)

Language Syntax

Alphabet

Primitive elements Letters, phonemes

Vocabulary

Elements composed from the alphabet Words, phrases, sentences,...

Grammar

Legal composition of vocabulary Rules, operators

Semantics

Derived from syntax

- Semantic content derived from vocabulary within a context
- Vocabulary element has its own meanings dictionary lookup meanings depending on context

Time flies like an arrow Fruit flies like a banana

Formal Grammars

formal grammar a means for specifying the syntactic structure of natural language by a set of transformation functions

Chomsky hierarchy (for string grammars) type 0: phrase structure type 1: context sensitive type 2: context free (SCFG) type 3: regular (Hidden Markov models)

Chomsky, Syntactic Structures (1957)

Markov Model (or Markov Chain)

Probability for each character based only on several preceding characters in the sequence

of preceding characters = *order* of the Markov Model

Probability of a sequence

P(s) = P[A] P[A,T] P[A,T,C] P[T,C,T] P[C,T,A] P[T,A,G]

Hidden Markov Models

_	A	T	C	T	A	- G -
Observed	A 0.7	A 0.1	C 0.8	A 0.4	A 0.8	C 0.3
frequencies	T 0.3	T 0.9	G 0.2	T 0.6	T 0.2	G 0.7

Probablistic model - true state is unknown

Hidden Markov Models

ATGAC ATTAC

ACGAC ACTAC

States -- well defined conditions Edges -- transitions between the states

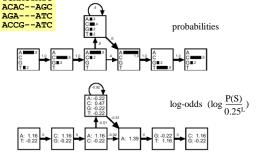
А C

Each transition asigned a probability.

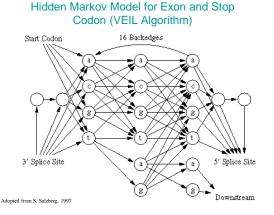
Probability of the sequence: single path with the highest probability --- Viterbi path sum of the probabilities over all paths -- Baum-Welch method

ACA---ATG TCAACTATC ACAC--AGC

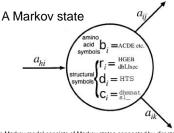
Hidden Markov Models



Adopted from Anders Krogh, 1998



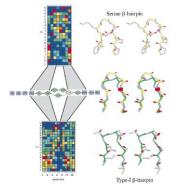
Hidden Markov Model in Structural Analysis



A hidden Markov model consists of Markov states connected by directed transitions. Each state emits an output symbol, representing sequence or structure. There are four categories of emission symbols in our model: b, d, r, and c, corresponding to amino acid residues, three-state secondary structure, backbone angles (discretized into regions of phi-psi space) and structural context (e.g. hairpin versus diverging turn, middle versus end-strand), respectively.

Adopted from C.Bystroff et al, 2000

Hidden Markov Model in Structural Analysis



HMM topology from merging of two motifs, the extended Type-I hairpin motif and the Serine hairpin.

Adopted from C.Bystroff et al, 2000 JMB, **301**, 173

Comparison of AI methods

Characteristic	GLM	CART	ANN	EA
Data Requirements				
Accommodate "mixed" data types	Low	High	Low	Moderate
Accommodate missing values of predictors	Low	High	Low	Low
Insensitive to monotonic transformations of predictors	Low	High	Moderate	Moderate
Robust to outliers in predictors	Low	Moderate	Moderate	Moderate
Insensitive to irrelevant predictors	Low	High	Moderate	Moderate
Modeling Process				
Automation (i.e., low degree of user involvement)	High	Moderate	Moderate	Low
Transparency of the modeling process	High	Moderate	Low	Low
Ability to model nonlinear relationships	Low	Moderate	High	High
Accommodate interactions among predictors	Low	Moderate	High	High
Model Output				
Explanatory insight and variable interpretability	High	Moderate	Moderate	Low
Predictive power	Low	Moderate	High	High
Software Availability and Ease-of-Use	High	Moderate	Low	Low

Classification and regression trees (CARTs), artificial neural networks (ANNs), and evolutionary algorithms (Eds.) artificial neural networks (ANNs), and evolutionary algorithms (Eds.) used in ecologic. Comparisons are generalized to include both classification and prediction problems. Values are based on Hastie et al. (2001), per-reviewed literature, and the personal experimences of the authors.

Olden et al., 2008

Artificial Intelligence in Biosciences

Other machine learning algorithms:

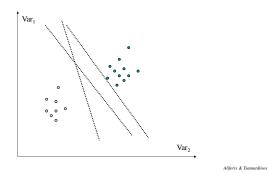
- Support vector machines
- Decision trees
- Random forests

Support Vector Machines (SVM) Algorithm

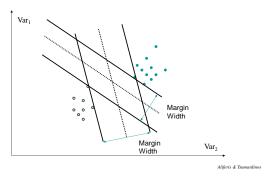
Decision surface is a hyperplane (line in 2D, plane in 3D, etc.) in **feature** space

- Define what an optimal hyperplane is (in way that can be identified in a computationally efficient way): <u>maximize margin</u>
- Extend the above definition for non-linearly separable problems: have a penalty term for misclassifications
- Map data to high dimensional space where it is easier to classify with linear decision surfaces: reformulate problem so that data is mapped implicitly to this space Alignis & Transmittore

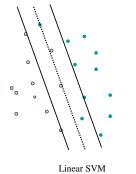
Support Vector Machines (SVM)

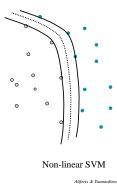


Support Vector Machines (SVM)

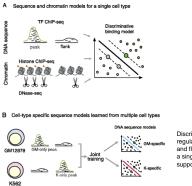


Support Vector Machines (SVM)





Applications of ML methods



Discrimination between regulatory ChIP-seq peaks and flanking regions within a single cell type using a support vector machine

A Arvey et al., 2012

Applications of ML methods

