Growth of GenBank

Introduction to Bioinformatics

Iosif Vaisman

Email: ivaisman@gmu.edu

Comparative Sequence Sizes

•	Smallest bacterial gene	54
•	Smallest human gene (IGF-2)	252
•	Yeast chromosome 3	350,000
•	Longest human gene (dystrophin)	2,220,223
•	Escherichia coli (bacterium) genome	4,600,000
•	Largest yeast chromosome now mapped	5,800,000
•	Entire yeast genome	15,000,000
•	Smallest human chromosome (Y)	50,000,000
•	Largest human chromosome (1)	250,000,000
•	Entire human genome	3,000,000,000

The String Alignment Problem

two strings acbcdb and cbabd
can be aligned in different ways

a	С	b	С	d	b	
				Т		
С	b	a	b	d	-	

a	С	b	С	d	b
	Т	1			
_	С	b	а	b	d

scori exac misn insertion -1

The String Alignment Problem

a	С	b	С	d	b	-
-	С	b	а	-	b	d

scoring function: exact match +2mismatch -1 -1 insertion

score:
$$3 \cdot (2) + 4 \cdot (-1) = 2$$

ing func	tion:
t match	+2
natch	-1

The String Alignment Problem

given: two strings CTCATG and TACTTG

С Т Т А	C A T G C T T G	score: $3 \cdot (2) + 3 \cdot (-1) = 3$
стс • т -	A - T - G A C T T G	score: $4 \cdot (2) + 4 \cdot (-1) = 4$

Entropy and Redundancy of Language

**	CUR****	F****	1 ******	D****	DIS****AND	P***
н	1111	11111	1111111	11111	11111	111
E	BLES*1	R****I	3*****	3R****2	AND *****	AG***

The sequences are 65% identical

A	CURSED	FIEND	WROUGHT	DEATH	DIS	SEASE	AND	PAIN
11	1111			11111				111
Α	BLESSED	FRIEND	BROUGHT	BREATH	AND	EASE	7	GAIN

Scoring Alignments

Scoring Alignments

Substitution Matrices

 Dayhoff (or MDM, or PAM) -Derived from global alignments of closely related sequences PAM100 - number referes to evolutionary distance (Percentage of Acceptable point Mutations per 10⁸ years)

Substitution Matrices

BLOSUM (BLOcks SUbstitution Matrix) -Derived from local, ungapped alignments of distantly related sequences BLOSUM62 - number refers to the minimum percent identity

Specialized Substitution Matrices

- SLIM (ScoreMatrix Leading to Intra-Membrane)
- PHAT (Predicted Hydrophobic and Transmembrane Matrix)
- STROMA (Score Matrix for Known Distant Homologs)
- HSDM (Homologous Structure Derived Matrix)
- WAC (Amino Acid Comparative Profiles)
- VTML (Maximum Likelihood Estimation)

Comprehensive list: Amino Acid Matrices in AAindex (http://www.genome.jp/aaindex/AAindex/list_of_matrices)

Reference: Henikoff & Henikoff Proteins 17:49, 1993

Selecting a Matrix

Low PAM:

High PAM: long segments,

low similarity

short segments,
high similarity

- Compared sequences are related: 200 PAM or 250 PAM
- Database scanning: 120 PAM
- Local alignment search: 40 PAM, 120 PAM, 250 PAM
- Detection of related sequences using BLAST: BLOSUM 62

THERE IS NO "ONE SIZE FITS ALL" MATRIX !

Search and alignment entropy

• Information content per position:

pam10	-	3.43 bits
pam120	-	0.98 bits
pam160	-	0.70 bits
pam250	-	0.38 bits
blosum62	2 -	0.70 bits

• Information requirements:

- for search 30 bits
- for alignment 16 bit

Search and alignment entropy

Recommended matrices for different query length

Query length	Substitution matrix	Gap costs
<35	PAM-30	(9,1)
35-50	PAM-70	(10,1)
50-85	BLOSUM-80	(10,1)
>85	BLOSUM-62	(11,1)

FASTA Algorithm

Sequence B R P. P. Construction Sequence B R Seq

2

Rescoring using PAM matrix

high score
 low score

The score of the highest scoring initial region is saved as the **init1 score**.

FASTA Algorithm

1

First run (identities)

FASTA Algorithm

Joining threshold eliminates disjointed segments

3

Non-overlapping regions are joined. The score equals sum of the scores of the regions minus a gap penalty. The score of the highest scoring region, at the end of this step, is saved as the <u>initn score</u>.

FASTA Algorithm

Alignment optimization using dynamic programming

4

The score for this alignment is the **opt score**.

FASTA Algorithm

FastA uses a simple linear regression against the natural log of the search set sequence length to calculate a normalized <u>z-score</u> for the sequence pair.

Using the distribution of the z-score, the program can estimate the number of sequences that would be expected to produce, purely by chance, a z-score greater than or equal to the z-score obtained in the search. This is reported as the **E**() **score**.

FASTA Results

- When init1=init0=opt: 100 % homology over the matched stretch.
- When initn > init1: more than 1 matching region in the database with poorly matching separating regions.
- When opt > initn: the matching regions are greatly improved by adding gaps in one or both of the sequences.

BLAST - Basic Local Alignment Search Tool

- Blast programs use a heuristic search algorithm. The programs use the statistical methods of Karlin and Altschul (1990,1993).
- Blast programs were designed for fast database searching, with minimal sacrifice of sensitivity to distant related sequences.

BLAST Algorithm

Exact matches of words from the word list to the database sequences

BLAST Algorithm

Maximal Segment Pairs (MSPs)

For each exact word match, alignment is extended in both directions to find high score segments

Gapped BLAST

- The Gapped Blast algorithm allows gaps to be introduces into the alignments. That means that similar regions are not broken into several segments.
- This method reflects biological relationships much better.

BLAST family of programs

- **blastp** amino acid query sequence against a protein sequence database
- blastn nucleotide query sequence against a nucleotide sequence database
- **blastx** nucleotide query sequence translated in all reading frames against a protein database
- tblastn protein query sequence against a nucleotide sequence database dynamically translated in all reading frames
- tblastx six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database.

Database Searches

- Run Blast first, then depending on your results run a finer tool (Fasta, Smith-Waterman, etc.)
- Where possible use translated sequence.
- E() < 0.05 is statistically significant, usually biologically interesting. Check also 0.05 < E() <10 because you might find interesting hits.
- Pay attention to abnormal composition of the query sequence, it usually causes biased scoring.
- Split large query sequence (if >1000 for DNA, >200 for protein).
- If the query has repeated segments, remove them and repeat the search.

Documenting the Search

- Algorithm(s)
- · Substitution matrix
- Gap penalty (FASTA)
- · Name of database
- · Version of database
- Computer used