Cell communication channel DNA TRANSCRIPTION **Bioinformatics Methods** RNA SPLICING mRNA Iosif Vaisman TRANSLATION PROTEIN ww 100 Email: ivaisman@gmu.edu

DNA Sequence – Protein Sequence – Protein Structure

Protein structure

SEQUENCE

STRUCTURE

Amino Acid Residue

Amino Acid Residue

Amino Acids

Amino Acid Residue Clustering

Amino Acid Residue Clustering

Secondary Structure: Computational Problems

Secondary structure characterization Secondary structure assignment Secondary structure prediction Protein structure classification

Secondary Structure: Computational Problems

Secondary structure characterization Secondary structure assignment Secondary structure prediction Protein structure classification

Secondary Structures

Secondary Structure (Helices)

Secondary Structure (Beta-sheets)

Reverse Turns on a Ramachandran Plot

Beta-hairpin Turns on a Ramachandran Plot

Side-Chain Atom Nomenclature

Side-Chain Torsional Angles

Secondary Structure: Computational Problems

Secondary structure characterization Secondary structure assignment Secondary structure prediction Protein structure classification

Secondary Structure Conformations

	φ	Ψ
alpha helix	-57	-47
alpha-L	57	47
3-10 helix	-49	-26
π helix	-57	-80
type II helix	-79	150
β -sheet parallel	-119	113
β -sheet antiparallel	-139	135

Secondary Structure Assignment

Adopted from Zvelebil, Baum, 2008

Secondary Structure Assignment

Secondary Structure: Computational Problems

Secondary structure characterization Secondary structure assignment Secondary structure prediction Protein structure classification

Secondary Structure Prediction

Three-state model: helix, strand, coil

Given a protein sequence:

- NWVLSTAADMQGVVTDGMASGLDKD...
- Predict a secondary structure sequence:
- LLEEEELLLLHHHHHHHHHHHHHHHHLHHHL...

Methods:

statistical

stereochemical

Accuracy: 50-85%

Statistical Methods

Residue conformational preferences:

Glu, Ala, Leu, Met, Gln, Lys, Arg - helix Val, Ile, Tyr, Cys, Trp, Phe, Thr strand Gly, Asn, Pro, Ser, Asp - turn Chou-Fasman algorithm:

Identification of helix and sheet "nuclei" Propagation until termination criteria met

Chou-Fasman Parameters

Name	P(a)	P(b)	P(turn)	f(i)	f(i+1)	f(i+2)	f(i+3)
Alanine	142	83	66	0.06	0.076	0.035	0.058
Arginine	98	93	95	0.070	0.106	0.099	0.085
Aspartic Acid	101	54	146	0.147	0.110	0.179	0.081
Asparagine	67	89	156	0.161	0.083	0.191	0.091
Cysteine	70	119	119	0.149	0.050	0.117	0.128
Glutamic Acid	151	37	74	0.056	0.060	0.077	0.064
Glutamine	111	110	98	0.074	0.098	0.037	0.098
Glycine	57	75	156	0.102	0.085	0.190	0.152
Histidine	100	87	95	0.140	0.047	0.093	0.054
Isoleucine	108	160	47	0.043	0.034	0.013	0.056
Leucine	121	130	59	0.061	0.025	0.036	0.070
Lysine	114	74	101	0.055	0.115	0.072	0.095
Methionine	145	105	60	0.068	0.082	0.014	0.055
Phenylalanine	113	138	60	0.059	0.041	0.065	0.065
Proline	57	55	152	0.102	0.301	0.034	0.068
Serine	77	75	143	0.120	0.139	0.125	0.106
Threonine	83	119	96	0.086	0.108	0.065	0.079
Tryptophan	108	137	96	0.077	0.013	0.064	0.167
Tyrosine	69	147	114	0.082	0.065	0.114	0.125
Valine	106	170	50	0.062	0.048	0.028	0.053

Chou-Fasman Algorithm

Identification of helix and sheet "nuclei" helix - 4 out of 6 residues with high helix propensity (P > 100) sheet - 3 out of 5 residues with high sheet propensity (P > 100)

Propagation until termination criteria met

Turn prediction

1) p(t) > 0.000075 2) P(turn) > 1.00 3) P(a) < P(turn) > P(b) where p(t) = f(j)f(j+1)f(j+2)f(j+3)

P.Y. Chou, G.D. Fasman, Biochemistry, 1974, 13, 211-222

Garnier - Osguthorpe - Robson (GOR) Algorithm

Likelihood of a secondary structure state depends on the neighboring residues:

$$L(S_j) = \Sigma (S_j; R_{j+m})$$

Window size - [j-8; j+8] residues

Accuracy for a single sequence - 60% Accuracy for an alignment - 65%

Evolutionary Methods

Taking into account related sequences helps in identification of "structurally important" residues.

Algorithm:

find similar sequences construct multiple alignment use alignment profile for secondary structure prediction

Additional information used for prediction mutation statistics residue position in sequence

sequence length

Neural Networks

Learning process: $\Delta w_i = (T_p - Y_p)i_{pi}$

Neural Networks Methods

MKFGNFLLTYQP [PELSQTE] VMKRLVNLGKASEGC...

Stereochemical Methods

Patterns of hydrophobic and hydrophilic residues in secondary structure elements:

- segregation of hydrophobic and hydrophilic residues
- hydrophobic residues in the positions 1-2-5 and 1-4-5
- oppositely charged polar residues in the positions 1-5 and 1-4 (e.g. Glu (i), Lys (i+4))

Definitions of hydrophobic and hydrophilic residues (hydrophobicity scales) are ambiguous

Stereochemical Methods

Hydropathic correlations in helices and sheets

		F-F	F-L	L-F	L-L
	i, i+2	-	+	+	-
α	i, i+3	+	-	-	+
	i, i+4	+	-	-	+
	i, i+5	-	+	+	-
0	i, i+1	-	+	+	-
$ \mathcal{D} $	i, i+2	+	-	-	+
	i, i+3	-	+	+	-

Accuracy of Prediction

$$Q_3 = \frac{PH + PE + PC}{N}$$

$$W = \log \frac{TP \ x \ TN}{FP \ x \ FN}$$

Range: 50-85%

Accuracy of prediction

Accuracy of prediction

X-ray: =	_	_	-	-	-	-	_	_	_
GOR IV:				_	-		_	_	
GOR V: =		_	_			_		_	_
PredS: -	_	_	_	_		_	_		
PredM: =		_	_	_				-	_
Zored: -		_		A.		_	_		-
PROF	_					_			·
NAUTER -								12.0	-
NINGOP:			_		-	-		- C - C - C - C - C - C - C - C - C - C	
PHU: =	_		-	_			_	_	_
PSIPRED: =	_		-	_		_	-	_	_
Jnet: =	_	_	_	_		_	-	_	_
X-ray:	_	-	-				_	_	
GOR IV: -		-	-			-		_	
GOR V: -		-	-	-		-	-	_	-
PredS: -	-			-	_	_	-	_	
PredM: -	125		÷ •			-	*		
Zpred: -		-					+	_	
PROF: -					-		-		
NNSSP: -	-	-	-						
PUD-	_	-			+ +		++	-	
THD.									
PSIPRED: -	-	-	-			-	-		

Adopted from Zvelebil, Baum, 2008

Accuracy of prediction

oray: -	-	-	-		-	_			
edS: -	-	-	=	-	=	_			
ored:		_	=		=	-	=		
ID: -		_	. =		=	-	-	=	 -

X-ray:	-	 		
GOR V:		 =		
PredS: PredM:		 _ + + +		
Zpred:		 	_	
PROF: NNSSP:	*	 	==	
PHD:		 		
Jnet:	_	 	==	

Adopted from Zvelebil, Baum, 2008