Introduction to Bioinformatics

Iosif Vaisman

Email: ivaisman@gmu.edu

Protein Modeling Methods

- Ab initio methods
- Energy-based methods
- Knowledge-based methods

Protein Modeling Methods

- *Ab initio* methods: solution of a protein folding problem search in conformational space
- Energy-based methods: energy minimization molecular simulation
- Knowledge-based methods: homology modeling fold recogniion

Knowledge

Knowledge is a pattern that exceeds certain threshold of interestingness.

Factors that contribute to interestingness: coverage confidence statistical significance simplicity unexpectedness actionability

Knowledge-based methods

Finding patterns in known structures

Deriving rules (usually in the form of PMF)

Applying the rules

Fold Recognition

Pattern searching sequence patterns structure patterns residue composition patterns

Threading sequence-structure compatibility structure-sequence compatibility

Segmental Threading

Wu and Zhang, 2010

Threading

Sequence-structure compatibility (fold recognition)

(inverse folding)

Threading

•Only the local environment is taken into account •Non-local contacts are assumed with generic peptide •No gaps are allowed in the alignment

Homology Modeling

- · Identification of structurally conserved regions (using multiple alignment)
- Backbone construction (based on SCR)
- Loop construction (KB or conformational search)
- Side-chain restoration (KB, rotamer, or MM)
- · Structure verification and evaluation
- Structure refinement (energy minimization)

Homology Modeling Programs

Swiss-Model (http://swissmodel.expasy.org) Modeller (http://salilab.org/modeller)

CPHmodels

(http://www.cbs.dtu.dk/services/CPHmodels)

Protein Model Portal (PMP) (http://www.proteinmodelportal.org)

Swiss-Model

- Method: Knowledge-based approach.
- Requirements: At least one known 3D-structure of a related protein. Good quality sequence alignements.
- Procedures:

Superposition of related 3D-structures. Generation of a multiple a alignement. Generation of a framework for the new sequence. Rebuild lacking loops. Complete and correct backbone. Correct and rebuild side chains. Verify model structure quality and check packing. Refine structure by energy minimisation and molecular dynamics.

Methods and Programs used by Swiss-Model

- Sequence Alignment BLAST (Altschul S.F., J. Mol. Biol. 215:403, 1990) SIM (Huang, X., Miller, M. Adv. Appl. Math.12:337, 1991) ProModII (Peitsch, M.C. Unpublished, Server-specific tool)
- Knowledge Based Protein Modelling ProMod (Peitsch M.C. Biochem Soc Trans 24:274, 1996)
- Energy Minimisation
 Gromos96 (van Gunsteren W.F. http://igc.ethz.ch/gromos/)
- Model evaluation Swiss-PdbViewer (http://www.expasy.ch/spdbv/mainpage.html)

Swiss-Model Request Types

- First Approach mode.
- Optimise mode.
- Combine mode.
- GPCR mode.

Model Confidence Factors

The Model B-factors are determined as follows:

- The number of template structures used for model building.
- The deviation of the model from the template structures.
- The Distance trap value used for framework building.

The Model B-factor is computed as:

 $85.0*(1/\,\text{\#}$ selected template str.) * (Distance trap / 2.5) and

99.9 for all atoms added during loop and side-chain building

Structure verification and validation Bond lengths (Procheck)

Bond		labeling			Ι	Value	L	sigma
C-N		C-NH1 C-N		(except Pro) (Pro)		1.329 1.341	1	0.014 0.016
C-0	i	C-0	i		i	1.231	i	0.020
Calpha-C		CH1E-C CH2G*-C		(except Gly) (Gly)	1	1.525 1.516		0.021 0.018
Calpha-Cbeta	 	CH1E-CH3E CH1E-CH1E CH1E-CH2E	i 	(Ala) (Ile,Thr,Val) (the rest)	i I I I I	1.521 1.540 1.530		0.033 0.027 0.020
N-Calpha	 	NH1-CH1E NH1-CH2G* N-CH1E	 	(except Gly, Pro) (Gly) (Pro)		1.458 1.451 1.466	 	0.019 0.016 0.015

Bond angles (Procheck)

Angle	labeling	Value sigma
C-N-Calpha	C-NH1-CH1E (except Gly,Pro) C-NH1-CH2G* (Gly) C-N-CH1E (Pro) 	121.7 1.8 120.6 1.7 122.6 5.0
Calpha-C-N	CH1E-C-NH1 (except Gly,Pro) CH2C*-C-NH1 (Gly) CH1E-C-N (Pro) 	116.2 2.0 116.4 2.1 116.9 1.5
Calpha-C-O	CH1E-C-O (except Gly) CH2G*-C-O (Gly)	120.8 1.7 120.8 2.1

Procheck output

a. Ramachandran plot quality - percentage of the protein's residues that are in the core regions of the Ramachandran plot.

- b. Peptide bond planarity standard deviation of the protein structure's omega torsion angles.
- c. Bad non-bonded interactions number of bad contacts per 100 residues.
- d. Ca tetrahedral distortion standard deviation of the ζ torsion angle (C $\alpha,$ N, C, and CB)
- e. Main-chain hydrogen bond energy standard deviation of the hydrogen bond energies for main-chain hydrogen bonds. f. Overall G-factor - average of different Gfactors for each residue in the structure.

Procheck output

Procheck output

Procheck output

Page

Procheck output - backbone G factors

Procheck output - all atom G factors

Protein Modeling Methods

- *Ab initio* methods: solution of a protein folding problem search in conformational space
- Energy-based methods: energy minimization molecular simulation
- Knowledge-based methods: homology modeling fold recogniion

Potential Energy Functions

Boas & Harbury, 2007

Molecular structure representation

Elementary particles

Potential Energy Function

Forcefields: AMBER, CHARMM, CVF, ECEPP, GROMOS

Non-Bonded Interactions

Bond length

Bond length

Bond angle $E = \sum_{\text{angles}} k_{\theta} (\theta - \theta_{o})^{2}$

Bond angle

Bond length and angle (parameters)

Torsional angle

Torsional angle (parameters)

Non-bonded terms $E = \sum_{i \ j} \sum_{r_{ij}^{0}} + \frac{B_{ij}}{r_{ij}^{12}} + \sum_{i \ j} \sum_{i \ j} \frac{q_{i} q_{j}}{r_{ij}}$ $= \frac{A_{ij}}{r_{ij}^{6}} + \frac{B_{ij}}{r_{ij}^{12}}$ i Pepulsion regime van der Waals attraction regime van der Waals attraction regime j optimum energy i j

Non-bonded terms (parameters)

Potential Energy Function $PEF(R) = \sum_{bonds} K_{b} \{b(R) - b_{eq}\}^{2} + \sum_{angles} K_{g} \{\theta(R) - \theta_{eq}\}^{2} + \sum_{dihedrals} \frac{K_{a}}{2} \{1 + \cos[n\phi(R) - \gamma]\} + \sum_{\substack{non-bonded \\ atom pairs i,j}} \left[\frac{A_{ij}}{r_{ij}(R)^{12}} - \frac{B_{ij}}{r_{ij}(R)^{6}} + \frac{q_{i}q_{j}}{\varepsilon_{r}\varepsilon_{b}r_{j}(R)} \right]$ (1)

Forcefields: AMBER, CHARMM, CVF, ECEPP, GROMOS

Energy Minimazation

