BINF 731

Protein Structure Analysis

http://binf.gmu.edu/vaisman/binf731/

Iosif Vaisman

2015

Secondary Structure: Computational Problems

Secondary structure characterization Secondary structure assignment Secondary structure prediction Protein structure classification

Secondary Structure Conformations

	φ	Ψ
alpha helix	-57	-47
alpha-L	57	47
3-10 helix	-49	-26
π helix	-57	-80
type II helix	-79	150
β-sheet parallel	-119	113
β -sheet antiparallel	-139	135

Secondary Structure Assignment

Adopted from Zvelebil, Baum, 2008

C. Andersen & B. Rost, 2003

Secondary Structure Assignment

;1;2;3;4;5;6;7
sequential resnumber, including chain breaks as extra residues
original PDB resname, not nec. sequential, may contain letters
amino acid sequence in one letter code
secondary structure summary based on columns 19-38
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3-turns/helix
4-turns/helix
5-turns/helix
geometrical bend
chirality
beta bridge label
beta bridge label
beta bridge partner resnum
beta bridge partner resnum
beta sheet label
solvent accessibility
RESIDUE AA STRUCTURE BP1 BP2 ACC
35 47 I E + 0 0 2
36 48 R E > S-K 0 39C 97
37 49 Q T 3 S+ 0 0 86 (example from 1EST)
38 50 N T 3 S+ 0 0 34
39 51 W E < -KL 36 98C 6

Secondary Structure Assignment

Joosten et al., 2010

Secondary Structure Assignment

Secondary Structure Assignment

DSSPcont assignment for 1c3y fragment. The variations between the secondary structure assignments for different NMR models of the same protein illustrate the impact of fluctuations on structure

P. Carter et al. 2003

Secondary Structure: **Computational Problems**

Secondary structure characterization Secondary structure assignment Secondary structure prediction Protein structure classification

Secondary Structure Prediction

Three-state model: helix, strand, coil

Given a protein sequence:

- NWVLSTAADMQGVVTDGMASGLDKD...
- Predict a secondary structure sequence:

- LLEEEELLLLHHHHHHHHHHHHHHH

Methods:

- statistical
- stereochemical

Accuracy: 50-85%

Statistical Methods

Residue conformational preferences:

Glu, Ala, Leu, Met, Gln, Lys, Arg - helix Val, Ile, Tyr, Cys, Trp, Phe, Thr strand Gly, Asn, Pro, Ser, Asp - turn

Chou-Fasman algorithm:

Identification of helix and sheet "nuclei" Propagation until termination criteria met

Chou-Fasman Parameters

Name	P(a)	P(b)	P(turn)	f(i)	f(i+1)	f(i+2)	f(i+3)
Alanine	142	83	66	0.06	0.076	0.035	0.058
Arginine	98	93	95	0.070	0.106	0.099	0.085
Aspartic Acid	101	54	146	0.147	0.110	0.179	0.081
Asparagine	67	89	156	0.161	0.083	0.191	0.091
Cysteine	70	119	119	0.149	0.050	0.117	0.128
Glutamic Acid	151	37	74	0.056	0.060	0.077	0.064
Glutamine	111	110	98	0.074	0.098	0.037	0.098
Glycine	57	75	156	0.102	0.085	0.190	0.152
Histidine	100	87	95	0.140	0.047	0.093	0.054
Isoleucine	108	160	47	0.043	0.034	0.013	0.056
Leucine	121	130	59	0.061	0.025	0.036	0.070
Lysine	114	74	101	0.055	0.115	0.072	0.095
Methionine	145	105	60	0.068	0.082	0.014	0.055
Phenylalanine	113	138	60	0.059	0.041	0.065	0.065
Proline	57	55	152	0.102	0.301	0.034	0.068
Serine	77	75	143	0.120	0.139	0.125	0.106
Threonine	83	119	96	0.086	0.108	0.065	0.079
Tryptophan	108	137	96	0.077	0.013	0.064	0.167
Tyrosine	69	147	114	0.082	0.065	0.114	0.125
Valine	106	170	50	0.062	0.048	0.028	0.053

Chou-Fasman Parameters

Chou-Fasman Algorithm

Identification of helix and sheet "nuclei" helix - 4 out of 6 residues with high helix propensity (P > 100) sheet - 3 out of 5 residues with high sheet propensity (P > 100) Propagation until termination criteria met

Turn prediction

P.Y. Chou, G.D. Fasman, Biochemistry, 1974, 13, 211-222

Garnier - Osguthorpe - Robson (GOR) Algorithm

Likelihood of a secondary structure state depends on the neighboring residues:

$$L(S_j) = \Sigma (S_j; R_{j+m})$$

Window size - [j-8; j+8] residues

Accuracy for a single sequence - 60% Accuracy for an alignment - 65%

Evolutionary Information

Adopted from Zvelebil, Baum, 2008

Evolutionary Methods

Taking into account related sequences helps in identification of "structurally important" residues.

Algorithm:

find similar sequences construct multiple alignment use alignment profile for secondary structure prediction

Additional information used for prediction mutation statistics residue position in sequence sequence length

Evolutionary Methods

Adopted from Zvelebil, Baum, 2008

M. L. Minsky & S. Papert, 1969

Neural Networks

Perceptron

Output layer $Y = \begin{cases}
1 \text{ if } \Sigma \text{ } w_i i_i > \Theta \\
0 \text{ otherwise}
\end{cases}$

Learning process: $\Delta w_i = (T_p - Y_p)i_{pi}$

Neural Networks Methods

Stereochemical Methods

Patterns of hydrophobic and hydrophilic residues in secondary structure elements:

- segregation of hydrophobic and hydrophilic residues
- hydrophobic residues in the positions 1-2-5 and 1-4-5
- oppositely charged polar residues in the positions 1-5 and 1-4 (e.g. Glu (i), Lys (i+4))

Definitions of hydrophobic and hydrophilic residues (hydrophobicity scales) are ambiguous

Stereochemical Methods

Hydropathic correlations in helices and sheets

		F-F	F-L	L-F	L-L
	i, i+2	-	+	+	-
α	i, i+3	+	-	-	+
	i, i+4	+	-	-	+
	i, i+5	-	+	+	-
0	i, i+1	-	+	+	-
$ \mathcal{D} $	i, i+2	+	-	-	+
-	i, i+3	-	+	+	-

Chemotaxis protein CheY

Hydrophobic face

Residues 81–88 Hydrophobic face

Adopted from Zvelebil, Baum, 2008

Accuracy of prediction

Adopted from Zvelebil, Baum, 2008

Accuracy of prediction

		_			_
		_			
				· · · · · · · · · · · · · · · · · · ·	-
e <u> </u>			+		
	_	_			
_			_ + =		
_					
_					_
	+	* *	***		
	+ + + +	* *	+ =		
	+ + + + + + + + + + + + + + + + + + + +				

Adopted from Zvelebil, Baum, 2008

Accuracy of Prediction

 $Q_3 = \frac{PH + PE + PC}{N}$ $W = \log \frac{TP \ x \ TN}{FP \ x \ FN}$

Range: 50-85%

Accuracy of prediction

S. Montgomerie et al., 2006