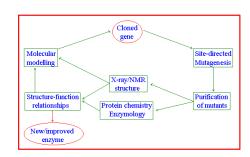
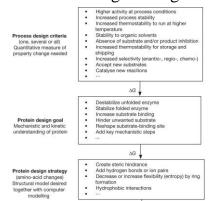
BINF 731

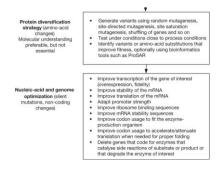
Protein Structure Analysis


Iosif Vaisman

2012

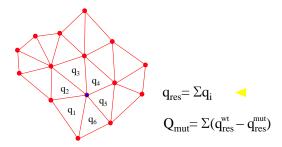

Protein Engineering

Increase catalytic activity
Change substrate binding site to increase specificity
Change the thermal stability
Increase proteins resistance to proteases
Change codon composition

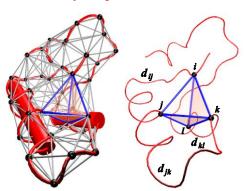

Protein Engineering

Protein Engineering

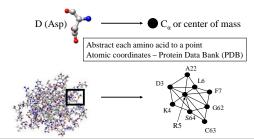
Protein Engineering


Bornscheuer et al. Nature 485, 185-194 (2012)

Computational Mutagenesis


Assumption: the structural differences between each mutant and the wild-type protein are usually minor and, therefore, their tessellations are similar

Approach: a single tessellation of either the wild-type or mutant protein structure can be used to develop environmental descriptors for quantitative evaluation of changes in mutant properties


Residue and mutant score

Dealunay simplices classification

Delaunay Tessellation of Protein Structure

Delaunay tessellation: 3D "tiling" of space into non-overlapping, irregular tetrahedral simplices. Each simplex objectively defines a quadruplet of nearest-neighbor amino acids at its vertices.

Compositional propensities of Delaunay simplices

$$q_{ijkl} = \log \frac{f_{ijkl}}{p_{ijkl}}$$

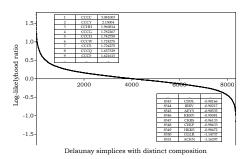
f- observed quadruplet frequency, $p_{ijkl} = Ca_i a_i a_k a_k \ a$ - residue frequency

 $C = \frac{4!}{\prod_{i}^{n} (t_i!)}$

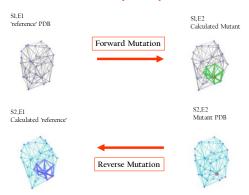
AAAA: C = 4! / 4! = 1

AAAV: $C = 4! / (3! \times 1!) = 4$

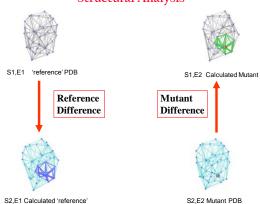
AAVV: $C = 4! / (2! \times 2!) = 6$


AAVR: $C = 4! / (2! \times 1! \times 1!) = 12$

AVRS: $C = 4! / (1! \times 1! \times 1! \times 1!) = 24$

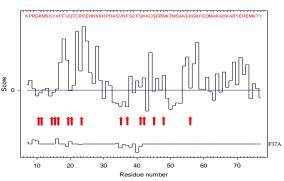

Counting Quadruplets

 assuming order independence among residues comprising Delaunay simplices, the maximum number of all possible combinations of quadruplets forming such simplices is 8855


Log-likelihood of amino acid quadruplets with different compositions

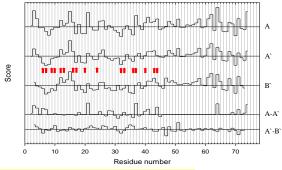
Reversibility Analysis

Structural Analysis



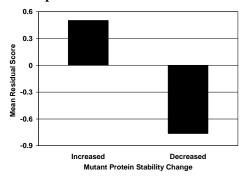
Computational mutagenesis of T4 lysozyme

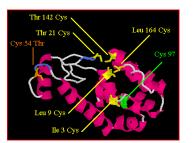
Reversibility of mutations

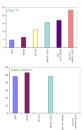

Protein	Mutation	Score change	
1163	T26E	-2.49	
1801	E26T	2.01	
1163	A82S	1.49	,
1231	S82A	-1.49	1
1163	V87M	-0.28	
1cu3	M87V	0.22	3 2 1 1 2
1163	A93C	-1.98	+
1381	C93A	1.78	R ² = 0.9886
1163	T152S	-1.08	
1goj	S152T	1.12	

DNA binding residues in HMG1

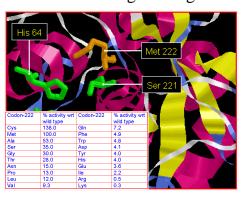
Coordinate file 1ckt: Ohndorf U-M et al. Nature 399:708


Protein-protein and protein-DNA interfaces (HMG-D)

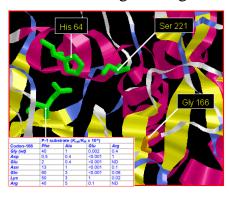

Coordinate file 1qrv: Murphy F V et al. EMBO Journal 18:6610

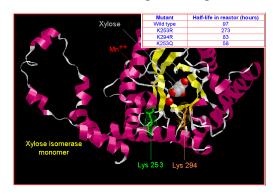

Universal Model Approach:

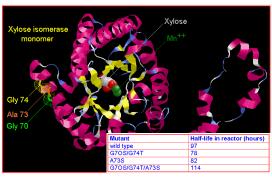
980 Experimental Mutants from 20 Proteins

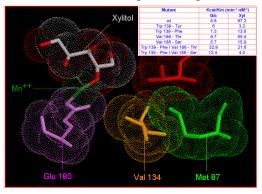


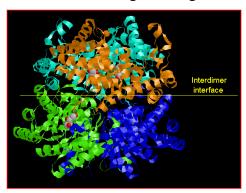
Protein Engineering




Protein Engineering


Protein Engineering


Protein Engineering


Protein Engineering

Protein Engineering

Protein Engineering

