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ABSTRACT A topological representation of
proteins is developed that makes use of two metrics:
the Euclidean metric for identifying natural nearest
neighboring residues via the Delaunay tessellation
in Cartesian space and the distance between resi-
dues in sequence space. Using this representation,
we introduce a quantitative and computationally
inexpensive method for the comparison of protein
structural topology. The method ultimately results
in a numerical score quantifying the distance be-
tween proteins in a heuristically defined topological
space. The properties of this scoring scheme are
investigated and correlated with the standard C�

distance root-mean-square deviation measure of pro-
tein similarity calculated by rigid body structural
alignment. The topological comparison method is
shown to have a characteristic dependence on pro-
tein conformational differences and secondary struc-
ture. This distinctive behavior is also observed in
the comparison of proteins within families of struc-
tural relatives. The ability of the comparison method
to successfully classify proteins into classes, super-
families, folds, and families that are consistent with
standard classification methods, both automated
and human-driven, is demonstrated. Furthermore,
it is shown that the scoring method allows for a
fine-grained classification on the family, protein,
and species level that agrees very well with cur-
rently established phylogenetic hierarchies. This
fine classification is achieved without requiring
visual inspection of proteins, sequence analysis, or
the use of structural superimposition methods. Im-
plications of the method for a fast, automated, topo-
logical hierarchical classification of proteins are
discussed. Proteins 2004;56:487–501.
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INTRODUCTION
The Motivation for Comparing Proteins

Perhaps the most popular tenet of proteomic biology is
that the available structure space of proteins is much
smaller than the available sequence space. That is, the
mapping of a given protein structure to its sequence is not
isomorphic.1–4 Given that it is the goal of most of the
world’s “protein-ologists” to ultimately generate structural
models for new protein sequences without invoking the
laborious and time-consuming task of systematic experi-
mental structure determination, it is difficult to know
whether this lack of isomorphism comes as a blessing or a
curse. On one hand, there are relatively few structures to
which a given sequence might fold, thus boiling the task of
predicting its structure down to what is known as “struc-
ture recognition”—guessing the sequence’s structural cat-
egory based on its similarity to the category’s sequence. On
the other hand, once an estimated model structure is
generated, one cannot help but to question whether the
“recognized” structure is the true native structure, since it
is possible that the sequence similarity between a protein
and its “category” or template might not imply a structural
similarity in all cases.3 Confronted with this dilemma in
associating protein sequence with structure (and function)
one is forced to focus on ways of characterizing relation-
ships between analogous and remotely homologous pro-
teins.4–7

Computational tools for the comparison of three-
dimensional (3D) protein structures provide both experi-
mental and theoretical biologists with means to more
closely relate a given structure to its sequence, and to
rationalize structural and mechanistic investigation of
protein function. They also provide a means to organize
the thousands of known protein structures, identify new
types of protein architecture, and draw important evolu-
tionary relationships between proteins.5 These goals ulti-
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mately culminate in the formation of a hierarchical phylo-
genetic classification of proteins.

The classification of any set of objects into categories by
similarity requires the establishment of a measure of
similarity between pairs of these objects. Providing a fast,
quantitative automated means of measuring similarity
between protein pairs without any allusion to residue
identity is the niche of such computational tools.8

Geometric Comparisons Versus Topological
Comparisons

The traditional quantitative method for measuring simi-
larity between protein pairs, introduced by Remington and
Mathews,9 involves the optimal superimposition of their
structures’ backbone coordinates by applying rigid body
rotations and translations. Typically, the measure of simi-
larity in this case is taken to be the distance root-mean-
square deviation (RMSD) between alpha-carbons of the
proteins’ respective backbones after their structural align-
ment.5,10,11 This sort of method provides a sound geomet-
ric basis for structural similarity and has been used in the
construction of phenetic classifications of proteins.5,8,12

However, topological information is sometimes lost due to
the fact that it is possible for pairs of proteins to display
common structural elements with disjoint backbone connec-
tivity.11,13 Therefore, in using such a method, one must
cope with the fact that geometric equivalence is not
identical to topological equivalence. Gap sizes in protein
structural alignments are optimized in the assignment of
equivalent residue pairs and a minimum RMSD between
corresponding �-carbons of the aligned path is attained
that sometimes does not reflect the similarities in the
protein fold. Much work has been done to evade this
drawback. Some studies extended the method of structural
superimposition in order to provide comparisons between
proteins that better reflect their topological differences (for
example, the work of Falicov and Cohen14).

In order to successfully hierarchically classify proteins,
it is generally understood that a method for pair-wise
protein comparison that makes use of protein topological
differences (as opposed to geometric ones such as those
captured by structural alignment) is necessarry.4,15 Hence
the task of automated protein comparison should involve
the decomposition of protein structure into global features
representing topology whose elements can be compared.15

Since protein structures are so complex, there are a variety
of ways to represent any single protein’s topology. Just as
the answer to any question depends upon the manner in
which the question is formulated, the comparison of pro-
teins will be dependent upon the manner in which the
proteins are represented. This simple truth has mani-
fested itself in the emergence of several hierarchical
classifications of proteins,8 each one utilizing a different
“measure” or combination of measures of protein similar-
ity. Some rely on human expertise16—knowledge of func-
tion and visual inspection of structures as well as numeri-
cal measures of structural similarity and sequence
homology17 to determine classification. Such a classifica-
tion is quite robust and often serves as a source for

generating population statistics on the structures of pro-
teins. Other classification methods rely on a combination
of human-driven and automated means.18,19 In the ex-
treme case, a method of classification will make use of
solely automated comparison of proteins.5,20 Ideally, one
would like to be able to rely on computer-automated
comparison alone for a meaningful classification. How-
ever, since objective criteria for topological similarity have
not yet been identified,4 this is a work in progress. Such an
objective topological similarity measure is necessary and
sufficient for the assignment of two protein structures to
the same fold.4

Representing the Sequence Measure as an
Embedment of the Structural Euclidean Measure

In this work, we propose a method for comparing protein
pairs that employs a representation based solely upon the
topology of the protein core. The comparison is performed
by classifying four-body clusters of nearest neighboring C�

atoms (in Euclidean space) according to their implicit
topological significance. Information on the four bodies’
separation in primary sequence (sequence space) is used
with no allusion to residue identity. Other studies have
investigated spatially neighboring residues and their rela-
tion to structural elements. Their focus has been on
establishing how neighboring amino acid properties or
identities affect the geometry of structural elements, or on
relating sets of neighboring residues to particular second-
ary structures or protein conformations.21,22 Brocchieri
and Karlin23 present a way of categorizing pairs of neigh-
boring residues in proteins according to their separation
along the primary sequence and investigating the pairs of
residues (identity, hydrophobicity, charge, etc.) that occur
in these categories. Another protein structure comparison
method that combines geometric and topological aspects
was developed by Carugo and Pongor.24 In their work, the
distribution of C�–C� distances between residues at given
separations in primary sequence is used as a structural
descriptor. While these methods can elucidate the link
between tertiary folds and the physical constraints on the
protein chain, pairs of nearest neighboring residues are
not sufficient for the characterization of global topological
structure.

The goal in concocting a topological description of a
protein must inevitably reduce to linking the information
pertaining to the closeness of residues in Euclidean space
with the closeness of residues in sequence space. In this
sense, the problem of topologically describing a protein is a
problem of “topological embedding”.25 In light of this fact,
we chose to represent the spatial closeness of residues in a
protein by investigating the graph of the 3D Delaunay
tessellation of its set of protein C� atomic coordinates. In
general, the tessellation of a set of points in any space is a
division of the space into convex polytopes. The Voronoi
tessellation, a construct that is dual to the Delaunay
tessellation, of a set of points divides the space into
space-filling convex polyhedra (in the case of three dimen-
sions) that define the region of space closest to each point.
A point in this tessellation whose Voronoi polyhedron
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shares a vertex with three other polyhedra is a natural
nearest neighbor to the three points to which these polehe-
dra belong. These nearest neighboring quadruplets define
the vertices of space-filling tetrahedra. These tetrahedra
are the convex polyhedra (simplices) of the Delaunay
tessellation of the set of points. A Delaunay approach to
identifying nearest neighboring clusters of residues has
been described previously.26,27 With this approach, we are
left with the task of relating natural nearest neighboring
residues in 3D Euclidean space with the closeness (or
farness28) of residues in sequence space. The metric used
to define the distance, itself, in sequence space between
any two residues, i and j, in a protein is provided naturally
by simply counting the number of residues falling between
i and j.

MATERIALS AND METHODS
Building a Raw Topological Representation

Using the information from the Delaunay tessellation of
a protein’s backbone, it is possible to build a statistical
representation of that protein, which takes into account
the way its sequence must “twist and turn” in order to
bring each four-body residue cluster into contact. Each
residue—i, j, k, and l of a four-body cluster comprising a
simplex are nearest neighbors in Euclidean space as
defined by the tessellation, but are separated by the three
distances—dij, djk, and dklin sequence space (Fig. 1). Based
on this idea, we build a 1000-tuple representation of a
single protein by making use of two metrics: (1) the
Euclidean metric used to define the Delaunay tessellation
of the protein’s C� atomic coordinates and (2) the distance
between residues in sequence space. A procedure similar
to our previous work27 was followed in the construction of
our protein representation. We recapitulate the similari-
ties in this work for brevity.

If we consider a tessellated protein with N residues
integrally enumerated according to their position along
the primary sequence, the length of a simplex edge in
sequence space can be defined as

dij � j � i � 1 (1)

where dij is the length of the simplex edge, ij, correspond-
ing to the ith and jth �-carbons along the sequence. If one
considers the graph formed by the union of the simplex
edge between the two points i and j and the set of edges
between all dij points along the sequence between i and j, it

is seen that the Euclidean simplex edge, ij, can generally
be classified as a far edge.28 Every simplex in the protein’s
tessellation will have three such edges associated with its
vertices: i, j, k, and l where i, j, k, and l are integers
corresponding to C� atoms enumerated according to their
position along the primary sequence (see Fig. 1). Thus, we
proceed to quantify the degree of “farness” in an intuitive
way, by applying a transformation, T, which maps the
length, d, of each edge to an integer value according to

T:d 3 �
1 if d � 0
2 if d � 1
3 if d � 2
4 if d � 3
5 if 4 � d � 6
6 if 7 � d � 11
7 if 12 � d � 20
8 if 21 � d � 49
9 if 50 � d � 100
10 if d � 101

(2)

The reasoning behind the design of the transformation
is described elsewhere.27 It is possible that a coarser
categorization of the edge length, d, (for example, placing
the edge length possibilities into 5–8 categories instead of
10) might be adequate for an effective protein representa-
tion. Indeed, the empirical optimization of the step func-
tion, T, will be required in order to test this hypothesis.
However, for this work we have chosen to keep the
“fine-grained” transformation of Equation (2), as in our
previous work27 in order to provide rigorous testing of our
protein representation scheme without optimizing the
transformation for coarseness. With this transformation,
we construct an array that is representative of the distribu-
tion of combinations of segment lengths along the protein
backbone giving rise to nearest-neighboring four-body
residue clusters within the protein’s structure as defined
by the tessellation of its C� atomic coordinates. Each
simplex in the protein’s tessellation contributes to a 3D
array, M, where Mnpr is the number of simplices whose
edges satisfy the following conditions:

(a) The Euclidean length of any one simplex edge is not
greater than 10 Å.

(b) dy � n
(c) djk � p
(d) dkl � r

Condition (a) is provided because simplices with a
Euclidean edge length above 10 Å are generally a result of
the positions of �-carbons on the exterior of the protein. We
exclude contributions from these simplices to M, because
they do not represent clusters of natural nearest neighbors
due to the absence of solvent and other molecules around
the protein in the tessellation. Figure 2 shows an example
of a tessellated protein excluding simplices meeting condi-
tion (a) and a representative simplex along with its three
segment lengths, dij, djk, and dkl (as shown schematically
in Figure 1). The data structure, M, contains 1000 ele-
ments. The number of elements is invariant with respect

Fig. 1. a: Schematic diagram of the contribution of a single simplex to
the 1000-tuple representation. The three far edges determine the element
to which the simplex makes a statistical contribution.
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to the number of residues of the protein. In order to more
easily conceptualize the mapping of the protein topology to
the data structure, M, we rewrite it as a 1000-tuple vector:

M� � �M000,M001,…,M010,M011,…,…,M999� (3)

Raw and Normalized Scoring Schemes for Protein
Comparison

Given that each element of this vector represents a
statistical contribution to the global topology, a compari-
son of two proteins making use of this mapping must
involve the evaluation of the differences in single corre-
sponding elements of the proteins’ 1000-tuples. We define,
therefore, a raw topological score, Q, representative of the

Fig. 2. Left: The resulting graph of the protein, Crambin (pdb identity
1ccn) after the removal of simplices from its Delaunay tessellation having
an edge length greater than 10 Å. The remaining simplices’ edges are
represented as silver rods while the �-carbons are represented by black
spheres. Right: Illustration of the contribution of a single representative
simplex in Crambin to its 1000-tuple representation.

Fig. 3. Correlation of the raw topological score, Q, with standard C�

RMSD from the MD trajectory (in vacuum) of various proteins having
different sequence length. For each trajectory, the initial structure (at t �
0) is compared to several other conformations in the trajectory up to an
RMSD of �3 Å. The trend-lines drawn are fitted to the data using a simple
power-law expression �ƒ�x� � a�x, where a is a fitting parameter) with
an average correlation coefficient of �0.99.

Fig. 5. a: Time-series of the raw topological score (black), Q, and
RMSD (red) resulting from the MD simulation of halorhodopsin in a fully
hydrated DPPC membrane. Each protein in the series is compared with
the initial structure (at t � 0). The topological score and RMSD data are
normalized according to the greatest value in the set in the interest of
providing a clear comparison. Thus, the largest value in each respective
set is unity. b: Correlation of topological score with RMSD. The green
circle represents the region of data after the convergence of RMSD while
the blue circle represents the region before convergence.

Fig. 6. Dependence of Q (black) and Q (red) on the length difference
between compared proteins. Note that the standard error (represented by
the error bars) in the score becomes greater in either case as the length
difference between compared proteins increases.
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topological distance between any two proteins represented

by data structures, M� and M� � as the supremum norm,

Q � �M� � M� ��sup � �
i�0

999

�Mi � M�i� (4)

This norm is topologically equivalent to the Euclidean
norm25 and has the added advantage that it is less
computationally expensive to calculate.

This topological score has an obvious dependence on the
sequence length difference between the two proteins being
compared due to the following implicit relation for a single
protein representation,

Ns � �
i�0

999

Mi (5)

where Ns is the number of simplices with no edge having a
Euclidian length greater than 10 Å, and the Mi are the
elements of the protein representation. In other words,
since Ns is proportional to the number of residues in the
protein, the difference in the length between two compared
proteins might provide a systematic extraneous contribu-
tion to their score, Q, in Equation (4). This is not to say that
the sequence length of a protein does not play a role in its
topology. In fact, the length should be quite crucial.27

However, the length dependence of our score implied by
Equation (5) is endemic to our protein representation
(derived from its tessellation), and not due to protein
topology itself. This length dependence may be removed by
first normalizing the vector representation as follows:

M
3

�
M�

�M� �
(6)

Fig. 4. Correlation of the raw topological score, Q, with standard C� RMSD from twelve sets of protein
configurations determined by NMR spectroscopy. The trend-lines follow the same functional form as in Figure 2
with an average correlation coefficient of �0.90.
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resulting in the unit-vector representation, M
3

. The corre-

sponding normalized topological score,

Q� � � M
3

� M
3

��sup (7)

can be expected to be less sensitive to the chain length
difference between the two proteins being compared. Despite
normalization, however, this score should still have an
inherent dependence on the length difference between the
compared proteins. A protein’s structure must be dependent
on the length of its sequence, because the number of configu-
rational degrees of freedom in a polymer’s structure is
proportional to the number of residues it possesses. Such a
dependence on the size of compared proteins is even appar-
ent in geometric methods of comparison such as structural
alignment, and in some cases, has been accounted for.29

We designed a set of tests for the topological scoring
schemes in Equations (4) and (7) to evaluate their capabil-
ity to describe changes in the topology of single proteins
upon conformational change and differences in topology
within families of structurally related proteins. The sensi-
tivity due to the expected systematic length dependence
[Equation (5)] of our topological comparison was also
tested in both schemes. We then moved further to probe
the sensitivity of our topological depiction to the secondary
structure of proteins under comparison. Finally, we evalu-

ated the capability of our protein comparison method to
provide a means for the hierarchical classification of
proteins. We compared this capability to that of other well
known automated and human-derived classifications, and
ultimately, investigated the way such a hierarchical clus-
tering might look.

The following section presents the results from these
tests of the capabilities of our topological representation of
proteins. These assessments of the scoring method involve
the pair-wise comparison of various sets of protein struc-
tures. All protein structures compared were taken from
the PDB30 at http://www.pdb.org. Each structure file was
subjected to rigorous parseability criteria31 before its use
in our study. Protein comparisons were performed using a
Pentium III, 930 MHz processor, utilizing a Linux kernel
version 2.4.2-2. The programs for our comparisons and
analysis were written in the C programming language. All
programs performing Delaunay tessellation implemented
the algorithm described by Watson.32

In order to observe how our scoring schemes describe
changes in the topology of single proteins upon conforma-
tional change, molecular dynamics (MD) trajectories of
individual proteins were generated. In this work, all
protein simulations performed in vacuum made use of the
MD module of the SYBYL 6.4 software package (TRIPOS
Associates, St. Louis, MO). An MD trajectory of halorhodop-

Fig. 7. The correlation of normalized topological scoring, Q, with standard C� RMSD of FSSP protein
families having various proportions of secondary structure. While the power-law trend-lines can be fitted to the
data very well (with an average correlation coefficient of �0.89), the “global trend,” for each plot is very
distinctive for each type of secondary structure content.
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sin in an explicit, hydrated DPPC bilayer was generated
using the GROMACS package33,34 with a time step of 2 fs.
The forcefield parameters for lipids were based on the
work of Berger35 and those of the protein were provided by
GROMACS. The forcefield describing the retinal moiety in
the interior of the protein were adopted from previous
studies.36,37 Periodic boundary conditions were applied in
all three dimensions and long range electrostatics were
handled using PME.38 The system was simulated in an
NPT ensemble with a temperature of 325 K maintained
using the Nose-Hoover scheme39 with a thermostat relax-
ation time of 0.5 ps. The Parrinello-Rahman40 pressure
coupling scheme with a barostat relaxation time of 2.0 ps
was used to maintain a pressure of 1 atm.

The halorhodopsin system consisted of 1 protein mole-
cule, 1 chloride ion, 1 sodium ion, 172 DPPC molecules,
and 10660 SPC water molecules. An initial DPPC bilayer
was constructed using a protocol outlined by Tu et al,41

and the experimentally determined structure of halorho-
dopsin42 was placed in the center of this bilayer. All DPPC
and water molecules that overlapped the atomic positions
of the protein model were then removed from the initial
hydrated bilayer. The atoms of the protein and ions were
loosely restrained to their initial positions while simulat-
ing the system for 3 ns. Over this period the volume of the
simulation cell converged along with the area of the
bilayer–protein system (�66.5 nm2) indicating the relax-
ation of the solvent and bilayer molecules around the
protein. Restraints on the protein were then removed and
an additional 4-ns run was performed on the system.
Snapshots were saved at intervals of 1 ps throughout the
calculation for subsequent analysis.

RESULTS AND DISCUSSION
Sensitivity to Conformational Differences

In order to ascertain the way in which our topological
comparison scheme quantifies differences in topology upon
conformational change within a single protein, MD simula-
tions were performed on seven different proteins in vacuum.
The purpose of these simulations was merely to provide a
set of structures that were “distorted” from their initial
crystallographic conformations. We do not claim to obtain
any biologically relevant information from these simula-
tions. The proteins were selected such that their sequence
lengths covered a range of values (�50 to �350 residues)
in order to evaluate how the topological score, Q, depends
on protein size.

Figure 3 shows the correlation of Q with standard C�

RMSD for various protein structures along each of the
seven trajectories. Structures along the trajectories were
compared to their corresponding initial configurations
(experimental structures). The data points are spaced
fairly evenly along the RMSD axis so as to provide a clear
picture of the correlation. A very obvious correlation
between the two measures of protein similarity is ob-
served. The trend for each protein intersects the origin in
the trivial case of comparing a protein to itself. It is then
seen to follow a power-law as each structure becomes more
deformed. This trend is explained by a difference in scaling

between RMSD and Q. Generally, we should expect this
difference in scaling when comparing a global topological
similarity score to a score based on a local structural
alignment.27 The global topology of a protein should
remain more invariant as its related structures become yet
more locally dissimilar.27 Thus, we see that with a large
change in RMSD, an increasingly smaller change in Q
occurs, and the resulting trend-line is monotonic and
concave-down.

The topological score’s dependence on the sequence
length implied by Equation (5) is demonstrated clearly in
Figure 3. We see that as the length increases, the topologi-
cal score increases. Hence, the trend in the Q:RMSD
correlation, itself, becomes more pronounced as the num-
ber of residues in a protein becomes larger. In this test of
the raw score, Q, we compared a protein in each of the
seven sets to a deformed conformation of itself for each
data point. Thus, the trend of the score is preserved since
the length difference between the two compared proteins is
zero.

Twelve sets of protein conformations determined by
NMR were obtained from the protein data bank (PDB) for
topological comparison with the raw score. These sets were
selected to observe whether or not experimentally deter-
mined conformations of a protein would show an adher-
ence to the trend seen in Figure 3. Four sets of three
proteins were selected with sequence lengths of approxi-
mately 50, 100, 150, and 200. These different levels of
sequence length were selected in order to demonstrate the
consistency of the length dependence of the raw score.
Within these levels of sequence length, one of the proteins
had mostly �-helical content, one possessed mostly 	-sheet
content, and the third contained a combination of � and 	
secondary structure.

An all-against-all comparison was carried out between
all possible pairs of proteins within each of the 12 sets of
conformations. The raw topological score is plotted against
RMSD for each set in Figure 4. Again, it is seen that the
raw topological score increases with the size of the protein.
The power-law trend demonstrated in Figure 3 is also
observed in Figure 4. The average correlation coefficient
for the trend-lines was �0.90. The persistence of the trend
is also seen to be invariant over the secondary structure of
the sets of conformations. The data are not as evenly
distributed over RMSD as in Figure 3, but this is due to the
fact that sets of NMR structures are more representative
of a statistical ensemble. Thus, the RMSD and topological
scores should be expected to vary evenly about an average
value causing us to observe a more clustered set of points
in the correlation plots. The trend in the correlation is still
observed, because of the difference in scaling between the
two different structural comparison methods.

A realistic extended time-series of structures for the
protein, halorhodopsin (pdb identifier 1e12) was also ana-
lyzed in order to observe how the topological score evolved
during an extensive MD equilibration. Halorhodopsin is a
membrane embedded chloride ion pump with seven mem-
brane-spanning helices. To mimic a realistic environment
for this protein, it was equilibrated in a fully hydrated
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dipalmitoylphosphatidylcholine (DPPC) bilayer at a tem-
perature of 325 K and a pressure of 1 atm (Bostick and
Berkowitz, unpublished results, 2003). The initial protein
structure in the equilibration trajectory was compared to
all other structures in the time-series. A plot of the raw
topological score and C� RMSD for every structure in this
analysis is shown in Figure 5(a). It can be seen that the
topological score is relatively invariant when compared to
the RMSD throughout the entire trajectory. The RMSD
converges to its final value after �2500 ps. Again, this
supports the notion that global topology is more invariant
than local geometry when a protein is limited to small
conformational differences. In this case the small differ-
ences are a result of the structure’s relaxation in a
hydrated membrane. Figure 5(b) shows the correlation of
Q with the RMSD. The data forms two clusters: points
representing structures occurring before convergence of
the RMSD (circled in blue) and points representing struc-
tures after convergence (circled in green). Again, the
power-law trend-line fits this set of points well. Upon
observing the features of the raw topological score and
comparison with standard C� RMSD, we see that the
protein comparison method we describe has many proper-
ties that can be expected of a global, topological compari-
son. In a gapped, optimal, rigid alignment of protein
backbones, the RMSD increases as local structural differ-
ences in the aligned C� become larger. Alternatively, our
measure of global topological differences will remain rela-
tively invariant upon local structural changes. Meaningful
topological differences in compared proteins would be
accompanied by large jumps in the topological score.

Removal of Length Dependence From the
Topological Score

There is still the issue, however, of the raw score’s
dependence on the sequence length difference between the
proteins under comparison. The previous examples of the
topological scoring capabilities were not affected by this
issue, since they have involved the comparison of single
proteins with different conformations of themselves. Thus,
the next logical aim would be to evaluate how the removal
of the length dependence of our score implied by Equation
(5) affects the comparison of proteins.

A representative set of protein structures was taken
from the WHATIF database.43 This set of proteins con-
tains 1424 chains with less than 30% sequence identity,
less than 0.25 R-factor, and a resolution of less than 2.5 Å.
We performed an all-against-all comparison on this set
using both topological comparison scores, Q and Q. The
result of these comparisons is shown in Figure 6. The
normalized score, Q, is seen to be free of much of the length
difference dependence while the raw score, Q, shows a
marked dependence. Nonetheless, on average, both scores
increase with the length difference of the compared pro-
teins.

Generally, a protein’s structure must be dependent on
the length of its sequence, because the number of configu-
rational degrees of freedom in a polymer’s structure is
proportional to the number of residues it possesses. Thus

the topological differences in compared proteins should
increase gradually with their length difference. The ex-
pected gradual increase is seen for Q, but is more dramatic
for Q. The inset in Figure 5 shows the two scores’ behavior
over small length differences. It can be seen that a small
length difference between two compared proteins might be
safely neglected in the case of the raw comparison score, Q.
Despite the difference in the two scores’ global dependence
on the length difference, the increase in the conforma-
tional freedom that comes with a greater sequence length
manifests itself similarly in both scores via the standard
error. The fluctuation in the topological score becomes
greater as the sequence length difference between the
compared proteins becomes larger. This is because there is
a large average difference in the number of conformations
available to either one of the proteins under comparison.

Topological Characterization Within Families

In the previous sections, our focus was on the compari-
son of different conformations of the same protein. We now
investigate the application of our topological characteriza-
tion method to different structures within families of
structurally related proteins. This requires that we make
use of the normalized topological score, Q, because it is free
of the artificial length dependence intrinsic to the raw
score.

Six protein families were selected from the FSSP (Fami-
lies of Structurally Similar Proteins) database43 for topo-
logical evaluation. We selected families that span various
levels of secondary structural content. The representatives
of these families are as follows: 1alv and 1avm (having
greater than 50% �-helical content), 2bbk and 2bpa (hav-
ing greater than 50% 	-sheet content), and 1hfc and 1plc
(having at least 50% content that is classified as neither
�-helical nor 	-sheet). The FSSP database contains the
results of the alignments of the extended family of each of
these representative chains. Each family in the database
consists of all structural neighbors excluding very close
homologs (proteins having a sequence identity greater
than 70%). The topological score was calculated for each
representative in a one-against-all comparison with its
neighbors. All of the scores are plotted against RMSD for
each of the families in Figure 7.

The power-law trend can be seen for all families, al-
though it is less pronounced than that seen in Figure 3.
Perhaps the most striking feature of the plots is the
particular shape of the correlations in each secondary
structural content group. These “global trends” are out-
lined in green on the plots. The families with mainly
helical content seem to follow a common trend until �2 Å
RMSD [see Fig. 7(a, b)], after which the trend “splits” in
two. This indicates that many proteins with high helical
content may be well superimposed while, topologically,
they may be very different. The families with mainly sheet
content also display a characteristic trend. The data tend
to follow the fitted line very well, with a cluster of protein
pairs possessing a low RMSD. A second cluster of protein
pairs is centered around 3 Å RMSD in the case of 2bbk and
around 4 Å in the case of 2bpa [see Fig. 7(c, d)]. Further-
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more, the data tend to more sparsely populate the region
along the trend-line than in the case of proteins with more
helical content. This implies that both global topology (as
indicated by our score) and local geometry (as indicated by
standard RMSD) change in the same abrupt manner
within families having high 	-sheet content. In the tested
families having a content majority classified as “neither”
�-helical nor 	-sheet, the correlation follows a pattern
possessing traits of both “highly helical” and “highly sheet”
trends [see Fig. 7(e, f)]. The data populate the region along
the trend-line well as in the case of highly helical families.
However, there is no “split” in the trend, although there is
slight deviation from the fitted line at higher RMSD
(hinting at a helical behavior). A demonstration of the
difference in the type of information one can glean from
our topological score as opposed to a standard calculation
of C� RMSD after superimposition can be seen if we view
the difference in two related proteins that are close
according to RMSD but far according to topological score
(with respect to the other proteins in the family). The data
point corresponding to the comparison of chain A of 1alv to
1thg is encircled in Figure 7(a). These proteins and their
optimal alignment as determined by the program, CE,44

are rendered in Figure 8(a). It is easy to see that the
similarity implied by the RMSD is due to the alignment of
substructures. If the proteins are to be aligned, their vast
difference in sequence length requires that 1alv be aligned
to some fragment of 1thg. It can also be seen that while
1alv contains almost no 	-sheet, 1thg contains a very large
portion of 	-sheet (shown in yellow). Also, by virtue of the
difference in their sequence length, one should expect the
two proteins to be topologically different. This difference is
reflected in the topological score. An additional example is
encircled in Figure 7(c) in which we compare two proteins
that are relatively remote according to RMSD, but close
according to topological score. Figure 8(b) shows these two
proteins (2bbk, chain H and 1qlg, chain A) and their
optimal alignment. Qualitatively, their topological similar-
ity is evident. The chain of 2bbk contains joined segments
of sheet and three very small fragments of helix while the
chain of 1qlg contains the same sheet motif, and two small
helical fragments. Their alignment, while optimal, leads to
a large RMSD relative to other family members, but their
topological comparison classifies them as more closely
related.

Now that we have established that the topological score,
in most cases, can give information about changes in local
geometry just as RMSD, although by different means, we
wish to say a few words about the differences in the
behavior of the trend in the correlation between the
topological score and RMSD in the test cases shown in
Figures 3, 4, 5, and 7. Figure 3 shows cases where the
topological score versus RMSD correlation follows the
power-law trend almost perfectly. In these cases, the
scores do not represent the sampling of an equilibrium
system (a protein in solvent as in Figure 5). Instead, the
initial protein configurations for the simulations (in
vacuum) are protein structures that would be representa-
tive of an equilibrium if they were in solvent. Thus, as time

evolves, the structures move toward their “would be”
equilibrium states in a vacuum environment, but never
reaching it. The plots in Figure 3, therefore, show a
sampling of the differences in topology (via topological
score) and geometry (via RMSD) along one possible path-
way from the solvent-equilibrium state to the vacuum-
equilibrium state.

The same idea applies to the correlation plots for the
FSSP families in Figure 7, but in a different way. In this
case, we do not view a trajectory of a single protein.
Instead, we view a set of structures that sample topological
and geometric possibilities in a broader manner than a set
of structures from an equilibrium ensemble (i.e., we are
sampling many different proteins of similar secondary
structure content), but in a narrower manner than a set of
structures from a non-redundant set of structures (i.e., the
structures used to generate the data in Figure 6).

In the cases of the MD simulation of halorhodopsin (Fig.
5) and of the NMR structures (Fig. 4), there is a strong
power-law trend in the correlation plots, but generally, the
variance of both the RMSD and the topological score is
much smaller than in the cases of the simulations in
vacuum (Fig. 3) and of the FSSP families (Fig. 7). In the
halorhodopsin simulation, the initial structure was a
crystal structure in a realistic environment, which was
allowed to relax and conform to the simulation conditions
(i.e., temperature and pressure). If the crystal structure is
very close to its equilibrium structure in the simulation
conditions (unlike in the case of the MD simulations in
vacuum for Figure 3), then the central limit theorem would
imply that the RMSD and the topological score should each
display a set of values with a roughly Gaussian distribu-
tion. Thus, since the simulation of halorhodopsin and the
sets of NMR structures represent systems sampling a
nearly equilibrium ensemble, the more tightly clustered
sets of points in Figures 4 and 5 are reasonable. The
difference in scaling between the RMSD and the topologi-
cal score still produce a correlation that follows a power-
law trend. In summary it’s all a matter of how the
structures in question sample structural space. Thus the
differences among the figures showing correlation among
the topological score and the RMSD are reasonable given
the details of the particular test for each figure.

Hierarchical Classification of Proteins

Now that we have shown what sort of information the
topological score can give us about the similarity of pro-
teins under comparison, we focus on its classificatory
ability. In order to see how well our scoring scheme reflects
current hierarchical protein classifications, we devised a
test to determine if a given protein’s structural neighbors
according to our score is consistent with that one might
find in the classifications of, for example, SCOP16 (Struc-
tural Classification of Proteins) or CATH19 (Class, Archi-
tecture, Topology, and Homologous Superfamily). To this
end, a consistency on a “general” topological level was first
investigated.

A set of 995 protein chains whose corresponding PDB
files met parseability criteria31 were selected out of 3285
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chains from the CATH domain list, version 2.4, containing
a set of representative domains from sequence families
clustered at 35% sequence identity (available at ftp://
ftp.biochem.ucl.ac.uk/pub/cathdata/v2.4/). These proteins
were classified into the general classes, �, 	, �-	, or neither
� nor 	. The following protocol was followed in order to

determine the topological comparison’s capacity to discrimi-
nate between the CATH designated classes: For any given
protein, A, in the set,

1. Find the lowest score, Q, resulting from the topological
comparison of A with all other proteins in the set. This

Fig. 8. Rendered structures and superimposition of the FSSP neighbors, a: 1alv, chain A and 1thg [corresponding to the data point in Figure 6(a)
circled in blue] and (b) 2bbk, chain H and 1qlg, chain A [corresponding to the data point circled in red in Figure 6(c)]. The helical portions of the proteins
are shown as cylinders and the sheet portions are shown as thick ribbons with arrows. Elements of secondary structure are colored: purple corresponds
to helical structure, yellow corresponds to sheet structure, and light blue corresponds to loop or turn. In the alignments (lower portion of the figures), the
structures 1alv A and 2bbk H are colored orange, while 1thg and 1qlg A are colored blue.

Fig. 9. Rendered structure of 1hip classified by CATH as “neither � nor 	,” but as “�-	” according to its
neighbor, chain B of 1gua, as determined by our topological method. The details of rendering and color are the
same as those for Figure 7. In the alignment (lower portion of the figure), 1hip is colored blue and 1gua B is
colored orange.
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“lowest score” corresponds to the topological neighbor,
B, of A.

2. The CATH classification of B is taken to be the topologi-
cal classification of A.

The results of this classification are summarized in
Table I(a). Classification of the set of proteins was, overall,
very consistent with CATH.

The fraction (hit-rate or hit-probability), f, of proteins
classified by topology in a manner conforming to the CATH
classification has the lowest value for the “neither � nor 	”
class. Nonetheless, this hit-rate is quite significant in light
of the probability of classifying proteins from this class
randomly (f/frandom � 7.92). This means that the sample
space of the “neither” class is small, so that it is easier to
find neighbors of “neither” proteins in the �, 	, and �-	
classes. An example of such a case is shown for one of the
proteins in our set, 1hip, in Figure 9. The CATH database
places this protein in the class, neither � nor 	, while its
nearest neighbor, chain B of 1gua, is in the class, �-	, as
determined by our topological classification test. The simi-
larities in topology between these proteins are apparent.
Both structures contain eight secondary structural ele-
ments (1hip has five helix segments and three sheet
segments, while 1gua B has three helix segments and five
sheet segments). In addition, both structures have a region
of helices that come together with a sheet region. The main
difference between the proteins is that 1hip has much
more loop or turn content where 1gua B has more sheet
content. The fact that our test protocol for classification
places some proteins into different classes than CATH is
not due entirely to the topological nature of the score. Note
that only 995 proteins were selected out of 3285 in the
CATH list. If the remainder of the list had met our
parseability criteria, the probability of finding a topologi-
cal neighbor in the corresponding CATH class would have
increased. One would expect, due to the nature of the

classification protocol outlined above, that if the entire set
of CATH domains were used in such a test, rather than the
set of 3285 sequence representatives, the probability of
classifying the domains in a conforming manner would
increase. However, a topological classification can still be
expected to be slightly different despite this increase in
likelihood. It is interesting that our topological method can
find a reasonable neighbor for a given protein despite the
sparseness of the set of proteins used in the classification.

A similar experiment was performed for a set of proteins
from the SCOP classes of �, 	, � 
 	, and �/	. We randomly
selected 100 proteins from each of these classes in the set
of proteins classified by SCOP version 1.61 (http://
www.berkeley.edu/parse/html). The results of the test are
shown in Table I(b). The conformity of the topological
classification to the SCOP classification is not as favorable
as for the test of the set from CATH, but all observed
hit-rates are still quite significant. The described experi-
ments provide a preliminary test of the ability of our
topological representation to classify proteins into general
structural categories. A true classification effort would
involve a much larger set of proteins. Nonetheless, our
results demonstrate the feasibility of such a classification.
In order to further demonstrate the capability of our
topological comparison to categorize proteins, we probed
more deeply into the SCOP hierarchy.

We used our scheme to categorize all the proteins having
parseable PDB files from the SCOP class f, “membrane
and cell surface proteins and peptides.” The result of this
categorization shown in Table II demonstrates a remark-
able conformity to the SCOP hierarchy. This can be
expected because we exhaustively categorized all possible
proteins of the class in contrast to the partial set we used
for the general categorization result shown in Table I. A
100% hit-rate was obtained for the fold, “membrane all-
alpha.” This fold is particularly easy to categorize by
human inspection of the structure, but our method makes
this categorization without visualization or alignment of
structures. The remainder of the proteins has a very high
hit-rate as well. The lowest fraction of proteins classified
by topology in a manner conforming to SCOP belongs to
the fold category of light-harvesting complex subunits.
However, this fraction is still extremely significant, with
f/frandom � 15.1.

TABLE I. Classification of Proteins into CATH-type and
SCOP-type Classes

a. CATH classa ƒ ƒ/ƒrandom

� 0.957 3.75
	 0.914 3.54
� � 	 0.826 1.86
neither 0.333 7.92

b. SCOP classb ƒ ƒ/ƒrandom

� 0.840 3.36
	 0.760 3.04
� 
 	 0.610 2.44
�/	 0.730 2.92

aThe fraction, ƒ, of proteins classified by topology in a manner
conforming to the CATH classification. ƒrandom is the fraction of
proteins in a given class that one would expect to classify in a manner
conforming to CATH by random guessing, calculated as Ni/Ntot, where
Ni is the number of proteins in class i (�, 	, ��	, or neither) and Ntot is
the total number of proteins classified.
bThe fraction of proteins classified by topology in a manner conforming
to the SCOP classification along with the ratio, ƒ/ƒrandom, calculated as
in footnote a.

TABLE II. The Fraction of Proteins Classified into Folds by
Topology in a Manner Conforming to the SCOP

Fold Classification†

SCOP fold ƒ ƒ/ƒrandom

Toxins’ membrane translocation domains (1) 0.714 47.6
Membrane all-alpha (2) 1.00 1.29
Light-harvesting complex subunits (3) 0.650 15.1
Transmembrane beta-barrels (4) 0.970 6.74
Leukocidin (pore-forming toxin) (6) 0.875 50.9
†The classification is for proteins under SCOP class f (membrane and
cell surface proteins and peptides). Again, the ratio, ƒ/ƒrandom is
calculated as in Table I. Folds not included in the analysis under class
f, were not included because parseability criteria allowed too few files
for analysis.
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Table III shows the results of an additional categoriza-
tion done at a low level of the SCOP hierarchy for class f
(membrane and cell surface proteins and peptides), fold 2
(membrane all-alpha), and superfamily 1 (membrane all-
alpha). The analysis of this protein set was also exhaus-
tive. In addition, on average, the hit-rate is yet higher for
finding a categorization conforming to SCOP. In many
cases it is 100%. A few families with f � 0 could not be
classified in a manner conforming to SCOP because too few
proteins exist within the family such that a nearest
topological neighbor could not be found easily. Part of the
reason for this is that many of the proteins are, again,
“weeded out” because of our PDB file parseability criteria,
thereby creating a partially incomplete set of proteins.
Nonetheless, the ability of our topological scheme to
produce a categorization having such an agreement with
the SCOP hierarchy is very well demonstrated by this test.

As a final demonstration of the classificatory power of
the topological representation we created phylogenetic
trees for the following SCOP superfamilies: (1) class:
alpha, fold: DNA/RNA-binding 3-helical bundle, super-
family: “Winged Helix” DNA-binding domain (containing
65 parseable structures), (2) class: beta, fold: Prealbumin-
like, superfamily: aromatic compound dioxygenase (con-
taining 103 parseable structures), (3) class: alpha and
beta, fold: Flavodoxin-like, superfamily: Flavoproteins
(containing 106 parseable structures), and (4) class: al-
pha, fold: Globin-like, superfamily: Globin-like (contain-
ing 762 parseable structures). An all-against-all distance
matrix of topological scores (Q) was generated for each
superfamily of proteins and used as input for phylogenetic
classification as determined by the neighbor-joining algo-
rithm45 and implemented by the program, neighbor, from
the PHYLIP suite of packages for the inference of phylog-
enies (made freely available at http://evolution.genetics.
washington.edu/phylip.html). The resulting phylogenetic
tree for superfamily 1 is shown in Figure 10 and the trees
for superfamilies 2, 3, and 4 are presented in the supple-
mentary material. Trees 1–3 are annotated on the right

according to the SCOP family, protein name, and in some
cases, the species. It is easily seen that in almost all cases,
different families occupy different branches of the tree. In
the cases where the species is included in the annotation,
it is easy to see that the species are invariantly clustered
together within a family. The topological classification has
the uncanny ability to group together proteins with similar
PDB identities (e.g., 2irf G, 2irf H, 2irf I, 2irf J, 2irf K, and
2irf L – the interferon regulatory factors in Figure 10) with
no a priori knowledge of their kinship, allusion to sequence
similarity, or preliminary structural alignment.

A similar test was performed for the SCOP multi-
domain class of proteins. Three folds were exhaustively
clustered using the same method as for constructing the
tree of Figure 10. The multi-domain folds classified were
the following: (1) beta-Lactamase/D-ala Carboxypeptidase
(177 parseable structures), (2) Heme-linked Catalases (47
parseable structures), and (3) Sugar Phosphatases (120
parseable structures). The resulting phylogenetic trees
were also annotated according to the SCOP classification
(supplemental material). The consistencies with the SCOP
classification are again apparent.

Computational Effort

Given that the topological scoring calculation consists of
the simple expression given in Equation (7) involving only
simple addition of real numbers, the rate limiting element
is due to the Delaunay tessellation of the proteins under
comparison. This procedure’s complexity is NlogN, where
N is the number of tessellated points. We calculated the
CPU time for an all-against-all comparison of 100 proteins
using the topological scheme to find Q for each pair within
the set. The average CPU time per topological comparison
was observed to be 0.39 s. The same all-against-all compari-
son was done using the program CE44 to find the RMSD
between structure pairs after their optimal superimposi-
tion giving an average of 7.86 s per pair-wise comparison.
Thus, our topological comparison was �20 times faster
than the calculation of RMSD for the comparison of

TABLE III. The Fraction of Proteins Classified Into Families by Topology in a Manner Conforming to the SCOP
Family Classification†

SCOP family ƒ ƒ/ƒrandom

Seven-helix membrane receptors (1) 0.938 10.6
Photosynthetic reaction centre, L-, M- and H-chains (2) 1.00 4.24
Cytochrome c oxidase-like (3) 0.991 3.21
F1F0 ATP synthase subunits (4) 0.929 23.9
Aquaporin-like (5) 1.00 45.0
Cytochrome bc1 transmembrane subunits (8) 0.958 7.19
Fumarate reductase respiratory complex transmembrane subunits (9) 1.00 18.0
Calcium ATPase (10) 1.00 90.1
Oligomeric gated channels (11) 0.737 14.0
* Photosystem I (12) 0.00 0.00 (ƒrandom � 0.0194)
C1C chloride channel (13) 1.00 36.0
* Formate dehydrogenase N, cytochrome (gamma) subunit (14) 0.00 0.00 (ƒrandom � 0.00556)
†The classification is for proteins under SCOP class f (membrane and cell surface proteins and peptides), fold 2 (membrane all-alpha), and
superfamily 1 (membrane all-alpha). Again, the ratio, ƒ/ƒrandom is calculated as in Table I. Families not included in the analysis under class f, were
not included because parseability criteria allowed too few files for analysis. Families with ƒ � 0 (indicated by an asterisk *) could not be classified
in a manner conforming to SCOP because too few proteins exist within the family such that a nearest topological neighbor could be found easily.
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proteins. Aside from the conceptual benefits one might
gain from the use of a topological protein comparison, such
a difference in computational efficiency provides for a very
attractive method for fast, automated comparison and
classification of proteins.

CONCLUSION

This work introduces a representation of protein struc-
ture that captures the way in which a protein’s sequence
writhes into its 3D structure. The representation is, in
effect, a vector whose elements describe the distribution of
combinations of sequence segment lengths along the pro-

tein backbone that give rise to four-body clusters of
nearest-neighboring residues within the protein’s folded
structure. Comparison of two representative vectors is a
fast O(n) algorithm that results in a score reflecting the
distance between a pair of proteins in a heuristically
defined topological space. This renders our topological
scoring procedure faster than any automated method
utilizing a structural alignment protocol. Currently, there
is a need to stringently parse PDB structure files for
quality31 before implementing our comparison because all
C� atoms of a protein are necessary in order to tessellate
its structure and, consequently, build its topological repre-

Fig. 10. Phylogenetic tree as determined via the neighbor-joining algorithm and an all-against-all
topological comparison of the proteins in the SCOP hierarchy falling below the level of class: a (alpha), fold: 4
(DNA/RNA-binding 3-helical bundle), and superfamily: 5 (“Winged Helix” DNA-binding domain). The tree is
annotated on the right according to SCOP family, protein name, and in some cases, the species.

TOPOLOGICAL COMPARISON OF PROTEIN STRUCTURES 499



sentation. This presents a difficulty when attempting to
perform exhaustive comparisons within a large database
of structures for subsequent classification. However, this
problem might easily be overcome with known algorithms
for the inference of atomic coordinates when presented
with partial protein structures.46–49

Our work shows that the topological score between
protein pairs correlates with the standard measure of C�

RMSD after optimal superimposition of the structures in a
way that can be expected of a topological measure of
similarity. The topological score remains more invariant
than the RMSD due to the invariant nature of topology
with respect to differences in local geometry among the
structures. Nonetheless, we have demonstrated that the
topological score can lend insight to structural differences
on a local geometric level in a manner similar to the
RMSD. Furthermore, we have demonstrated that our
topological comparison can isolate cases where topology
implies structural relatedness while RMSD measurement
does not [as in Figure 8(b)]. The method can also discern
structural dissimilarity, where RMSD measurement im-
plies similarity [as in Figure 8(a)].

Also, the topological comparison we describe here allows
for the identification of structural neighbors within sub-
stantially large sets of proteins on the levels of class, fold,
superfamily, family, protein, and species that are in agree-
ment with established hierarchical classifications.16,19 Of
course, our method of classification uses different criterion
than SCOP or CATH, so there might be differences in the
resulting hierarchy. However, in cases where the topologi-
cally determined category of a protein does not agree with
standard classification, the topological classification has a
demonstrated ability to provide an extremely reasonable
alternative (as in Figure 9). Finally, our topological com-
parison method demonstrates a capacity to independently
provide a very reasonable hierarchical classification even
on the advanced level of superfamilies. The independent
classification is also extremely compatible with modern
standard hierarchical classifications.16 With its demon-
strated classificatory power, the simple topological repre-
sentation for proteins we outline in this work is a very
interesting prospect for the classification and characteriza-
tion of protein structures.
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