The beginnings of bioinformatics data.

- The raw signals in bioinformatics
 - In the form of sequences and structures
 - DNA
 - RNA
 - Proteins
 - Other...
 - Metabolic rates (Cellular modeling)
 - Phylogenetic information (Genetic history / evolution)
 - Phenotypic information (Gene expression)
 - Pathway participation
 -...

- Where do we get this information?
 - Lab
 - Shared resources (data warehouse)

- What do we do with the information once we have it?
 - Computational analysis...
In the lab…

- DNA and RNA sequencing
 - PCR (Polymerase Chain Reaction)
 - Contig and Genome cloning

- Protein Sequencing

The Basics of DNA Sequencing

- Primers
 - Target specific regions
 - 20 to 30 bases in length
 - Indicate the portion of the DNA to be copied
Amplification of DNA sequences

- **PCR (Polymerase Chain Reaction)**
 - Fast and fairly error free
 - PCR used in forensic work
 - Needs very little DNA to start
 - PCR requires choice of primers
 - Rapid amplification of the target.
 - 30 cycles yields more than 250 million targets

- **Cloning**
 - Slower
 - More error prone
 - Does not produce as many copies

PCR

- **One Cycle**
 - Target strand heated to ~ 94°C
 - Primers are added for targeted region.
 - Taq Polymerase copies sequence

![PCR Diagram](Image from Genomess © 2002 Garland Science)
Why not use PCR for Genomic Sequencing?

- Genomic target to large
 - PCR works well for short sequences
 - around 5kb is standard
 - Up to 40 with improved technique
 - For sequences > 100 kb not possible

Cloning

- Uses small organism to grow multiple copies of the DNA
- Restriction enzymes used to cleave DNA so that the desired sequence can be inserted.
- Organisms natural DNA replication process produces copies.
- YAC and BAC cloning vectors are used.
Comparison between YAC and BAC Cloning Systems

<table>
<thead>
<tr>
<th>Features</th>
<th>YAC</th>
<th>BAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>Linear</td>
<td>Circular</td>
</tr>
<tr>
<td>Host</td>
<td>Yeast</td>
<td>Bacteria</td>
</tr>
<tr>
<td>Cloning Capacity</td>
<td>Unlimited</td>
<td>up-to 350</td>
</tr>
<tr>
<td>Insert Stability</td>
<td>Unstable</td>
<td>Stable</td>
</tr>
<tr>
<td>Copy per Cell</td>
<td>1</td>
<td>1-2</td>
</tr>
<tr>
<td>Chimerism</td>
<td>up to 40%</td>
<td>None to low</td>
</tr>
</tbody>
</table>

The Cloning Process

Image from Genomes2 © 2002 Garland Science
Basic Sequencing

- Tagging of nucleotides
 - dideoxynucleotide terminal markers
- DNA sequences grown from primer
 - Sequences terminate when a dideoxynucleotide gets placed in the sequence
- Electrophoresis
 - Porous agar gel
 - Ion charge and pores control movement
 - Distance a chain travel correlates to sequence length
 - Color of tag indicates type of base called
- Good gel tutorial web site:
 - http://learn.genetics.utah.edu/units/biotech/gel/

Getting the sequence

- Laser reads the signals from fluorescent dyes.
 - ABI sequencer
 - Produces a signal file
- Errors in sequencing
 - End of gel run less precise
 - Lane shift
- Phred/Phrap/Consed
 - Basic industry standard tools for base calling
 - Expert makes the final decision
Constructing Larger Sequences

- Shotgun Approach to sequencing

![Diagram of DNA fragments and sequences overlapping](Image from Genomes2 © 2002 Garland Science)

Genomic Sequencing

- Contig
 - Defined segment
 - Shotgun segment

- Whole Genome Shotgun
 - Makes use of markers to keep location

- Challenges
 - repeated DNA section
 - SNP
 - Markerless regions

![Diagram of genome map and sequencing](Image from Genomes2 © 2002 Garland Science)
What to do with our “knowledge”

- Share it…
 - Information is knowledge or intelligence communicated, received or gained
- Learn more about it…

Further research directions
The Internet

- Packet sharing:
 - IP - Internet protocol
 - TCP – transmission control protocol

- Allows:
 - Querying vast amount of information
 - Resource Sharing

Internet History

- Backbone
 - NSF driven system
 - Packet exchange
 - Protocol Driven

- Allows for rapid information exchange
 - Reliability of information?
 - Wikipedia?
 - Published Sequences?
Basic information exchange format

The protocol or "middle layer" is a translator that is essential to communication.

Common Protocols

- **WEB BROWSER** <-> **HTTP** <-> **WEB SERVER**
- **TELNET CLIENT** <-> **TCP/IP** <-> **UNIX HOST**
- **FTP CLIENT** <-> **FTP** <-> **FTP SERVER**
- **MAIL CLIENT** <-> **IMAP/POP** <-> **MAIL SERVER**
- **NEWS READER** <-> **NNTP** <-> **NEWS SERVER**
Web Addresses

- BaseIP Address => Domain Name (DNS)

- Uniform Resource Locator (URL)
 - `protocol://host.domain[:port]/path/filename`

- Internet protocols types
 - http - a World Wide Web server
 (`http://mmlin4.pha.unc.edu/~cmb96`)
 - telnet - a telnet session (`telnet://nun.oit.unc.edu`)

Network collaboration

Real-time data sharing -- exchange of information between remote participants in the project

Resources sharing -- remote access to the instruments and computers

Resources integration -- simultaneous use of remote instruments and computers
Bioinformatics servers

Remote data access -- database search, cross-links between the databases

Remote computing -- use of server’s processing capabilities (sequence alignment, structure prediction, homology modeling)

Infospace navigation -- pointers to the available resources

Digital information cycle

Creation and capture
Storage and management
Rights management
Search and access
Distribution

Electronic publishing
Quality (peer review, retrospective evaluation)
Reliability (stability of serves, control over alterations, proper archiving and mirroring)
Database

- **database**: a collection of related structured information about entities
- **file**: a collection of records
- **record**: a set of fields
- **field**: a single characteristic of an entity
- **character**: a symbol used in data field

Levels of Databases

- **Laboratory based**
 - LIMS: typically used to track various different portions of the study
 - Anything pertaining to the study
 - Who ran the experiment
 - Substrate lot numbers (Hopefully barcoded)
 - Sequencer
 - Time of run
 - Protocol Used
 - Ambient temperature
 - To keep track of all of the meta data so that error can be reduced
 - SNPTacker

- **Research based**
 - Information management system for the computational researcher
 - Manages data
 - Experimental Protocols
 - Computational methods
 - Statistical Methodology
 - Ontology
 - ProbeFATE
Data?!

- **What is data?**
 - Base level measurement
 - Sequence signal level vs. base call
 - Base for your work...
 - What is metadata?
 - All the information surrounding the measurement
 - How... Protocol
 - What... Units
 - Where and When... Data lineage
 - Why ... Motivation (Hypothesis)
 - What is an ontology?
 - Protocols (dictionaries) that can help define and control the flow of data.

Levels of Databases (continued)

- **Warehouses**
 - Central Repositories of certain types of information
 - NCBI~ GenBank (Nucleotide sequences)
 - Swiss-Prot (Protein sequences)
 - PDB
 - Many small databases
 - Flybase
 - MGD (Mouse Genome Database)
 - RGD (Rat Genome Database)

- **Federations**
 - Databases that draw / combine database information from multiple other databases.
 - KEGG (Pathway / Genome)
 - PDB Sum
 - Prosite
 - PDB
Important Central Databases

- **Genome**
 - NCBI
 - GenBank
 - PubMed
 - European Molecular Biology Laboratory (EMBL)
 - DNA Database of Japan (DDBJ).
 - GO (Gene Ontology)
 - Consortium of databases
 - Flybase, RGD, MGD,....

- **Protein**
 - RCSB ~ PDB
 - EMBL ~ EBI (European Bioinformatics Institute)
 - UniProt ~ ExPasy ~ Swiss-Prot

- **KEGG: Kyoto Encyclopedia of Genes and Genomes**

PDB at RCSB

- The Protein Data Bank (PDB) is the single worldwide depository of information about the three-dimensional structures of large biological molecules, including proteins and nucleic acids. These are the molecules of life that are found in all organisms including bacteria, yeast, plants, flies, and mice, and in healthy as well as diseased humans. Understanding the shape of a molecule helps to understand how it works.

- In 1998, the Research Collaboratory for Structural Bioinformatics (RCSB) became responsible for the management of the PDB.

- The PDB was established in 1971 at Brookhaven National Laboratory and originally contained 7 structures.
 - New structures released every Wednesday
 - As of September 5, 2006 there were 38620 Structures

- **PDB provides**
 - Sequence
 - Atomic Coordinates
 - Derived geometric data
 - Secondary Structure Content
 - Annotations about protein literature references

- **PDB**
 - http://www.rcsb.org/pdb/explore.do?structureId=1GBG
The ExPASy (Expert Protein Analysis System) proteomics server of the Swiss Institute of Bioinformatics (SIB) is dedicated to the analysis of protein sequences and structures.

UniProtKB/Swiss-Prot: a curated protein sequence database which strives to provide a high level of annotation (such as the description of the function of a protein, its domains structure, post-translational modifications, variants, etc.), a minimal level of redundancy and high level of integration with other databases.

UniProtKB/TrEMBL: a computer-annotated supplement of Swiss-Prot that contains all the translations of EMBL nucleotide sequence entries not yet integrated in Swiss-Prot.

- UniProtKB/Swiss-Prot Release 50.6 of 05-Sep-2006: 231,434 entries
- UniProtKB/TrEMBL Release 33.6 of 05-Sep-2006: 3,182,016 entries

Swiss-Prot Continued

- **HPI** (Human Proteome Initiative)
 - The Human Proteome Initiative (HPI) aims to annotate all known human protein sequences, as well as their orthologous sequences in other mammals,
 - Function
 - Domain structure
 - Subcellular location

- Federates
 - OMIM
 - Genew
 - H-InvDB
 - PDB

KEGG

- **KEGG**: Kyoto Encyclopedia of Genes and Genomes
 - “A grand challenge in the post-genomic era is a complete computer representation of the cell, the organism, and the biosphere, which will enable computational prediction of higher-level complexity of cellular processes and organism behaviors from genomic and molecular information.”

- Contains Pathway information as well as...
 - **PATHWAY** 40,837 pathways generated from 302 reference pathways
 - **GENES** 1,614,019 genes in 35 eukaryotes + 342 bacteria + 28 archaea
 - **LIGAND** 14,198 compounds, 4,029 drugs, 10,951 glycans, 6,804 reactions
 - **BRITE** 3,950 BRITE files, 8,735 KO groups
PDBSUM

- The PDBsum is a pictorial database that provides an at-a-glance overview of the contents of each 3D structure deposited in the Protein Data Bank (PDB).

- Federates tools and data
 - PDB
 - Prosite
 - Rasmol/Chime

- http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/

NCBI (National Center for Biotechnology Information)

- "Established in 1988 as a national resource for molecular biology information, NCBI creates public databases, conducts research in computational biology, develops software tools for analyzing genome data, and disseminates biomedical information - all for the better understanding of molecular processes affecting human health and disease."

- Databases
 - Sequence
 - GeneBank
 - SNP
 - GEO
 - MMDB
 - Literature
 - PubMed
 - Online Mendelian Inheritance in Man (OMIM)
 - Molecular Modeling Database (MMDB)
 - Unique Human Gene Sequence Collection (UniGene)
 - Gene Map of the Human Genome
 - the Taxonomy Browser
 - the Cancer Genome Anatomy Project (CGAP), in collaboration with the National Cancer Institute.

- Tools
 - Entrez is NCBI's search and retrieval system that provides users with integrated access to sequence, mapping, taxonomy, and structural data

http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
GenBank

- **GenBank** is the NIH genetic sequence database, an annotated collection of all publicly available DNA sequences.
- Repository of nucleotide sequences
 - From (EMBL) and (DDBJ)
 - As of April 2006, there are over 130 billion bases in GenBank and RefSeq alone
- Many journals require submission of sequence information to a database prior to publication so that an accession number may appear in the paper.
- Basic Local Alignment Search Tool (BLAST) finds regions of local similarity between sequences.

Sample Record
Why informatics is needed…

- genome
 ~ 25'000 human genes
- proteome
 ~ 1'000'000 human proteins
- transcriptome
 ~ 100'000 human transcripts

Increase in complexity

PTM

- Post Translational Modification
- Large-scale studies on chromosomes 21 and 22 indicate that over 80% of the genes could undergo alternative splicing.
- Genomic information does not suffice to predict all the PTMs of which the majority of proteins are the target. Once synthesized on the ribosomes, proteins are subject to a multitude of PTMs. They are cleaved (thus eliminating signal sequences, transit or pro-peptides and initiator methionines); many simple chemical groups can be attached to them (acetyl, methyl, phosphoryl, etc.), as well as a number of more complex molecules, such as sugars and lipids; and finally, proteins can be internally or externally cross-linked (e.g. disulfide bonds). More than two hundred different types of PTM are currently known and many more are yet to be discovered.
Issues with where information is obtained

- Asynchronous vs. real time information sharing
 - How fast should the information be available?
 - How can the federations and warehouses keep current?
 - What are the best practices for
- User submitted information is it accurate?
 - Solutions:
 - Curation
 - Is the expert always right?
 - Well defined protocols
 - Are the definitions correct?
- Still Errors!!!!
 - Sequence Alignment example
 - PDB vs. Swissprot
 - Genebank BLAST is an approximate search engine…
 - Ontologial overlap or disagreement.
 - MMDB (Protein structures ~ curated)
 - CSA vs. EZCATDB

Computational Exercises

- NCBI/GenBank
- Swiss-Prot
- PDB
- KEGG
Using the following sequence…

cagataattg tttcgcagcg aattgtgcaa tttttcgatt gagtagccgg attacagaat 60
ataaaactga gttcaggcgt cattggagag gacatacata atgtcgtcaa ctcaatgtct 120
tgtatgttcg cttctccttt tactttcgct tcctcgagca aatcacgaat gatttgtgac 180
ttaagtgatt gactgtaatg acaatcatat actttacttg tctgctctaa gttcccagag 240
attgtgagca tgcgaatcca atctaaatga tgaccgacga tgagatgaat ttcttcaaga 300
acatatcgta aacgctcacg aaccggctga tcgaaaggca taaatatttt attagcatat 360
cggcgataaa gagttccctg tccaacacca gctgttttag caattttatg catgctgaca 420
ttctctacaa ctaattttg aaacaagaa aaagpaaocct cttcaacttc cttcaacttc 480
tactttacaa tgatgatctccttct gttctgccctt tctttttacttcttcttcttcttaaataaaaataaaaaaaa 660
Get the following…

- Species and Functional Pathway?
- GenBank ID?
- Swiss-Prot ID?
- PDB ID?
- Image of Pathway?